专利名称:用于宽频带无线通信系统的方法和通信单元的利记博彩app
技术领域:
本发明通常涉及多信道无线通信系统的领域,并且更具体地涉及领域宽频带无线通信系统。
背景技术:
由于有限的可用无线电频率资源和用户对于信息吞吐量的增长的需求,通信单元信道分配是通信系统中的重要问题。使用了很多信道分配方法,以自可用的信道集合中选择可用的信道,并且将该信道给通信单元,对通信单元来说该选择可以基于多种因素。用于信道选择的某些因素的示例是信噪比、随机数选择、共信道干扰、以及信道吞吐量能力。这种问题存在于宽频带、双频带、和超宽频带系统。双频带系统的一个示例可以是局域网络(LAN)系统,该局域网络系统被设计用于满足由Institute of Electrical and Electronic Engineers发布的两个规范,即IEEE 802.11a和IEEE 802.11g。该系统可以在例如2.4GHz频带和5.25GHz频带中分配用户信道。对每个频带中的传输指定了不同的最大功率谱密度。超宽频带系统的一个示例是个人域网络(personalarea network),该网络操作在自3.1GHz至10.6GHz的频率频带。对于在该频带的传输,指定了-41.2dBm/MHz的最大功率谱密度。
通过示例的方式说明了本发明,并且本发明不限于附图中的特征,在附图中,相似的参考标记指出了相似的元件,并且在附图中图1是示出了根据本发明某些实施例的宽频带无线通信系统的图;图2是根据本发明某些实施例的频谱图;图3是流程图,示出了根据本发明某些实施例的在包括多个信道的宽频带无线通信系统中使用的通信方法。
图4是流程图,示出了根据本发明某些实施例的用于宽频带无线通信系统通信单元的选择步骤。
图5-7是流程图,示出了根据本发明某些实施例的在统包括多个信道的宽频带无线通信系统中使用的通信方法。
本领域技术人员将认识到,图中的元件是为了简化和清楚的目的而示出的,并且没有必要按比例绘制。例如,附图中某些元件的尺寸相对于其他元件放大,从而帮助改善对本发明实施例的理解。
具体实施例方式
在详细描述根据本发明的特定宽频带通信系统之前,应当认识到,本发明的主要之处在于涉及具有多个信道的宽频带通信系统的方法步骤和装置部件的组合。因此,在附图中,装置部件和方法步骤适当地由传统和符号表示,仅示出了与理解本发明有关的那些特定细节,从而不会使所公开的细节变得不清楚,这些细节使受益于此处描述的本领域技术人员是更容易理解本发明。
考虑这样的无线通信系统,其中FL、FU和B分别是下频带边缘、上频带边缘和每个信道的宽度。已知的是,当无线电信号行进较远时,其呈现了较多的路径损耗。
在自由空间中,无线电信号的路径损耗由下式给出L=20log(4πdf/c) (1)其中d表示发射机与接收机之间的间隔,f表示无线电载波频率,并且c表示光速度。两个无线电信号的相对自由空间路径损耗是L12=20log(f2/f1) (2)其中f1和f2被定义为两个信道的频率。因此,较高频率的信号遭受了较大路径损耗。应当注意,由于频率和波长是成反比的,因此,此处描述的关系可以转换为使用波长描述的关系,如许多技术所知的。为了本文件的目的,宽频带无线通信系统是这样的系统,该系统中L12是有效的(significant),假设其为2db或更多。因此,假设宽频带无线通信是这样的,即f2/f1大于约1.26。L12在这里也被称为相对频率路径损耗,以将其与未基于两个信道定义频率的相对信号损耗性能特性相区别,并且它们可以是相对值或绝对值。应当进一步骤注意到,通过上述等式(2),可以直接确定所关注的两个信道的相对频率路径损耗,或者可以使用定义的参考信道,将该相对频率路径损耗确定为通过等式(2)确定的两个信道中每一个信道路径损耗的差,该参考信道诸如是宽频带系统中如f1的最低频率信道。对于单一信道,相对频率路径损耗是使用定义的参考信道,由等式(2)确定的信道路径损耗。很多实例中,可以使用中心频率(如由上和下频带边缘平均值所确定的),作为信道的定义频率,但是应当注意到,信道的中心频率只是可以用在路径损耗等式(2)的一个信道参考。例如,使用频带边缘频率可以在相当宽的频带中提供了几乎相同的结果,该宽频带具有带宽没有大范围变动的信道。其他的定义信道频率可以是频带边缘频率的几何组合。因此,尽管最常用中心频率来作为信道特征,但是下文中使用的术语“信道频率”包括其他可能的参考频率。
