一种基于混沌序列的分组m元扩频通信方法及装置的利记博彩app

文档序号:7699421阅读:207来源:国知局
专利名称:一种基于混沌序列的分组m元扩频通信方法及装置的利记博彩app
技术领域
本发明属于水声通信技术领域,具体地说,本发明涉及一种利用混沌序列进行分组M元扩频通信的通信方法及装置。本发明主要用于远程水声通信中。
背景技术
在水声通信领域中, 一般将20km至200km之间的通信成为远程通信,由于水声信道的传播衰减严重,水声通信信号经过远距离传播后往往因解调信噪比过低而导致误码率提高,以至无法正常通信。目前为了解决这一问题,通常采用扩频通信技术,通过获得扩频增益提高解调信噪比,以减小通信的误码率。然而常规扩频通信方式所导致的通信数据率过低的缺点(通信数据率为/ = 1/7\其中r为扩频码段长度),又限制了其实用性。为了提高通信数据率,可以使用M元
(M-ary)扩频通信方式,其通信数据率可以达到i = lnM/T ,比常规扩频通信方式提高了lnM倍。如果采用分组M元扩频通信方式,其通信数据率可以达到/ -lnC;/r,比常规扩频通信方式提高了lnC二倍(其中r是M个扩频编码选择并发的个数),而采用分组M元扩频通信的核心前提是选择并发的扩频编码序列必须是相互正交的,在王海滨等人的专利中采用混沌调频序列作为扩频编码序列
(王海斌等一种M-ary扩频通信方法,03156106.3, 2003),虽然能够获得较好的正交性能,但是相互叠加并发时存在较大的峰均比,导致发射效率低,因此其实用性和保密性都受到一定的限制。

发明内容
本发明的目的是提供一种通过混沌调频调相序列进行分组M元扩频通信的方法及装置,从而提高远距离水声通信的数据传输率、降低误码率以及增强可靠性。
为实现上述发明目的,本发明提供的基于混沌序列的分组M元扩频通信方法,包括通信发射方法和通信接收方法,所述通信发射方法包括如下步骤
1) 将待发送的通信编码数据分成K个码元一组的数据块;
2) 对于每组数据块,按照一定的混沌映射关系,得到相应的混沌序列组合,然后根据混沌序列组合形成混沌调频值序列和混沌调相值序列组合;
3) 通过混沌调频值序列和混沌调相值序列组合生成混沌调频调相扩频信号集合,将属于所述混沌调频调相扩频信号集合的混沌调频调相扩频信号叠加成一组 并发混沌调频调相扩频信号,并再加上同步信号后进行发射; 所述通信接收方法包括如下步骤
4) 对接收到的数据进行信道均衡与同步,然后通过与混沌调频调相扩频参考 信号集合进行副本相关,检测、判决并根据混沌映射关系恢复编码信息;所述混 沌调频调相扩频参考信号集合是所有可能的混沌调频调相扩频信号集合组合的并 集。
上述技术方案中,所述步骤1)中,所述待发送的通信数据是由原始通信数 据经信源编码和信道编码后得到。
上述技术方案中,所述步骤1)中,所述信源编码采用霍夫曼编码,用于去 除冗余信息;所述信道编码采用巻积码或turbo码,用于减少系统误码率。
上述技术方案中,所述步骤O中,所述K的取值为4 2048,具体的取值取 决于所采用的混沌映射模型和码间串扰水平。
上述技术方案中,所述步骤2)中,所述混沌映射关系如下根据一个或两个 混沌映射模型(如Quadratic映射、Chebyshev映射、Second-Order映射),由不同初 始值生成相互正交的M组混沌序列并从中提取r个进行组合,所述组合数 《=lnC;,使混沌序列组合与数据块所含信息一一对应,形成数据块所含信息映 射到混沌序列组合的混沌映射关系,r值常规取值为1 128。
上述技术方案中,所述步骤2)中,所述混沌调频值和混沌调相值可以采用三 种方式获得,第一种是根据一个混沌一维模型获得的混沌序列直接映射成调频值 和调相值;第二种是根据两个混沌一维模型获得的混沌序列分别映射成调频值和 调相值;第三种是根据一个混沌二维模型获得的混沌序列分别映射成调频值和调 相值。
