专利名称:固态摄像设备的利记博彩app
技术领域:
本发明涉及一种固态摄像设备。
背景技术:
通常,固态摄像设备包括一个光学黑区(OB区),其被遮挡以不与光线反应以便获得用作参考信号的信号电平的信号(黑参考信号)。参照从OB区输出的所述信号,算术处理有效的像素信号。这种像素被称为OB像素。当这种固态摄像设备用于数码相机等时,延长期间的曝光时间引起在像素中积累的暗电流增加,以致所述暗电流值对每个像素波动并且信号的波动变大。尽管所述黑参考信号是通过箝位从OB区的输出获得的,由于如上所述的信号波动,每行的黑参考信号波动,这导致横向条纹在图像屏幕上出现这种副作用。
而且,作为当构成所述OB区的光屏蔽薄膜具有缺陷而引起光透射出现时的对策,日本专利申请早期公开第(H)3-240379号(专利文献1)中公开了一种固态摄像设备,其中并未在OB区中形成用于积累电荷的杂质区。由于没有由暗电流导致的电荷积累,在所述固态摄像设备的OB区中上述副作用被抑制。然而,由于(如果特别地)曝光期间变长,有效像素区的原始黑参考信号和OB区的信号之间的差异将出现,将难以提供一个精确的黑参考信号。
日本专利申请早期公开第2002-64196号(专利文献2)中公开了对这种问题的对策。在专利文献2中,固态摄像设备包括通过向半导体衬底注入杂质而构成的第一OB区,和其中半导体衬底未被注入杂质的第二OB区,其作为所述OB区。参照从第二OB区输出的模拟信号,箝位来自有效像素区的信号,并将其转变为数字信号,并且此后参照从第一OB区输出的数字信号,进一步箝位所述数字信号。推定当如此执行稳定箝位而不包括不必要的暗电流时,可以精确地校正所述暗电流对有效像素区的信号的影响。
然而,依照专利文献2的配置,在第一OB区和第二OB区之间的输出差异通过由暗电流导致的输出电压量表示。因此,执行模拟箝位的电路和模-数转换器的动态范围、以及该模-数转换器的数字输出的动态范围需要增大所述由暗电流导致的差异量。
而且,依照有效像素区和OB区的布局图,通过向半导体衬底注入杂质而构成的第一OB区仅被安置在每行的一部分(在每行的第二半部分中的水平光学黑区)。这样,为了在有效像素区的首行中获得稳定的输出电平,该布局被配置来仅使用第二OB区来执行箝位,第二OB区中半导体衬底未被注入杂质。
鉴于上述问题,本发明的目的是获得高质量影象,其没有横线等,不受暗输出的波动的影响以及避免具有特别大或小的暗输出的信号(被称为瑕疵)。
发明内容
本发明的固态摄像设备包括用于积累根据入射光产生的电荷并将其输出的孔径像素区;被遮蔽的光学黑区,其中未形成用于积累电荷的杂质区的黑参考像素区;以及电平偏移装置,其用于相对于所述孔径像素区和光学黑区的输出信号的参考电平来偏移所述黑参考像素区的输出信号的参考电平。
而且,本发明的固态摄像设备的处理方法是一种固态摄像设备的处理方法,其中所述设备包括用于积累根据入射光产生的电荷并将其输出的孔径像素区;被遮蔽的光学黑区,以及其中未形成用于积累电荷的杂质区的黑参考像素区;并且包括相对于所述孔径像素区和光学黑区的输出信号的参考电平来偏移所述黑参考像素区的输出信号的参考电平的步骤。
而且,本发明的固态摄像系统包括固态摄像设备,其包括用于积累根据入射光产生的电荷并将其输出的孔径像素区;被遮蔽的光学黑区,和其中未形成用于积累电荷的杂质区的黑参考像素区;用于根据所述光学黑区的输出信号来箝位固态摄像设备的输出信号的箝位装置;以及用于从固态摄像设备的输出信号中减去所述黑参考像素区的输出信号平均值的减去装置。
而且,本发明的使用固态摄像设备的处理方法是使用一种固态摄像设备的处理方法,其中所述设备包括用于积累根据入射光产生的电荷并将其输出的孔径像素区,被遮蔽的光学黑区,以及其中未形成用于积累电荷的杂质区的黑参考像素区,该方法包括用于根据所述光学黑区的输出信号来箝位固态摄像设备的输出信号的箝位步骤;以及用于从固态摄像设备的输出信号中减去所述黑参考像素区的输出信号平均值的减去步骤。
