专利名称:具有低成本高性能本振架构的变频中继器的利记博彩app
技术领域:
本发明主要涉及无线网络,尤其涉及变频中继器中的本振(LO)架构。特别地,当在一个系统中实施该种中继器,所述系统在集成电路中实施包括LO电路在内的该中继器的多数或所有元件,必须进行实际的考虑。而集成电路中接收信道与发送信道之间的片内(on-chip)隔离度是一种重要的实际考虑。
背景技术:
大多数的变频中继器中,发送信号路径与接收信号路径之间的隔离是主要需考虑的事项。特别地,信号输入级且甚至是辅助电路输入级,如LO级,对任何带内信号能量敏感,因此,应理解来自非预期输入信号的信号能量可导致如干扰(interference)或“干扰(jamming)”的信号异常。例如,若允许该用于下变频的LO泄漏入上变频器的LO输入中,将发送一个信号图像(signalimage)而在该接收机中产生干扰效应。此外,若允许该发送路径中用于上变频的LO泄漏入该接收机下变频器中,该所发送信号将被下变频至接收频带,并且亦产生干扰效应。
对来自LO电路的信号能量进行交叉耦合的最常见方法是利用高品质因数(high-Q)谐振电路、调谐为在特定频率谐振的LC电路。由于该发送LO与接收LO之间典型地需要80dB的隔离,并且,就实践而言,由于基本上认为在单个半导体片上的该两个谐振电路之间不可能有80dB的隔离,那么用于发送路径的LO电路与用于接收路径的LO电路必须为不同频率。足够使信号能量耦合至LO级的第二泄漏路径是通过片基底的泄漏。尽管该通过基底耦合的信号能量与通过谐振电路耦合的信号能量相比,其级别典型地要小得多,但在相同基底上的不同LO电路之间达成80dB的隔离仍然是困难的。
宽带相位噪声是另一种形式的导致接收机灵敏度降低的信号异常。在具有例如8dB的噪声系数的典型系统中,其结果系统本底噪声可为-166dBc/Hz。因此,若该系统中的LO的宽带相位噪声为高于该本底噪声的-150dBc/Hz,在该宽带相位噪声通过该上变频器的时候,会将该相位噪声加入该已上变频信号中。此外,若与该LO相关的混频器的输出为-10dBm,输入到功率放大器(PA)的总相位噪声约为-160dBm/Hz。该PA典型地具有含6dB噪声系数的25dB的增益,使该噪声电平提高至约-135dBm/Hz。假设有30dB的接收机至发送机隔离,该系统输入处的结果泄漏噪声应为-165dBm/Hz。应理解,由于该LO信号与该已上变频信号典型地为非相干,因此他们并不直接相加。如上所述的165dBm/Hz的结果泄漏噪声导致的灵敏度降低约为1-1.5dB。因此,在有大于例如10MHz的LO频偏的情况下,高于-150dBm/Hz的LO宽带噪声电平会导致1比1的接收机灵敏度减低。换言之,例如对于-149dBm/Hz的噪声电平导致系统灵敏度降低2dB,对于-148dBm/Hz的噪声电平导致系统灵敏度降低3dB,以此类推。
牵引是另一个与任何开关LO架构相关的问题。牵引涉及由输出阻抗变化而引起的LO的不稳定。LO牵引会导致该与LO进行混频的信号中断直至该LO频率回复稳定。应理解,与LO牵引相关的时间量是阻抗变化量与回路带宽的函数。某些情况下,例如在802.11信号情况下,由于该802.11(g)信号的前导码(preamble)非常短,典型的为8μs长,即使是少量的牵引也是不可接收的。由此,示范LO电路需要在1μs之内稳定的LO以防止丧失信号锁定功能或类似情况。
上文所列且所合并的第10/529,037号美国专利申请揭露了利用变频进行中继器隔离的实例。然而应注意的是,为了保证健壮而有效的运行,变频中继器必须能够快速检测信号的存在,且必须在其进行中继的环境中,通过对信号能量(包括来自振荡器及类似者的能量)进行充分隔离来协同运行,从而有效地对发送进行中继。
发明内容
因此,在各种示范实施例及代替示范实施例中,本发明提供一种变频中继器中的本振(LO)架构,该中继器配置为扩展如WLAN的无线环境中的覆盖范围,且广义地说,扩展包括基于IEEE802.11b/g的系统在内的任何TDD(时分双工)系统。该示范变频中继器使用信号检测及隔离并且在如基于802.11的系统之类的TDD系统中执行。
将下文所附图示及详细说明共同合并在此且构成本说明书的一部分以进一步说明各种实施例并且解释多种根据本发明的原理及优点,该些图示中,相同的标号指代各独立图示中的相同或功能类似的元件。