上述技术方案中,所述步骤3)中,生成混沌调频调相扩频信号集合的方法 如下根据每个混沌调频值和混沌调相值对调制得到一个混沌调频调相扩频码元, N个码元组成一个混沌调频调相扩频信号;根据信息对应得到的混沌调频值和混 沌调相值组合,生成r个混沌调频调相扩频信号以构成一个混沌调频调相扩频信 号集合。
上述技术方案中,所述步骤3)中,所述同步信号是与混沌调频调相扩频信 号相互正交的扩频信号。
上述技术方案中,所述通信接收方法还包括如下步骤
5) 对步骤4)所得到的编码信息进行信道译码和信源译码,得到原始通信数据。
上述技术方案中,所述步骤4)中,所述信道均衡方法采用RLS均衡或turbo 均衡,用以减小或去除水声信道影响。而根据步骤2)和3)的相应过程生成的M 组混沌调频调相扩频参考信号分别与接收数据进行副本相关,通过最大似然方法 检测峰值,根据检测出的峰值按照步骤2)中得到的混沌映射关系恢复编码信息。
上述技术方案中,所述步骤5)中,所述信道译码方法采用Turbo算法或Viterbi 算法。
为实现上述发明目的,本发明提供的基于混沌序列的分组M元调频调相扩频 通信装置,包括通信发射装置和通信接收装置,所述通信发射装置包括
数据分组单元,用于将待发送的通信编码数据分成K个码元一组的数据块;
混沌映射单元,用于对每组数据块,按照一定的混沌映射关系,得到相应的 混沌序列组合,然后根据混沌序列组合形成混沌调频值序列和混沌调相值序列组
合;以及
调频调相扩频发射单元,用于通过混沌调频值序列和混沌调相值序列组合生 成混沌调频调相扩频信号集合,将属于所述混沌调频调相扩频信号集合的混沌调 频调相扩频信号叠加成一组并发混沌调频调相扩频信号,并再加上同步信号后进 行发射;
所述通信接收装置包括
接收预处理单元,用于对接收到的数据进行信道均衡与同步;以及检测判决 单元,用于通过与混沌调频调相扩频参考信号集合进行副本相关对经预处理后的 数据进行检测和判决,并根据所述混沌映射单元的混沌映射关系恢复通信编码数 据;所述混沌调频调相扩频参考信号集合是所有可能的信号集合组合的并集。
与现有技术相比,本发明具有如下优点
本发明利用混沌调频调相扩频信号进行M元扩频通信,可以有效地减少通信 发射信号的峰均比,而且各并发信号之间的互干扰水平低且可并发信号数目多, 可以有效地提高低信噪比下的水声通信性能。本发明不仅适用于水声通信中,还 适用于无线电通信和光纤通信中。


以下,结合附图来详细说明本发明的实施例,其中-图1表示分组M元调频调相扩频通信系统结构框图; 图2表示Quadratic映射方程所产生的混沌序列时序7图3表示Quadratic映射方程所产生的混沌序列自相关图; 图4表示Quadratic映射方程所产生的混沌序列互相关图; 图5表示一维混沌序列直接映射示意图(第一种方式); 图6表示普通的并发混沌调频扩频信号时序图7表示本发明所得的并发混沌调频调相扩频信号时序图(第一种方式); 图8表示分组M元调频调相扩频通信副本相关检出结果图(输入信噪比 -20dB);
图9表示分组M元调频调相扩频通信副本相关未检出结果图(输入信噪比 -20dB);
图IO表示两个一维混沌序列分别映射示意图(第二种方式);
图11表示Quadratic映射方程所产生的混沌调频值序列时序图12表示Chebyshev映射方程所产生的混沌调相值序列时序图13表示本发明所得的并发混沌调频调相扩频信号时序图(第二种方式);
图14表示一个二维混沌序列分别映射示意图(第二种方式);
图15表示Second-Order映射方程所产生的混沌调频值序列时序图16表示Second-Order映射方程所产生的混沌调相值序列时序图17表示本发明所得的并发混沌调频调相扩频信号时序图(第三种方式)。
具体实施例方式
下面结合附图与具体实施例对本发明作进一步地描述。 实施例1
本实施例所提供的基于混沌调频调相序列的分组M元扩频通信系统包括通信 发射单元和通信接收单元两大部分,如图l所示。