尽管由于信道频率差而引起的宽频带通信系统中实际的路径损耗可能不遵循自由空间模型,但由于信道频率差而引起的路径损耗将典型地遵循信道频率的逆关系(inverse relationship)。下文描述的本发明实施例利用了该特性来提供宽频带无线通信系统中独特的益处。
参考图1,示出了根据本发明某些实施例的宽频带无线通信系统100的图。该宽频带无线通信系统100是个人域网络、或piconet(微微网),其在本示例中包括通信系统设备,该通信系统设备包括4个通信单元(CU)105,即CU1、CU2、CU3和CU4,以及接入点(AP)110,该接入点110全部以仅适用于短程的低功率电平进行发射。在该示例中,按照距离递增的次序,CU105同接入点110之间的距离是CU2、CU4、CU1、CU3。CU105可以包括但不限于,以无线方式受控的娱乐设备、家庭设施设备、家庭内通信设备、和个人数据单元。
参考图2,示出了根据本发明某些实施例的频谱图。提出了一种超宽频带系统频带,用于短程piconets的目的,该piconets可以具有在自3.1GHz至10.6GHz频率频带205内的信道。为此,如图2,该频带中在功率谱密度极限为-41.2dBm/MHz。使用等式(2),当频带具有15个信道时,该系统中的相对频率路径损耗是8.6dB。当4个信道可用于分配或重新分配时,对于这些距离处的CU105,并且当其他相对信号损耗参数对于全部CU105均相等时,有益的是,将较低频率分配给同距离AP110较长的CU。该分配技术趋向于均衡单元的性能,由此优化宽频带无线通信系统100的吞吐量。对于3.1GHz至10.6GHz频带分解为15个信道的示例,最远通信单元与最近通信单元的距离比是约2.7,这在分别分配了具有最低和最高信道频率的信道并且其他损耗相等时,可以提供相等的频率路径损耗。当可用信道多于存在的需要分配信道的活动CU时,通过按照前述的频率相对于距离的次序,使用可用的最低4个频率的信道,可以获得改进的系统性能。上文给出的说明是对于其他相对信号损耗参数相等的情况。存在多种其他相对信号损耗参数,包括但不仅限于,用于传递信号的可选择发射功率谱密度、通过每个CU105传递的信息的可选择信号传送敏感性、以及可选择接收机分集天线增益(或任何其他天线增益)。此处使用的可选择信号传送敏感性是指修正任何信号传送相关参数,包括但不限于,数据速率、信息内容、编码方案和调制方案,这些信号传送相关参数以任何方式用于特征为具有相对信号传送敏感性的频率信道。这可以包括这样的调制技术,即该调制技术使用幅度、频率、相伴或极化、以及用于控制差错的全部类型信息冗余,并且包括变动带宽的信号传送技术。当这些相对信号损耗参数对于在入站方向中的全部CU105均相等并且对于出站方向中的全部CU也相等时(但是未必与入站方向的那些CU相等),信道分配的相同所需次序适合于这两个方向。当这些其他相对信号损耗参数对于在入站和出站之一或两者中的全部CU105不相等时,通过其他相对信号损耗参数,可以修改上述次序关系。在这种事件中,计算的相对频率路径损耗可以用于与该其他相对信号损耗参数相组合,作为用于确定信道分配的基础。以下将进一步描述结合相对频率有关的路径损耗来修正其他相对信号损耗参数的某些示例。