从(参照附图的)典型实施例的下述描述,本发明的进一步特征将是显而易见的。
图1是表示本发明第一实施例的固态摄像设备的平面图;图2是MOS型固态摄像设备的一个像素单元的方框图;图3是所述MOS型固态摄像设备的方框图;图4是所述MOS型固态摄像设备的读取电路的方框图;图5是解释MOS型固态摄像设备的操作的时序图;图6是表示所述MOS型固态摄像设备的输出波形的图形;图7是表示本发明第一实施例的固态摄像设备的读取电路的方框图;图8是表示本发明第一实施例的固态摄像设备的读取电路的方框图;图9显示的是表示本发明第一实施例的固态摄像设备的输出波形的图形;图10是表示本发明第二实施例的固态摄像设备的读取电路的方框图;
图11是表示本发明第三实施例的摄像系统的信号处理电路的方框图;以及图12是表示本发明第四实施例的数码相机的配置的例子的方框图。
具体实施例方式
(第一实施例)图1是表示依照本发明第一实施例的固态摄像设备的配置例子的平面图。如图1所示,本实施例的固态摄像设备包括光电转换信号输出区101、第一黑参考信号输出区102以及第二黑参考信号输出区103。
在光电转换信号输出区101中,安置了大量光电转换信号输出元件。光电转换信号输出元件也可被称为像素,并且可由光电转换设备(如光电二级管)和用于读取所述光电转换设备的信号的读取电路组成。
第一黑参考信号输出区102是在垂直方向上相邻于光电转换信号输出区101而提供的遮蔽区。在第一黑参考信号输出区中,安置了多个第一黑参考信号输出元件。
第二黑参考信号输出区103是在水平方向上相邻于光电转换信号输出区101而提供的。在第二黑参考信号输出区中,安置了多个第二黑参考信号输出元件。第二黑参考信号输出元件没有用于积累电荷(暗电流)的半导体区,但其它读取电路等可被配置成与光电转换信号输出元件的配置相似。在此,例如当光电转换设备是光电二级管时,用于积累电荷的半导体区是与被作为信号来处理的电荷具有相同类型的半导体区。当电子被作为信号读取时,半导体区是构成所述光电二级管的n型半导体区。
图2是MOS型固态摄像设备的信号输出元件的方框图。光电转换信号输出元件和第一黑参考信号输出元件可以使用相似的方框图来表示。第二黑参考信号输出元件的配置没有图2中表示为201的二极管。在下文中,当不要求区分光电转换信号输出元件、以及第一和第二黑参考信号输出元件时,它们都被称为信号输出元件。
在图2中,附图标记201是具有产生光信号电荷的光电转换设备的功能的光电二级管,并且在本例中,其阳极端是接地的。光电二级管201的阴极端经由发射MOS晶体管202被连接到放大MOS晶体管204的栅极。还可以使用如下配置,其中光信号电荷被一次传递给一个浮动扩散,并且该浮动扩散被电气连接到MOS晶体管204的栅极。而且,放大MOS晶体管204的栅极被连接到复位MOS晶体管203的源极,以便被提供一个预定电压。电源电压VDD被提供给复位MOS晶体管203的漏极。此外,至于放大MOS晶体管204,电源电压VDD被提供给它的漏极,并且其源极被连接到选择MOS晶体管205的漏极。
图3是表示所述MOS型固态摄像设备的配置的例子的方框图。一个垂直偏移寄存器301向行选择线(例如Pres1、Ptx1和Psel1)提供信号脉冲。区308具有图1的配置,并且有多个信号输出元件像素。从每个信号输出元件像素中向一个垂直信号线输出信号。
被提供了从信号输出元件向所述垂直信号线输出的信号的读取电路302保存所述被提供的信号,并向差分放大器305输出所保存的信号。举例来说,保存其中叠加了噪声信号的光信号和所述噪声信号。而且,还可以使用包括了放大器的配置。
一个水平偏移寄存器306控制晶体管303和304的通-断。差分放大器305输出在其中叠加了噪声信号的光信号和所述噪声信号之间的差异。