本实施例中,所述通信发射单元利用混沌调频调相序列调制信息并发送,包 括信息编码器、数据分组器、混沌映射器、混沌序列发生器、混沌调频器、混沌 调相器、扩频器、累加器、通信发射换能器等部分,如图1所示。所述信息编码 器对待通信信息进行信源与信道编码。所述数据分组器将通信数据分组。所述混 沌映射器将分组数据映射成相应的混沌编码序列。所述混沌序列发生器产生混沌 编码序列。所述混沌调频器产生混沌调频序列。所述混沌调相器产生混沌调相序 列。所述扩频器根据生成的混沌调频和调相序列产生混沌扩频信号。所述累加器 将混沌扩频信号叠加,并发送至通信发射换能器进行信号发射。
本实施例中,所述通信接收单元接收信号、进行解调并恢复信息,包括通信接收换能器、信道均衡器、混沌扩频相关器、信号检测判别器、数据恢复器、信 息译码器等部分,如图1所示。所述通信接收换能器采集通信数据。所述信道均
衡器对接收数据进行信道均衡与同步。所述混沌扩频相关器根据生成的混沌调频 调相扩频参考信号集合进行副本相关。所述信号检测判别器根据副本相关结果进 行检测判决。所述数据恢复器根据检测判决结果通过混沌映射关系恢复编码信息。 所述信息译码器进行信源与信道译码恢复通信信息。
本实施例提供的所述利用混沌调频调相序列进行分组M元扩频通信方法,包 括如下步骤
1) 将待发送的信息经过信源与信道编码之后,分成K个一组的数据块;
2) 根据数据块所含信息进行混沌映射成相应的混沌序列组合,并根据混沌序 列组合形成混沌调频值和混沌调相值序列;
3) 通过混纯调频值和混沌调相值序列生成混沌调频调相扩频信号集合,将混 沌调频调相扩频信号集合叠加成一组并发混沌调频调相扩频信号,并加上同步信 号通过通信发射换能器进行发射;
4) 接收换能器采集到通信数据,进行信道均衡与同步,并通过与混沌调频调 相扩频参考信号集合进行副本相关,检测、判决并根据混沌映射关系恢复编码信 息。
5) 解调的编码信息通过信源与信道译码恢复通信信息。
上述技术方案中,所述步骤l)的信源编码(如霍夫曼编码)去除冗余信息, 信道编码(如巻积码、turbo码)减少系统误码率。
数据块的K值常规取值为4-2048,取决于所采用的混沌映射模型和码间串扰 水平,假设分割的数据块为(^,^,...,a),信源与信道编码后的序列为 (c,,c,,...,^),其中L为编码前的数据长度。所谓混沌是在非线性动态系统中出 现的确定性但是具有类随机性的过程,这个过程是非周期的、不收敛但有界,并 且对初始值极度敏感。混沌序列的类随机特性非常适用于扩频调制通信机制,且 由于对初始值极其敏感,初始值稍有不同就能形成互不相关的序列,因此混沌映 射可以提供大量的、相互正交的、类随机又可以确定再现的混沌序列。混沌映射 模型有很多,如Quadratic映射、Chebyshev映射、Second-Order映射等,不同混 沌映射模型得到的混沌序列,其相关特性有所不同。本实施例中采用Quadratic映 射,所谓Quadratic映射方程可以表示为
g(w + l)^尸一gg2(m) (1)
9其中,当3/4<尸2<2时,g(附)e(—2/g,2/0,本实施例里取g = 2 ,尸=1 , g(O)"-l,l), g(m)e(-l,l)。
图2为Quadratic映射方程所产生的混沌序列,序列长度为1024,初始值为 0.8501,其自相关特性如图3所示,自相关旁瓣峰值为0.0651;其互相关特性如 图4所示,另一个混沌序列的初始值为0.8564,互相关峰值为0.085。
所述步骤2)的混沌映射过程是指根据一个或两个混沌映射模型,由不同初始 值生成相互正交的M组混沌序列并从中提取r个进行组合,使之获得的组合数 《-lnC二以使混沌序列组合与数据块所含信息满足一一对应关系,r值常规取值为 1 128。
本实施例中,采用第一种方式,即根据一个混沌一维模型获得的混沌序列直 接映射成调频值和调相值,如图5所示。采用步骤l)的Quadmtic映射方程生成M 组混沌序列记做
<formula>formula see original document page 10</formula>
其中,g"' =[g;^g2m,...,g:^...,g;^为长度为n的混沌序列。