参考图3,是流程图,示出了根据本发明某些实施例的用于包括多个信道的宽频带无线通信系统控制器中的通信方法。多个频率信道中的每一个的特征是信道频率。在步骤305,确定对于将多个信道中的信道分配给活动通信单元集合中每个通信单元的需求。然后在步骤310,从多个信道中确定多个可用信道,每个信道的特征是信道频率。传统技术可以用于步骤305和310。在步骤315,根据基于多个可用信道中每一个的信道频率的相对频率路径损耗,选择多个可用信道中的一个可用信道,用于分配给每个通信单元。在该方法中,当需要信道分配的活动通信单元集合中通信单元的量小于未使用信道(或者虽然被使用但是具有较低优先级业务的信道)的数目时,可用信道集合可以组成具有最低信道频率的未使用或较低优先级信道的子集。(使该子集的大小等于通信单元集合的大小)。另一方面,如果可用信道量小于寻求信道分配的通信单元数目,则可以减少通信单元的数目或增加用于分配的信道数目。例如,可以从集合中移除寻求信道分配的最后活动通信单元,或者可以从集合中移除具有用于传送的较低优先级信息的通信单元。或者,通过使用具有窄于最初假设带宽的信道,可以将信道数目增加到需要信道分配的通信单元数目。在另一变化方案中,某些信道可以被指定为预留信道,该预留信道仅在当信道用于在此处描述环境中的分配时才使用。在步骤320,确定每个通信单元105的相对距离,并且在步骤325,按照每个通信单元105的递增相对距离的次序,给通信单元集合分配具有递减信道频率的信道。参照图1描述的示例就是该步骤的示例。一种获得相对距离的方法是使用由每个CU105获得的全球定位系统(GPS)距离。对于通信单元典型地靠近到这两个单元的GPS位置小于GP系统分辨率的系统,可以使用另一方式用于相对距离确定,诸如到达角度的方法,该方法使用了在通信单元105和接入点110处确定的多个到达角度。
依赖于多个可用信道中每一个的相对频率路径损耗的另一方法是这样的方法,即,其中,在步骤330,对于将由每个通信单元传递的信息,确定信息优先级,并且在步骤335,按照每个通信单元集合中每个通信单元信息的递增信息优先级的次序,分配以递减信道频率排序的可用信道。
参考图4,是流程图,示出了根据本发明某些实施例的用于通信单元105的选择步骤315(图3)流程图。这些是可替换方式,该方式依赖于多个可用信道中每一个的相对频率路径损耗,当对于已分配了信道的通信单元105来说距离不是已知的但是当前接收信号强度测量对于他们来说是已知的(即它们当前被分配了信道或能够测量诸如导频信号的全局信号)时,这可能是有用的。该方法开始于步骤401,当接收信号强度测量指出接收信号强度被确定为低于阈值,其是在图4中被标识为第一阈值。在步骤402,按照递增信道频率的次序,通过i来索引可用信道。在步骤405,信道索引i被设定为A,这标识了具有最高信道频率的最高频率可用信道。在步骤410,进行测试,以确定使用第i个信道测量的信号强度是否高于第二阈值。当它未高于第二阈值时,在步骤415,确定是否存在更多可用信道留下用于测试。在步骤430,当没有留下的信道时,则不进行重新分配。在步骤415,当存在留下的信道用于测试时,在步骤420,i减少1,并且在步骤410,现在使用具有次低信道频率的可用信道进行测试。当在步骤410,找到了信号强度被测量为高于第二阈值的可用信道时,被测试的可用信道被分配给通信单元105。提供相同结果的上述独特方法的变化方案对于本领域技术人员来说是显而易见的。例如,搜索可以开始于低频率信道,而不是开始于高频率。
参照图4描述的示例可以概括如下。当由通信单元使用的第一信道上的接收信号强度被测量为低于阈值时,给该通信单元重新分配第二信道,该第二信道具有低于第一信道信道频率的信道频率。最终,通信单元105被分配了具有最高信道频率的信道,在该最高信道频率处,接收信号强度高于第二阈值。应当理解,可以使用除步骤401的相同方法,给刚刚进入到系统中的通信单元最初分配信道,这样,给通信单元105分配具有最高信道频率的信道的描述适用于这两种情况,其中在该最高信道频率处,信道接收信号强度高于定义的阈值。