发射MOS晶体管202的栅极被连接到第一行选择线(垂直扫描线)Ptx。安置在同一行的其它信号输出元件像素的发射MOS晶体管202的栅极也被共同连接到所述第一行选择线Ptx。复位MOS晶体管203的栅极被连接到第二行选择线(垂直扫描线)Pres。安置在同一行的其它信号输出元件像素的复位MOS晶体管203的栅极也被共同连接到第二行选择线Pres。选择MOS晶体管205的栅极被连接到第三行选择线(垂直扫描线)Psel。安置在同一行的其它信号输出元件像素的选择MOS晶体管205的栅极也被共同连接到第三行选择线Psel。所述第一至第三行选择线Ptx、Pres和Psel被提供来自垂直偏移寄存器301的信号电压。
图3所示的剩余行也配备具有相似配置的信号输出元件像素和行选择线。在这些行选择线中,由上述垂直偏移寄存器301形成的信号脉冲被提供给行选择线Ptx2至Ptx3、Pres2至Pres3以及Psel2至Psel3。
选择MOS晶体管205的源极被连接到一个垂直信号线。安置在同一列的信号输出元件像素的选择MOS晶体管205的源极也被连接到同一垂直信号线。在图3中,所述垂直信号线被连接到作为负载装置的电流发生器307。所述电流发生器307连同放大MOS晶体管一起构成源极跟随电路的一部分。
图4是表示图3所示的读取电路302的一列块的电路的例子的视图。由虚线包围的部分表示一列块,并且图2中的端子Vout被连接到每个垂直信号线。
图5是表示图2至4所示的MOS型固态摄像设备的操作的例子的时序图。在从光电二级管201读取光信号电荷之前,复位MOS晶体管203的栅极线Pres1变为高电平,并且它被激活。这样,放大MOS晶体管204的栅极被设定为复位电压。如果复位MOS晶体管203的栅极线Pres1变为低电平,箝位开关的栅极线PcOr(图4)变为高电平,并且之后,选择MOS晶体管205的栅极线Psel1变为高电平并且它被激活。这样,噪声信号被读出到垂直信号线Vout,并在各列的每个箝位电容CO中被箝位。
接着,在箝位开关的栅极线PcOr回到低电平之后,第一信号传递开关401的栅极线Pctn变为高电平,并且复位信号被保存在提供于每行中的噪声保持电容Ctn中。在栅极线Pctn回到低电平之后,第二传递开关402的栅极线Pcts变为高电平。
接着,发射MOS晶体管202的栅极线Ptx1变为高电平,光电二级管201的光信号电荷被传递给放大MOS晶体管204的栅极,并且光信号被读出到垂直信号线。接着,在发射MOS晶体管202的栅极线Ptx1变为低电平之后,第二信号传递开关402的栅极线Pcts变为低电平。这样,来自复位信号的改变量(光信号)被读出到提供于每行中的信号保持电容Cts中。通过这些操作,第一行的信号输出元件像素的信号被保存在各列的信号保持电容Ctn和Cts中。
此后,通过从水平偏移寄存器306提供的信号Ph,每列水平传递开关的栅极逐个变为高电平。将已被信号保持电容Ctn和Cts保持的信号逐个读出到水平输出线Chn和Chs,使用输出放大器而经受差分处理,然后逐个输出到输出端OUT。水平输出线Chn和Chs被复位开关在各列的读取信号的间隔重置为复位电压VCHRN和VCHRS。通过上述处理,将完成连接到第一行的像素单元Pixel的读取。在下文中,相似地,随后连接到第二行的像素单元Pixel的信号被来自垂直偏移寄存器301的信号逐个读取,并且将完成全部像素单元Pixel的读取。
图6表示当图1的固态摄像设备是由图2至4的MOS型固态摄像设备构成并操作时的输出波形。NULL输出表示来自图1中的第二黑参考信号输出区103的输出波形,OB输出表示来自图1中的第一黑参考信号输出区102的输出波形,并且孔径像素输出表示来自光电转换信号输出区101的输出波形。