如果设带宽范围为s,由上述公式可以得到混沌调频值<formula>formula see original document page 10</formula>
由此可得,M组混沌调频值序列JP1,F2,...,Fm,...,FA^且 二LA ,力,.. ,/ ,…,/w J °
同理可以得到混沌调相值
<formula>formula see original document page 10</formula>
由此可得,1^组混沌调相值序列01,02,...,0"1,...^",且
cr《,/^,…(…,p;;]。
而根据数据块所含信息,从M组混沌调频值和调相值序列中,提取r个组合得 到混沌调频值和混沌调相值组合
<formula>formula see original document page 10</formula> 其中,组合(ml,...,mr)由数据块信息(Cp。,…,cJ确定。
(5)
所述步骤3)的混沌扩频过程是根据每个混沌调频值和混沌调相值对调制得 到一个混沌调频调相扩频码元,n个码元组成一个混沌调频调相扩频信号。根据信息对应得到的混沌调频值和混沌调相值组合,生成r个混沌调频调相扩频信号 以构成一个混沌调频调相扩频信号集合。 混沌调频调相扩频信号的表达式为
ym(0 = ^cos[6y++ os"r (6)
其中,^为信号幅值,w。-2^o为中心角频率,/。为中心频率,c(/)为频率 调制函数,有
cm(0 = 2d(,) (7)
这里,^(o = *-"rQ]-(" + i)r。]为持续时间为r。的单位脉冲函数,《) 为阶跃函数,厶"'er", 7v = 77r。。
r(,X^(,) (8)
因此,并发混沌调频调相扩频信号的表达式为
顺=,(,)+尤,(,) (9)
,.=1
其中,矽w(r)为同步信号,是与混沌调频调相扩频信号相互正交的扩频信号。 由混沌调频值和混沌调相值组合(F,Q),获得。
不同于普通的并发混沌调频扩频方法,本发明提出的并发混沌调频调相扩频 方法,可以很好地解决信号峰均比问题,而且各并发信号之间的互干扰水平低且 可并发信号数目多。图6表示普通的并发混沌调频扩频信号时序,其峰均比为 14.16dB,图7表示并发混沌调频调相扩频信号时序,其峰均比为10.88dB,显 而易见本发明得到的峰均比远小于普通方法的峰均比,更适于实际通信发射的要 求,可以有更高的发射效率。
所述步骤4)的信道均衡方法(如RLS均衡、turbo均衡)减小或去除水声信 道影响。
而根据步骤2)和3)的相应过程生成的M组混沌调频调相扩频参考信号分 别与接收数据进行副本相关,通过最大似然方法检测峰值,其数学原理如下
若设理想信道下接收数据的表达式为
(/) = ^"0) +尤s"" (0 + "(/) (10) 通过步骤3)中公式(6)可以得到M组混沌调频调相扩频参考信号(11)
所述M组混沌调频调相扩频参考信号组成混沌调频调相扩频参考信号集 合。具体地说,接收端首先通过与发射端相同的混沌模型以及所有可能的初始值 生成混沌调频序列和混沌调相序列,然后再根据所述混沌调频序列和混沌调相序 列,依照公式(6)得出所述混沌调频调相扩频参考信号。
每组参考信号分别与接收数据进行副本相关
(12)
由于各扩频信号及同步信号相互正交,将公式(6)、 (10)代入(12)并通
过最大似然检测得
A感=argmaX{JW (,) +(,) + * ,m (Z — "= jf"7 e (,…,(13) J 3
\4组混沌调相值序列111,112,...,11/",...,1^,且<formula>formula see original document page 14</formula>
而根据数据块所含信息,从M组混沌调频值和调相值序列中,提取r个组合得 到混沌调频值和混沌调相值组合
(F,n), =[(Fml,nml),...,『,『r)] (16)
其中,组合(Wl,…,W)由数据块信息(C,,CT2,…,Q)确定。