现在考虑这样示例,即可以是局域网络(LAN)系统的双频带系统被设计为满足由Institute of Electrical and Electronic Engineers发布的两个规范,即IEEE 802.11a and IEEE 802.11.g。该系统可以分别在2.4GHz频带或5.25GHz UNII频带中分配用户信道。不同的最大功率谱密度被指定用于每个频带中的传输。
(使用自由空间假设)通过下式确定仅基于频率和功率谱密度参数的总相对路径和信号损耗L=20log(f2/f1)+10*log10(P1/P2) (3)其中P1和P2分别是第一和第二信道的PSD(功率谱密度)。指定用于2.4GHz和5.25GHz频带的最大功率密度为200和2.5毫瓦/赫兹。对于这些值,相对路径和信号损耗近似为L=20log(5.45/2.4)+10*log10(200/2.5)≈26dB(4)通过在这些频带中的一个或另一个中分配信道,可以适应信号传送性能中的显著差。这可以是一个极端的示例,但是该原理也适用于功率谱密度在全部信道是不尽相同的其他系统。该方法通常可以被说明为参考图3中的步骤305~315所描述的,但是其中1)多个信道中的每个信道具有功率谱密度Pi,其中下标i标识第i个信道,以及2)其中相对频率路径损耗是基于信道频率和信道带宽的以下关系L=20log(fR/fi)+10log(Pi/PR),其中L是相对频率路径损耗,fR是多个可用信道的定义参考信道的信道频率,以及fi是多个可用信道中第i个信道的信道频率。
使用功率谱密度仅是使信道分配基于计算相对频率和其他相对信号损耗参数的一个示例。该计算可以更加一般地表述为
L=20log(f2/f1)+其他相对信号损耗(5)其中,该其他相对信号损耗参数可以包括但不限于,诸如功率谱密度、信号传送性能、以及天线增益。应当理解,当其他的路径或信号损耗用于选择信道时,等式(5)中给出类型的计算可以是用于组合参数效果以进行选择的最实用方式。该计算可以涉及表查找。在相对信号损耗参数相等的情况中,可以使用由等式(2)给出的相对频率路径损耗的计算,但是排序方式是简单地基于信道频率,如参考附图3和4所描述的。应当进一步理解,当仅有一个通信单元需要分配的信道时,参考图4描述的方法也可以工作良好,因此,可以说,在步骤305中描述的通信单元集合可以少到只有一个通信单元。
参考图5,是流程图,示出了根据本发明某些实施例的用于包括多个信道的宽频带无线通信系统中的通信方法。在步骤505,给通信单元105分配选择自多个可用信道中的信道。多个可用信道中的每一个信道的特征是信道频率。在步骤510,调节通信单元的相对信号损耗参数,其中该调节是基于自分配的信道和宽频带通信系统参考信道的信道频率确定的相对频率路径损耗。该系统的一个示例是这样的系统,其中基于可能没有包括相对频率路径损耗效果的考虑,给通信单元分配了新的信道,但是在该系统中,调节路径损耗相关参数(诸如信号传送技术),以补偿由信道改变引起的相对频率路径损耗。应当理解,可以使用这样的设计技术进行该调节,即该设计技术可以基于由路径损耗相关参数改变引起的路径损耗幅度的测量或计算,以及每个信道相对于定义信道的相对频率路径损耗计算,但是对于该系统,该结果体现为用于执行该调节的实时技术中的表或阈值。因此,该表或阈值技术是基于自分配信道和宽频带通信系统参考信道的信道频率确定的相对频率路径损耗。实际上,相对频率路径损耗可以用于与其他方法组合使用,或独立使用,用于改进通信单元的通信。当实际时间计算用于相对频率路径损耗时,参考信道可以是当前信道,而不是定义的信道。
参考图6,示出了根据本发明某些实施例的通信单元105的电气方框图。参考图5描述的本方法的一个方面是这样的,该方法自身适于单独地在通信单元105中实现,该通信单元105包括处理功能605,用于执行分配505和调节510的步骤;以及无线电收发信机610,用于使用分配的信道发射信息。