由于用于积累电荷的杂质区未被安放在相邻于光电转换输出区101水平方向的顶部提供的第二黑参考信号输出区103中,由暗电流导致的电荷未被积累,这导致与第一黑参考信号输出区102的输出电平相比较低的输出电平。因此,为了使用第二黑参考信号输出区103和第一黑参考信号输出区102的信号来执行后面的信号处理,在后面的信号处理电路中需要较宽的动态范围。
图7是表示本发明第一实施例的读取电路302的配置例子的方框图。与图4中的普通读取电路的方框图的差异在于,读取电路302有第一和第二水平输出线Chn和Chs的两个复位开关线。第一复位电压VCHRN1和VCHRS1由第一复位信号Pchres1提供给水平输出线Chn和Chs。第二复位电压VCHRN2和VCHRS2由第二复位信号Pchres2提供给水平输出线Chn和Chs。仅当来自第二黑参考信号输出区103的信号被读出到水平输出线Chn和Chs时,使用第二复位信号Pchres2将复位电压VCHRN2和VCHRS2提供给水平输出线Chn和Chs。当其它光电转换信号输出区101和第一黑参考信号输出区102被读出到水平输出线Chn和Chs时,使用第一复位信号Pchres1将复位电压VCHRN1和VCHRS1提供给水平输出线Chn和Chs。此时,复位电压的关系是VCHRN2(VCHRS2)>VCHRN1(VCHRS1)。这样,可以偏移从输出端子OUT输出的信号的电平。
图8是表示本发明第一实施例的其它读取电路302的配置的例子的方框图。表示了使用开关来切换将被提供的复位电压VCHR1和VCHR2、而不改变复位开关数量的方法。相似的效果也可以通过所述方法来获得。
图9表示当固态摄像系统由图1中的固态摄像设备和图7和8中的读取电路302构成并操作时的输出波形。由于在相邻于光电转换信号输出区101水平方向的顶部提供的第二黑参考信号输出区103中,并未形成用于积累电荷的杂质区,因而并未积累由暗电流导致的电荷。然而,通过使用第二复位信号Pchres2,将第一电平输出线Chn和第二电平输出线Chs的复位电压分别改为VCHRN2和VCHRS2。从而,可以获得具有与第一黑参考信号输出区102的输出电平基本上相同的电平的输出信号。第二黑参考信号输出区103的输出电平(电平偏移量)被设定在第一黑参考信号输出区102的输出电平和光电转换信号输出区101的饱和输出电平之间。这样,后者的动态范围也应当仅有在第一黑参考信号输出区102的输出电平和光电转换信号输出区101的饱和输出电平之间的差异。
如上所述,用于切换所述复位电压的装置还可被称为电平偏移装置,用于使第二黑参考信号输出区103的输出信号的参考电平相对于光电转换信号输出区101和第一黑参考信号输出区102的输出信号的参考电平偏移。换句话说,通过改变水平输出线的复位电平,改变了将作为信号分量的所述参考的电平。
(第二实施例)图10是表示本发明第二实施例的读取电路302的配置例子的方框图。与图4中的普通读取电路的差异在于,读取电路302具有两个箝位电路的参考电压线,并且被配置为参考电压VCOR1和VCOR2是通过箝位电压选择信号Pvsel1和Pvsel2提供的。依照该配置,仅当第二黑参考信号输出区103被箝位时,才有可能通过如下所示操作来偏移从输出端子OUT输出的信号的电平。
使箝位电压选择信号Pvres1为高电平并处于被激活状态,使箝位电压选择信号Pvsel2为低电平并处于未被激活状态,并且使得将被提供给一个箝位开关的栅极线PcOr的信号为高电平并处于被激活状态。此后,选择MOS晶体管205的栅极线Psel1变为高电平,并且它被激活。这样,使用VCOR1作为参考电压,复位信号(噪声信号)被箝位在箝位电容CO中。
接着,将被提供给箝位开关的栅极线PcOr的信号变为低电平之后,通过向第一信号传输开关401的栅极线Pctn提供高电平信号来使第一信号传递开关401处于被激活状态,并且将复位信号保存在提供给各列的噪声保持电容Ctn中。