图ll和图12表示长度为1024的混沌调频值序列和混沌调相值序列,Quadratic 映射初始值为0.5728, Chebyshev映射初始值为0.5743,带宽B为4kHz,相位范围 ((U)。
所述步骤3)的混沌扩频过程同实施例1是根据每个混沌调频值和混沌调相 值对调制得到一个混沌调频调相扩频码元,N个码元组成一个混沌调频调相扩频 信号。根据信息对应得到的混沌调频值和混沌调相值组合,生成r个混沌调频调 相扩频信号以构成一个混沌调频调相扩频信号集合。同步信号是与混沌调频调相 扩频信号相互正交的扩频信号。
不同于普通的并发混沌调频扩频方法,本发明提出的并发混沌调频调相扩频 方法,可以很好地解决信号峰均比问题,而且各并发信号之间的互干扰水平低且 可并发信号数目多。本实施例中采用两个混沌过程分别映射调频和调相,其并发 混沌调频调相扩频信号时序如图13所示,峰均比为9.84dB,显而易见得到的峰 均比也远小于普通方法的峰均比,更适于实际通信发射的要求,可以有更高的发 射效率。
所述步骤4)同实施例l,采用信道均衡方法(如RLS均衡、turbo均衡)减 小或去除水声信道影响。而根据步骤2)和3)的相应过程生成的M组混沌调频 调相扩频参考信号分别与接收数据进行副本相关,通过最大似然方法检测峰值, 根据检测出的峰值获得组合(ml,…,/mO按照步骤2)中得到的混沌映射关系恢复编
码信息(Ci,C2,…,C》。
所述步骤5)中采用Turbo或者Viterbi进行信道译码,再进行信源译码恢复
通fe {曰息(义i, x2 , , X^)。
实施例2具有同实施例1的突出特征,并且,由于使用两个混沌一维模型, 实施例2所产生的调频调相扩频序列的峰均比可以进一步地减小。
实施例3
本实施例所提供的基于混沌调频调相序列的分组M元扩频通信系统同实施例
141,如图1所示。
本实施例提供的所述利用混沌调频调相序列进行分组M元扩频通信方法,包 括如下步骤
1) 将待发送的信息经过信源与信道编码之后,分成K个一组的数据块;
2) 根据数据块所含信息进行混沌映射成相应的混沌序列组合,并根据混沌序 列组合形成混沌调频值和混沌调相值序列;
3) 通过混沌调频值和混沌调相值序列生成混沌调频调相扩频信号集合,将混 沌调频调相扩频信号集合叠加成一组并发混沌调频调相扩频信号,并加上同步信 号通过通信发射换能器进行发射;
4) 接收换能器采集到通信数据,进行信道均衡与同步,并通过与混沌调频调 相扩频参考信号集合进行副本相关,检测、判决并根据混沌映射关系恢复编码信 'K、 o
5) 解调的编码信息通过信源与信道译码恢复通信信息。 上述技术方案中,所述步骤l)的信源编码(如霍夫曼编码)去除冗余信息,
信道编码(如巻积码、turbo码)减少系统误码率。
数据块的K值常规取值为4~2048,取决于所采用的混沌映射模型和码间串扰
水平,假设分割的数据块为(A,x;,...,xJ ,信源与信道编码后的序列为
(Cl,c2,...,cJ,其中L为编码前的数据长度。本实施例中采用Second-Order映射
产生混沌序列。
所谓Second-Order映射二维方程可以表示为
y(" + l) = l-2"(")" (17) z(w +1) = 2z(w)y(w)
其中,_y(0)e(-l,l),|z(0)| —1。
所述步骤2)的混沌映射过程是指根据一个或两个混沌映射模型,由不同初始 值生成相互正交的M组混沌序列并从中提取r个进行组合,使之获得的组合数 《-lnC^以使混沌序列组合与数据块所含信息满足一一对应关系,r值常规取值为 1~128。
本实施例中,采用第三种方式,即根据一个混沌二维模型获得的混沌序列分 别映射成调频值和调相值,如图14所示。
采用步骤l)的Second-Order映射方程生成M组混沌二维序列并记做其中,r1 =br,y2m"..,>c"..,_y:;], zm 《,…,4]为长度为N的混 沌序列。
由户,72,...,:^"',...,}^可以得到混沌调频值
《=《,2 (18)