参考图7,是流程图,示出了根据本发明某些实施例的用于包括多个信道的宽频带无线通信系统中的通信方法。在步骤705,预期用于一个目的地单元的发射信息被分割为多个数据流。每个数据流的特征是相关联的相对信号损耗(相对信号传送敏感性)。在步骤710,(从多个信道中)选择多个可用发射信道,用于发射多个数据流。然后,在步骤715,将多个数据流中的每个数据流分配给可用数据发射信道中的一个。按照数据流的递增相关联相对信号传送敏感性的次序,给数据流被分配具有递减信道频率的信道。为此目的的递增信号传送敏感性意味着,需要递增的接收信号强度用于实现标准化的性能标准,诸如每10,000个恢复比特一个差错。
应当理解,包括此处描述的接入点和通信单元的通信系统设备由一个或多个传统的处理器或独特存储程序指令组成,该程序指令控制一个或多个处理器,以与某些非处理器电路相结合实现此处描述的通信系统设备的某些功能。该非处理器电路可以包括但不限于,无线电接收机、无线电发射机、信号驱动器、时钟电路、电源电路和用户输入设备。这样,这些功能很大程度上被解释为用于执行通信系统设备功能的方法步骤。可替换地,可以通过无存储程序指令的状态机实现某些或全部功能,其中每个功能或某些特定功能的组合可以实现为定制逻辑。当然,可以使用这两种方式的组合因此,此处已描述了用于执行这些功能的装置与方法。
在上文的说明书中,已经结合特定实施例描述了本发明及其益处和优点。但是,本领域技术人员应当理解,可以进行多种修改和改变,而不偏离本发明的精神和范围。因此,说明书和附图应被视为是说明性的而不是限制性的,而且全部这些修改都预期包括在本发明的范围内。这些益处、优点、问题的解决方案及可以引起这些益处、优点或出现或变为显著的解决方案的任何元素不应被解释为对于任何或全部权利要求的关键性的、必需的、必要的特征或元素。
应当进一步理解,使用的关系性术语,如果存在的话,诸如第一和第二、顶部和底部等等可以唯一地用于区分一个实体或动作与另一个实体或动作,而未必要求或暗示该实体或活动之间的实际的这种关系或次序。
处所使用的术语“包括”、“包括的”或其任何其他变动,均预期涵盖非排他性的包含,诸如过程、方法、物品或装置,其不仅包括列出的元素而且还包括未明确列出或该过程、方法、物品或装置所固有的其他元素。
此处使用的“集合”意味着非空集合(即,此处定义的集合包括至少一个元素)。此处使用的术语“另一个”被定义为至少第二个或更多个。此处使用的术语“包含”和/或“具有”被定义为“包括”。此处参考光电技术使用的术语“耦合”被定义为连接,尽管未必是直接,并且未必是机械方式。此处使用的术语“程序”被定义为设计用于在计算机系统上执行的指令序列。“程序”或“计算机程序”可以包括子程序、功能、过程、对象方法、目标实现、可执行应用程序、applet,a servlet、源代码、目标代码、共享库/动态装载库和/或设计用于在计算机系统上执行的其他指令序列。
权利要求
1.一种用于宽频带无线通信系统控制器的通信方法,该无线通信系统包括多个信道,每个信道的特征是信道频率,所述方法包括确定对于将所述多个信道中的信道分配给通信单元集合中每个通信单元的需求;确定所述多个信道中的多个可用数据信道;以及基于所述多个可用信道中每一个的相对频率路径损耗,选择所述多个可用信道中的一个,用于分配给每个通信单元。
2.如权利要求1所述的方法,所述选择进一步包括确定每个通信单元的相对距离;以及按照每个通信单元的递增相对距离的次序,给所述通信单元集合分配具有递减信道频率的信道。
3.如权利要求1所述的方法,所述选择进一步包括确定待由每个通信单元传递的信息的信息优先级;以及按照每个通信单元集合中每个通信单元信息的递增信息优先级的次序,分配以递减信道频率排序的可用信道。
4.如权利要求1所述的方法,所述选择进一步包括在由通信单元使用的第一信道上,测量低于阈值的接收信号强度;以及给所述通信单元分配第二信道,该第二信道具有低于所述第一信道信道频率的信道频率。