接着,使提供给发射MOS晶体管202的栅极线Ptx1的信号为高电平,并处于被激活状态,光电二级管201的光信号电荷被传递给放大MOS晶体管204的栅极,并且通过这样,光信号被读出到垂直信号线Vout。这里,使箝位电压选择信号Pvsel1为低电平并处于未被激活状态,并且使箝位电压选择信号Pvsel2为高电平并处于被激活状态。提供给发射MOS晶体管202的栅极线Ptx1的信号变为低电平并处于未被激活状态之后,使提供给第二发射MOS晶体管402的栅极线Pcts的信号为低电平并处于未被激活状态。这样,使用VCOR2作为参考电压,来自复位信号的改变量(光信号)被读入到提供给各列的信号保持电容Cts中。此后,通过从水平偏移寄存器306提供的信号Ph,使各列的水平传递开关的栅极逐个成为高电平。尽管保存在信号保持电容Ctn和Cts中的电压被逐个读出到水平输出线Chn和Chs,被电平偏移一个VCOR1和VCOR2之间的差异电压量的电压将在输出端子OUT中逐个输出。
(第三实施例)图11表示使用依照本发明第三实施例的固态摄像设备的摄像系统的信号处理电路单元的方框图。在可编程增益放大器(PGA)1001中放大从固态摄像设备输出的传感器信号。在那时,通过使用数-模转换器(DAC)1006将由OB箝位模块产生的数字信号转换成一个模拟信号来提供所述参考信号。模-数转换器(ADC)1002将可编程增益放大器1001的输出信号从模拟信号转换成数字信号。寄存器1003平均来自第二黑参考信号输出区103的输出信号,并存储该平均信号值。减法器1004从模-数转换器1002的输出信号中减去寄存器1003的平均值,并输出一个信号。来自减法器1004的信号被输入进OB箝位模块1005。然后,生成所述参考信号,从而基于图1所示的固态摄像设备的第一黑参考信号输出区102的输出信号而受到平均处理等的所述信号变为一个所需值。数-模转换器1006将参考信号从数字信号转换成模拟信号,并将其输出给可编程增益放大器1001。这样,确定了输入进可编程增益放大器1001的信号的参考电压。在模-数转换器(ADC)中,放大的传感器信号被转换成一个数字信号。
在普通固态摄像设备中,除了在光电转换信号输出区101的垂直方向的顶部之外,光电转换信号输出区101的水平方向上的顶部或底部配备有第一黑参考信号输出区102。为了在垂直方向上正确地遮光,参考信号应当由OB箝位模块1005在每列产生。在那时,副作用出现,例如由第一黑参考信号输出区102的暗输出的波动、以及有特别大的暗输出的像素(被称为瑕疵)的存在,所述参考信号对每行波动,这导致图像平面上的横线。
同时,依照本发明实施例的图1的固态摄像设备中,提供了黑参考像素区103,其中未在孔径像素区101在水平方向的顶部附近形成用于积累电荷的杂质区。寄存器1003运行,以便在紧接着OB箝位模块1005的处理完成之后,仅校正在(例如,图1中的第一行104的)第二黑参考信号输出区103和每行(例如,图1中的第二行105的)之间的平均值中的差异。OB箝位模块1005使用在光电转换信号输出区101垂直方向的顶部提供的第一黑参考信号输出区102来执行处理。特别地,所述处理中使用零作为初始值,从模-数转换器(ADC)1002的输出中减去每行的第二黑参考信号输出区103的平均值。通过该处理,有可能执行稳定箝位,所述稳定箝位仅校正垂直遮蔽而不受暗输出波动的影响,以及避免具有特别大暗输出的像素(被称为瑕疵),并且有可能获得没有横线等的高质量图像。