由此可得,M组混沌调频值序列?l,^2,...,^m,...,甲A^且
而由21,22,...,2"1,...,2"可以得到混沌调相值
《+l)* r/2 (19) 由此可得,M组混沌调相值序列01,02,...,0 ..,(1) 且
(D =[《,《"..,《,.. ,《]。
而根据数据块所含信息,从M组混沌调频值和调相值序列中,提取r个组合得 到混沌调频值和混沌调相值组合
CF,cD)r 二[(T",(D""'),…,CP""",(D""")] (20)
其中,组合(ml,...,mr)由数据块信息(q,q,...,cv)确定。 图15和图16表示长度为1024的混沌调频值序列和混沌调相值序列, Second-Order映射中y的初始值为0.153, z的初始值为0.951,带宽B为4kHz,相位 范围(0,;r)。
所述步骤3)的混沌扩频过程同实施例1是根据每个混沌调频值和混沌调相 值对调制得到一个混沌调频调相扩频码元,N个码元组成一个混沌调频调相扩频 信号。根据信息对应得到的混沌调频值和混沌调相值组合,生成r个混沌调频调 相扩频信号以构成一个混沌调频调相扩频信号集合。同步信号是与混沌调频调相 扩频信号相互正交的扩频信号。
不同于普通的并发混沌调频扩频方法,本发明提出的并发混沌调频调相扩频 方法,可以很好地解决信号峰均比问题,而且各并发信号之间的互干扰水平低且 可并发信号数目多。本实施例中采用两个混沌过程分别映射调频和调相,其并发 混沌调频调相扩频信号时序如图17所示,峰均比为11.06dB,显而易见得到的 峰均比也远小于普通方法的峰均比,更适于实际通信发射的要求,可以有更高的 发射效率。所述步骤4)同实施例l,采用信道均衡方法(如RLS均衡、turbo均衡)减 小或去除水声信道影响。而根据步骤2)和3)的相应过程生成的M组混沌调频 调相扩频参考信号分别与接收数据进行副本相关,通过最大似然方法检测峰值, 根据检测出的峰值获得组合(ml,…,mr)按照步骤2)中得到的混沌映射关系恢复编
码信息(q,C2,…,C^)。
所述步骤5)中采用Turbo或者Viterbi进行信道译码,再进行信源译码恢复
通"(曰j曰息(Xp
实施例3具有同实施例1的突出特征,并且,由于使用混沌二维模型模型,实 施例3增加了调频值与调相值之间的混沌关联度。
最后所应说明的是,以上仅用以说明本发明理论原理和技术方案而非限制。本 领域的普通技术人员应当理解,对本发明的技术方案进行修改或者等同替换,都不 脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。
权利要求
1、一种基于混沌序列的分组M元扩频通信方法,包括通信发射方法和通信接收方法,所述通信发射方法包括如下步骤1)将待发送的通信编码数据分成K个码元一组的数据块;2)对于每组数据块,按照一定的混沌映射关系,得到相应的混沌序列组合,然后根据混沌序列组合形成混沌调频值序列和混沌调相值序列组合;3)通过混沌调频值序列和混沌调相值序列组合生成混沌调频调相扩频信号集合,将属于所述混沌调频调相扩频信号集合的混沌调频调相扩频信号叠加成一组并发混沌调频调相扩频信号,并再加上同步信号后进行发射;所述通信接收方法包括如下步骤4)对接收到的数据进行信道均衡与同步,然后通过与混沌调频调相扩频参考信号集合进行副本相关,检测、判决并根据混沌映射关系恢复编码信息;所述混沌调频调相扩频参考信号集合是所有可能的混沌调频调相扩频信号集合组合的并集。
2、 根据权利要求1所述的基于混沌序列的分组M元扩频通信方法,其特征在于,所述步骤1)中,所述待发送的通信数据是由原始通信数据经信源编码和信道编码后得到。
3、 根据权利要求2所述的基于混沌序列的分组M元扩频通信方法,其特征在于,所述步骤1)中,所述信源编码采用霍夫曼编码;所述信道编码采用巻积码或turbo码。
4、 根据权利要求1所述的基于混沌序列的分组M元扩频通信方法,其特征在于,所述步骤l)中,所述K的取值为4 2048。