图1为说明变频中继器范例的元件的方块图;图2为说明本发明的本振(LO)电路的一实施例的详细示意图;图3为说明根据本发明的本振(LO)电路的另一实施例的详细示意图;图4为说明根据本发明的本振(LO)电路的再一实施例的详细示意图。
具体实施例方式
参考图1以更好地理解中继器范例的基本元件。图1示出了变频中继器范例主要元件的简化图,其包括带有第一天线111及第二天线112的RF模块110。RF模块110通过线路113、114、115及116双向耦合至具有调制解调器121的基带模块120。应理解,可为信标(beacon)调制解调器或类似者的调制解调器121对于信标恢复及处理,需要用于解调的采样时钟以及用于调制的频率载波。应注意,根据各实施例,需要两频道的同时解调。因此,所允许中频(IF)频率以及所需的时钟与LO频率的数量是有限的。表1列出了一组根据各种实施例的用于IF及采样时钟的所允许频率。应理解,载波频率或用于调制的频率可从表1的IF频率中选择。可在任何该示范中继器所支持的信道中执行调制。
表1
该中继器范例亦包括处理器130,该处理器通过数据链路,如数据总线123,连接至基带模块120,并且该中继器亦可有模拟控制连接122,其可为一系列的模拟连接。基带模块120以简略形式示出,且将在后文更详细地描述。然而应理解的是,示范实施例中,必须在1μs之内稳定任何自动增益控制(AGC)及LO不稳定性。设回路带宽为100KHz,若该LO通过100KHz或1个回路带宽牵引,则需要10μs来将该LO牵引入锁定。由于10μs超出了稳定要求,必须通过加宽回路带宽或限制牵引度来将其降低。然而,大幅度加宽带宽需更复杂的锁相回路(PPL)电路。因此,实际的解决方案是将牵引限制在1KHz以下,或者参考LO频率2802MHz,在1KHz/2802MHz=0.356ppm以下。
应理解,该中继器范例可包括各种元件,如用于发送信号滤波的基准振荡器带通滤波器、用于选择发送信道的信道选择开关、高通滤波器及低通滤波器。可在专用集成电路(ASIC)中独立实施的RF模块110可通过发送开关将发送信号路选(route)至两个发送天线之一。该发送信号可在信道选择开关处从发送信道(如TX_A或TX_B)中的一个来选择,并且将该发送信号输入到功率放大器(PA),然后再输入到功率检测器。应理解,可采用功率调节来达成精细的功率控制。
检测期间,信道A与信道B两者俱配置为通过FET(场效应管)混频器、LNA(低噪声放大器)以及包括表面声波(SAW)滤波器、LNA、SAW滤波器、分离器及对数放大器的下变频器来对信号进行路选。可从信道A与信道B中抽取存在的数字信号且将该些数字信号输入数字解调器(详述于下文),并且该些数字信号将通过信标封包、控制封包及类似者用于执行网络控制及类似者。
可通过下文详述的可调频率合成器来执行上变频及下变频。应注意,该可调合成器或可调本振(LOs)的频率输出可经由缓存器输出至用于上变频及下变频的混频器,或者直接耦合亦可。在使用缓存器的情况下,该缓存器为可开关的或者一直处于开状态,然而根据本文所述的实施例,应一直致能该些缓存器来减少,如下文所详细描述的开关瞬态对中继器性能的不利影响。
应理解,数字信号亦可由数字调制器电路来调制且将其通过一连串的开关输出至发送流。该数字调制器电路可包括例如3阶的滤波器、用于I及Q数据滤波的巴特沃思(Butterworth)型低通滤波器、用于将I及Q数据与相应于该信道频率的时钟频率进行混频的混频器、变增益控制及类似者。可通过设定开关来抑制该调制器的输出。在该检测侧,可关闭与该发送信道相对的信道,而达成对该所发送信号的高度隔离。应注意,通过将用于上变频的LO与用于下变频的LO设置为相对而完成频率变换。
如所述的,本领域的一般技术人员应理解该数字解调器及数字调制器可以用来接收及发送信标、探测响应及XOS封包。此外,可使用处理器或序列器来控制该中继器范例的多种工作模式以及来使得该接收机范例可将数据发送至其它中继器,或者可以运行网络管理操作系统的接入点(APs),该操作系统例如为eXperimental操作系统、Xylan操作系统、eXtreme操作系统(XOS)或类似者。
参见图2、图3及图4,示出了若干个使用两个可调LO及一个固定LO的LO架构范例。所有该些架构使用至少两个不同的IF频率,且某些情况下使用三个。一些架构使用偏移本振方法,而其它架构使用高边(high side)/低边(lowside)方法来获得LO隔离。以接收机侧的相位噪声为代价可对发送侧作相位噪声优化,或者同时在发送及接收级作相位噪声优化。每一架构具有的复杂度有所变化。