如上所述,可编程增益放大器1001、数-模转换器(DAC)1006、以及OB箝位模块1005构成所述箝位装置,并且根据第一黑参考信号输出区102的输出信号来箝位固态摄像设备的输出信号。可编程增益放大器1001放大固态摄像设备的输出信号。OB箝位模块1005输出这样的参考信号,以至于基于可编程增益放大器1001放大的光学黑区102的输出信号而受到平均处理等的所述信号具有所需电压。可编程增益放大器1001使用第一黑参考信号输出区102的输出信号的平均值作为参考值来进行放大。减法器1004从固态摄像设备的输出信号中减去寄存器1003中的来自第二黑参考信号输出区的信号的平均值。
(第四实施例)图12是表示依照本发明第四实施例的数码相机的配置例子的方框图。参照图12,将详细描述当向数码相机应用第一至第三实施例的固态摄像设备的例子。
在图12中,附图标记1是挡板,具有保护镜头和主开关的双重功能,附图标记2是镜头,用于形成固态摄像设备4中的照相对象的光学图像,并且附图标记3是用于引起通过镜头2的光线量可变的光圈。附图标记4是固态摄像设备,用于摄入其图像由镜头2形成的照相对象作为图像信号,并且附图标记5是图像信号处理电路,其用于使从固态摄像设备4输出的摄像信号(图像信号)受到模拟信号处理。附图标记6是A/D转换器,用于使从图像信号处理电路5输出的图像信号受到模-数转换,并且附图标记7是信号处理单元,用于使从A/D转换器6输出的图像数据受到各类校正并用于压缩数据。附图标记8是时序生成单元,其用于向固态摄像设备4、图像信号处理电路5、A/D转换器6以及信号处理单元7输出各类时序信号。附图标记9是整体控制/算术运算单元,用于控制各类算术运算和静态摄像机的整体,附图标记10是用于临时地存储图像数据的存储单元,并且附图标记11是用于存储进记录介质12或从记录介质12中读取的接口单元。附图标记12是可分离的且可附接的记录介质,例如半导体存储器,用于存储或读取图像数据等,并且附图标记13是用于与外部计算机等通信的接口单元。本发明的图1中的固态摄像设备对应于固态摄像设备4,并且图11中的摄像系统的信号处理电路单元对应于摄像信号处理单元5和A/D转换器6。
接着,将描述在上述配置中在拍照期间所述静态数码相机的操作。当挡板1打开时,主电源接通,接着控制系统的电源接通,并且进一步地,摄像系统电路例如A/D转换器6的电源也接通。然后,为了控制曝光量,整体控制/算术运算单元9打开光圈3,并且在固态摄像设备4中输出的信号经过图像信号处理电路5被A/D转换器6转换之后,它被输进信号处理单元7。根据所述数据,由整体控制/算术运算单元9执行曝光量的计算。由所执行的测光法的结果来确定亮度,并且根据该结果,整体控制/算术运算单元9控制光圈3。
接着,根据从固态摄像设备4中输出的信号,取出高频分量并且由整体控制/算术运算单元9计算与照相对象的距离。此后,通过驱动所述镜头来确定是否对焦,并且当确定并未实现对焦时,通过驱动镜头来再次测量距离。然后,在确认对焦之后,开始首次曝光。在曝光完成之后,从固态摄像设备4输出的图像信号经过图像信号处理电路5,通过A/D转换器6受到A/D转换,经过信号处理单元7,并且被整体控制/算术运算单元9写入存储单元10中。此后,在整体控制/算术运算单元9的控制下,保存在存储单元10中的数据经过记录介质控制I/F11单元,并被记录在可分离的且可附接的记录介质12(例如半导体存储器)中。而且,图像也可以通过经由外部I/F单元13在计算机等中直接输入数据来处理。
依照第一至第四实施例,其中未形成用于积累电荷的杂质区的黑参考像素区103的输出电平能够被设定在被遮蔽的光学黑区102的输出电平和孔径像素区101在饱和时的输出电平之间。因此,并不要求执行箝位的电路1005、第一级放大器1001和模-数转换器1002的动态范围,以及模-数转换器1002的数字输出的动态范围被设定为特别宽。
此外,可以实现稳定箝位,其中仅校正垂直阴影而不受暗输出波动的影响以及避免具有特别大暗输出的像素(被称为瑕疵),并且获得没有横线等的高质量图像。
上述实施例适用于固态摄像设备和固态摄像系统,其被广泛用于摄像机、数码相机以及用于图像扫描仪的图像输入设备。