5、 根据权利要求1所述的基于混沌序列的分组M元扩频通信方法,其特征在于,所述步骤2)中,所述混沌映射关系如下根据一个或两个混沌映射模型,由不同初始值生成相互正交的M组混沌序列并从中提取r个进行组合,所述组合数i:-lnC^,使混沌序列组合与数据块所含信息一一对应,形成数据块所含信息映射到混沌序列组合的混沌映射关系,r值常规取值为1 128。
6、 根据权利要求5所述的基于混沌序列的分组M元扩频通信方法,其特征在于,所述步骤2)中,所述混沌调频值和混沌调相值采用以下三种方式中的任意一种获得第一种是根据一个混沌一维模型获得的混沌序列直接映射成调频值和调相值;第二种是根据两个混沌一维模型获得的混沌序列分别映射成调频值和调相值;第三种是根据一个混沌二维模型获得的混沌序列分别映射成调频值和调相值。
7、 根据权利要求5所述的基于混沌序列的分组M元扩频通信方法,其特征在于,所述歩骤3)中,生成混沌调频调相扩频信号集合的方法如下根据所述混沌调频值序列和混沌调相值序列组合,生成r个混沌调频调相扩频信号以构成一个混沌调频调相扩频信号集合;每个所述混沌调频调相扩频信号的生成方法如下根据每个混沌调频值和混沌调相值对分别调制得到一个混沌调频调相扩频码元,再由N个码元组成一个混沌调频调相扩频信号。
8、 根据权利要求1所述的基于混沌序列的分组M元扩频通信方法,其特征在于,所述步骤3)中,所述同步信号是与混沌调频调相扩频信号相互正交的扩频信号。
9、 根据权利要求1所述的基于混沌序列的分组M元扩频通信方法,其特征在于,所述通信接收方法还包括如下步骤5)对步骤4)所得到的编码信息进行信道译码和信源译码,得到原始通信数据。
10、 根据权利要求9所述的基于混沌序列的分组M元扩频通信方法,其特征在于,所述步骤4)中,所述信道均衡方法采用RLS均衡或turbo均衡;所述步骤5)中,所述信道译码方法采用Turbo算法或Viterbi算法。
11、 一种基于混沌序列的分组M元扩频通信装置,包括通信发射装置和通信接收装置,所述通信发射装置包括数据分组单元,用于将待发送的通信编码数据分成K个码元一组的数据块;混沌映射单元,用于对每组数据块,按照一定的混沌映射关系,得到相应的混沌序列组合,然后根据混沌序列组合形成混沌调频值序列和混沌调相值序列组合;以及调频调相扩频发射单元,用于通过混沌调频值序列和混沌调相值序列组合生成混沌调频调相扩频信号集合,将属于所述混沌调频调相扩频信号集合的混沌调频调相扩频信号叠加成一组并发混沌调频调相扩频信号,并再加上同步信号后进行发射;所述通信接收装置包括接收预处理单元,用于对接收到的数据进行信道均衡与同步;以及检测判决单元,用于通过与混沌调频调相扩频参考信号集合进行副本相关对经预处理后的 数据进行检测和判决,并根据所述混沌映射单元的混沌映射关系恢复通信编码数 据;所述混沌调频调相扩频参考信号集合是所有可能的信号集合组合的并集。
全文摘要
本发明提供了一种基于混沌序列的分组M元扩频通信方法及装置,包括如下步骤1)将待发送的通信编码数据分成K个码元一组的数据块;2)对于每组数据块,按照一定的混沌映射关系,得到形成混沌调频值序列和混沌调相值序列组合;3)通过混沌调频值序列和混沌调相值序列组合生成混沌调频调相扩频信号集合,并将所述集合的各元素叠加成一组并发混沌调频调相扩频信号,并再加上同步信号后进行发射;4)对接收到的数据进行信道均衡与同步,通过副本相关进行检测判决并根据混沌映射关系恢复编码信息。本发明可以有效地减少通信发射信号的峰均比,而且本发明中各并发信号之间的互干扰水平低且可并发信号数目多,可以有效地提高低信噪比下的水声通信性能。
文档编号H04B13/02GK101645743SQ20091008083
公开日2010年2月10日 申请日期2009年3月24日 优先权日2009年3月24日
发明者张春华, 宇 李, 李淑秋, 黄海宁 申请人:中国科学院声学研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1