应注意,根据各种示范实施例,需要有低速天线分集。低速天线分集涉及在初始系统配置期间进行天线选择,以及从一封包发送到下一封包发送期间内保持该天线配置。通过利用连接至一天线的一下变频器来搜索所有信道上的信标,然后使用连接至相对天线的另一下变频器来再次执行该搜索,从而实现低速分集配置。所有架构范例应支持低速天线分集。
参见图2,示出了LO电路范例210,如前所述,本领域一般技术人员应理解,其具体可以是适用于在此所述所有LO电路的一个射频专用集成电路(RFASIC)或者是一个ASIC内的单元或模块或者类似者。LO电路范例210的一个优点是具有例如单级上变频器的架构相对简单。LO电路210的缺点是需要80dB的TX至RX隔离,以及不良的RX相位噪声性能,TX侧的潜在牵引问题。
图3示出了一个LO电路范例310。LO电路310的一个优点是其不需要80dB的LO隔离。由于包括两级的上变频增加了复杂性、使用三个不同的IF频率而需要有三个不同的SAW滤波器、不良的RX相位噪声以及TX侧的潜在牵引问题是为LO电路310的缺点。
图4示出了LO电路410范例。LO电路410的优点是其不需要80dB的LO隔离、架构相对简单,且TX与RX相位噪声性能良好。LO电路410的缺点是两级的上变频增加了复杂性,且TX与RX侧有潜在的牵引问题。
鉴于上述优点及缺点,可构建如表2的表格,根据诸如LO隔离、相位噪声、牵引及复杂性的特性对每一LO电路210、310及410进行定级。
表2观察表2中的等级后,可根据量度等级的总和给每一电路“打分”。由此,LO电路210的分数为12,LO电路310的分数为12,而LO电路410的分数为15。因此,LO电路410分数最高且很可能提供有效结果,尽管LO电路210与LO电路310可以用来满足各种考虑到成本及/或性能进行权衡交换的因素。使用电路410时,可利用杂波(spur)分析来校验没有音频(tone)落入信道并干扰(jam)该接收机,该杂波信号分析为本领域所常见,其使用能够生成多至5阶谐波的元件。此外,为了适当地进行测试,亦应注意,需要对该IF电路链中的元件进行适当的控制,从而在使用该相对信道时,增益减少,选择放大器被禁能,且有源IF上变频器被禁能。
再参见图2,LO电路210可配置为便于从2412MHz的信道1中继至2472MHz的信道13。因此,可分别从信道1与信道13接收来自RF模块范例(如RF模块110)的信号输入211与212。可将信号输入211与212分别输入混频器213与214来与LO来源边带信号进行混频。本实施例中,将输入信号210指定为接收;由此,应理解其将在混频器213与用于下变频的1950MHz信号进行混频。该下变频信号是通过将1818MHz至2010MHz区间内可调的LO1220生成的1818MHz信号在单边带(SSB)混频器的上边带部分229中进行混频而生成的,然后该下变频信号从可选择地被致能的缓存器231输出。应理解,若选择信道13作为下变频,1878MHz下变频信号是通过将1818MHz至2010MHz区间内可调的LO1 222所生成的2010MHz信号在该SSB混频器范例的下边带部分230中进行混频而生成的,然后该下变频信号从可选择地被致能的缓存器232(本实例中禁能)输出。
一旦下变频完成,可将信号211传至信标解调器215,在该信标解调器215处使用264MHz数字时钟频率从该输入信号211中抽取信标信号、封包或类似者。应理解,如前所述,该数字解调器耦合至处理器、序列器、控制器或类似者,例如数字解调器与序列器连接。在该发送侧,可使用信标调制器217将网络控制或信令信息与该输出信号混合。以分频器223、224及225对1056MHz的固定LO 221进行分频而生成132MHz信号来驱动调制器217。可进一步使用分频器226来分频该132MHz信号而生成66MHz信号,该66MHz信号在混频器227与从缓存器228(已致能)输出的528MHz信号进行混频而生成426MHz信号。可在开关216处将该已调制的输出信号注入该信号路径,该开关216通常配置为使信标调制器217从电路中断开。