上述实施例的任意一个仅仅是当执行本发明时的特定例子,从而本发明的技术范围不应当以有限的方式来解释。换句话说,本发明可以按照各种形式来执行而不背离其技术概念或其主要特征。
尽管已经参照典型实施例描述了本发明,应当理解本发明并不限于公开的典型实施例。下述权利要求的范围符合最宽的解释,以便包括所有这些修改和等效结构与功能。
权利要求
1.一种固态摄像设备,其包括光电转换信号输出元件,用于积累并输出根据入射光产生的电荷;第一黑参考信号输出元件,其具有能够积累暗电流的积累区并且被遮蔽;第二黑参考信号输出元件,其没有所述积累区;以及电平偏移装置,用于使所述第二黑参考信号输出元件的输出信号的电平相对于光电转换信号输出元件和第一黑参考信号输出元件的输出信号偏移。
2.依照权利要求1的固态摄像设备,其中所述电平偏移装置使来自第二黑参考信号输出元件的所述信号的电平在一个方向上偏移,使得更接近于来自所述第一黑参考信号输出元件的信号。
3.依照权利要求1的固态摄像设备,其中所述第一黑参考信号输出元件是至少在所述光电转换信号输出元件的垂直方向上与其相邻地提供的;以及所述第二黑参考信号输出元件是至少在所述光电转换信号输出元件的水平方向上与其相邻地提供的。
4.依照权利要求1的固态摄像设备,其中所述光电转换信号输出元件包括用于积累所述电荷的载流子积累区,以及用于从所述积累区读取信号的读取单元;以及所述第一黑参考信号输出元件的积累区具有与所述载流子积累区的结构相同的结构,并且所述第二黑参考信号输出元件具有读取单元,所述读取单元具有与所述光电转换信号输出元件的所述读取单元的结构相同的结构。
5.一种固态摄像系统,其包括依照权利要求1的所述固态摄像设备;箝位装置,用于根据所述第一黑参考信号输出元件的输出信号来箝位所述固态摄像设备的输出信号;以及减去装置,用于从所述固态摄像设备的所述输出信号中减去所述第二黑参考信号输出元件的输出信号的平均值。
6.依照权利要求5的固态摄像系统,其中所述箝位装置包括放大器,用于放大所述固态摄像设备的所述输出信号;以及平均装置,用于平均来自所述第一黑参考信号输出元件的、由所述放大器放大的所述输出信号;以及所述放大器通过箝位第一黑参考信号输出元件的输出信号的平均值,作为一个参考值,来放大所述第一黑参考信号输出元件的所述输出信号。
7.依照权利要求6的固态摄像系统,其进一步包括模-数转换装置,用于将所述放大器的输出信号从模拟信号转换成数字信号;以及数-模转换装置,用于将由所述平均装置输出的平均值从数字信号转换成模拟信号。
8.一种相机,其包括依照权利要求1的所述固态摄像设备;镜头,用于在所述固态摄像设备中形成光学图像;以及光圈,用于引起透过所述镜头的光线的量可变。
9.一种用于处理来自固态摄像设备的信号的处理方法,所述固态摄像设备包括第一黑参考输出元件,所述第一黑参考输出元件具有能够积累暗电流的积累区并且被遮蔽,以及第二黑参考输出元件,所述第二黑参考输出元件没有所述积累区,该方法包括电平偏移步骤,用于使第二黑参考输出元件的输出信号相对于第一黑参考输出元件的输出信号偏移。
全文摘要
想要获得高质量图像,其不受暗输出的波动的影响,以及不受具有特别大暗输出的像素(被称为瑕疵)的影响,并且没有横线等。提供了一种固态摄像设备,其包括孔径像素区,其积累并输出根据入射光产生的电荷;被遮蔽的光学黑区,一个其中未形成用于积累电荷的杂质区的黑参考像素区;以及电平偏移装置,用于使黑参考像素区的输出信号的参考电平相对于孔径像素区和光学黑区的输出信号的参考电平偏移。
文档编号H04N5/361GK1976402SQ200610163619
公开日2007年6月6日 申请日期2006年12月1日 优先权日2005年12月2日
发明者樱井克仁, 藤村大, 小仓正德 申请人:佳能株式会社