5.如权利要求1所述的方法,其中所述选择进一步包括给所述通信单元分配具有最高信道频率的信道,在该最高信道频率处,所述信道的接收信号强度超过了定义的阈值。
6.如权利要求1所述的方法,其中所述宽频带无线通信系统具有带有至少1.26∶1的比的信道频率范围。
7.如权利要求1所述的方法,其中所述多个信道中第i个信道的相对频率路径损耗被确定为L=20log(fR/fi),其中L是相对频率相关的路径损耗,fR是所述多个可用信道中定义参考信道的信道频率,并且fi是所述多个可用信道中第i个信道的信道频率。
8.如权利要求1所述方法,其中所述多个信道中的每个信道具有功率谱密度Pi,其中下标i标识第i个信道,以及其中相对频率路径损耗是基于信道频率和信道带宽的以下关系L=20log(fR/fi)+10log(Pi/PR),其中L是相对频率路径损耗,fR是所述多个可用信道的定义参考信道的信道频率,以及fi是所述多个可用信道中第i个信道的信道频率。
9.一种用于宽频带无线通信系统中的通信方法,包括给通信单元分配自多个可用信道中选择的信道,所述多个可用信道中的每个信道的特征是信道频率;以及基于自所述分配信道和所述宽频带通信系统参考信道的信道频率确定的相对频率路径损耗,调节所述通信单元的相对信号损耗参数。
10.如权利要求9所述的方法,其中,所述通信单元的所述相对信号损耗参数是以下内容中的一个或多个可选择发射功率谱密度、信号传送敏感性、以及天线增益。
11.如权利要求9所述的方法,其中所述宽频带无线通信系统具有带有至少1.26∶1的比的信道频率范围。
12.如权利要求9所述的方法,其中所述方法在所述宽频带通信系统的下述通信单元中使用,即,该通信单元包括处理单元,用于执行分配和调节;以及无线电收发信机,其在所述分配的信道上发射信息。
13.如权利要求9所述的方法,其中所述参考信道是所述通信单元最新近使用进行通信的当前信道,并且其中所述确定包括修改用于所述当前信道的值中的至少一个通信参数,以参考所述当前信道来补偿所述新信道的所述相对频率路径损耗。
14.一种用于宽频带无线通信系统的通信单元,所述通信单元包括无线电装置,其能够操作在多个信道中的一个或多个上,每个该无线电装置的特征是信道频率;以及处理功能,其确定给所述通信单元分配所述多个信道中的新信道;以及基于自所述新信道和所述宽频带通信系统参考信道的信道频率确定的相对频率路径损耗,确定至少一个通信参数。
15.一种用于包括多个信道的宽频带无线通信系统的通信设备的通信方法,每个信道的特征是信道频率,所述方法包括将发射信息分割为多个数据流,每个数据流的特征是相关联的相对信号传送敏感性;自所述多个信道中选择多个发射信道,用于发射所述多个数据流;以及将所述多个数据流中的每个数据流分配给所述发射信道中的一个,其中按照递增的所述数据流相关联相对信号传送敏感性的次序,给数据流分配具有递减信道频率的信道。
全文摘要
一种用于宽频带无线通信系统(100)中的技术。在某些实施例中,确定(310)可用信道,并且基于每个可用信道的相对频率路径损耗,选择(315)一个用于分配给每个通信单元集合。在某些实施例中,给通信单元分配(505)选择自可用信道中的信道,并且基于自分配信道的信道频率确定的相对频率路径损耗,调节(510)通信单元的相对信号损耗参数,诸如发射功率。在其他实施例中,将发射信息分割(705)成多个数据流,每个数据流的特征是相关联的相对信号传送敏感性,并且给每个数据流分配(715)给多个发射信道中的一个,其中按照递减的数据流相关联相对信号传送敏感性的次序,给数据流分配具有递减信道频率的信道。
文档编号H04Q7/20GK1981448SQ200580022959
公开日2007年6月13日 申请日期2005年7月7日 优先权日2004年7月7日
发明者沙亚尔·埃马米, 塞莱斯蒂诺·A·科拉尔, 格雷格·E·雷泽, 萨尔瓦多·西贝卡斯, 格拉夫科斯·斯特拉蒂斯 申请人:摩托罗拉公司