该已下变频信号可与该输出混频器217耦合,并且可使用开关201将该信号切换至信道13,该开关201可为例如在片外的GaAs开关。应理解,可将混频器217耦合至已致能而提供从LO2 222生成的2010MHz上变频信号的缓存器213。在从信道13中继至信道1的情况下,信道13上的信号212可在混频器214中使用从缓存器232生成的1878MHz信号进行混频,该1878MHz信号是通过将从LO2 222生成的该2010MHz信号与如上所述使用分频器223、224、225对由固定LO221生成的1056MHz信号进行分频而得到的132MHz信号进行混频而生成。该已下变频信号可以如所述般输入信标解调器215来检索任何已调制信令数据。然后,可将该已下变频信号输入混频器218,在该混频器218处使用从LO1 220生成的且从缓存器213(已致能)输出的1818MHz信号将该已下变频信号进行上变频。然后在开关201处于与所示位置不同的另一位置时,将该信号由信道1中继。应注意,如上所述,该LO电路的架构最为简单,但牺牲了表2所列范围的性能。
参考图3,如前述实施例,LO电路310可配置为便于从2412MHz的信道1中继至2472MHz的信道13。因此,可分别从信道1与信道13接收来自RF模块范例(如前述的RF模块110)的信号输入211与212。可将信号输入211与212分别输入混频器213与214来与LO来源边带信号进行混频。本实施例中,将输入信号210指定为接收;由此,应理解其如前述地在混频器213与1950MHz的下变频信号进行混频。该1950MHz的下变频信号是通过将1686MHz至1746MHz区间内可调的LO1 320生成的1686MHz信号在单边带(SSB)混频器的上边带部分329中进行混频而生成的,然后该下变频信号从可选择地致能的缓存器231输出。
一旦下变频完成,可将信号211传至信标解调器215,在该信标解调器215处使用264MHz数字时钟频率从该输入信号抽取信标信号、封包或类似者,该264MHz数字时钟频率是通过在分频器223及224中将1056MHz的固定LO 221进行分频而生成。在该发送侧,可使用信标调制器317将网络控制或信令信息与该输出信号混合。如前所述,以分频器223、224及225对1056MHz的固定LO 221进行分频而生成132MHz信号来驱动调制器317,且可进一步使用分频器226来分频该132MHz信号而生成66MHz信号,该66MHz信号在混频器227与缓存器228(已致能)输出的528MHz信号进行混频而生成594MHz信号。可在开关316处将该已调制的输出信号注入该信号路径,该开关316通常配置为使信标调制器317从电路中断开。
可将该已下变频信号与中频混频器333及输出混频器217耦合,并且使用开关201切换至信道13。该混频器333将该132MHz信号与该462MHz信号混频以生成与该混频器217耦合的594MHz中频信号。应理解,可将该混频器217与已致能而提供LO2 322生成的1878MHz上变频信号的缓存器213耦合。在从信道13中继至信道1的情况下,信道13上的信号212可在混频器314中使用从缓存器232生成的2010MHz信号进行混频,该2010MHz信号是通过将1818MHz至1878MHz区间内可调的LO2 322生成的该1878MHz信号与该132MHz信号在该SSB混频器范例的下边带部分330中进行混频而生成。若来自信道13的信号212用于下变频,则该已下变频信号耦合至输出726MHz中频信号的中频混频器334。然后,将该中频信号输入混频器218,在该混频器218处使用从LO1 320生成且从缓存器213(已致能)输出的1686MHz信号将该中频信号进行上变频。然后当开关201处于与所示位置不同的另一位置时,将该信号可由信道1中继。虽然LO电路310提供了非常好的隔离,但需更复杂的电路,例如附加的混频器,如中频混频器333及334。
根据再一示范实施例,图4所示的LO电路410在表2所列所有范围都有非常好的性能,牵引性能的降低也最小。LO电路410提供更固定的解决方案,该方案中该些元件配置为无需明确地致能一信道及禁能另一信道即可提供中继。例如,可将与2412MHz的信道1相关的输入信号411在混频413中与在1818MHz至1878MHz区间内可调的LO1 441生成的1818MHz信号进行混频。应注意,该来自LO1 441的1818MHz信号亦与该上变频混频器427耦合。可将与2472MHz的信道13相关的输入信号412在混频器414中与在2742MHz至2802MHz区间内可调的LO2 442生成的2802MHz信号进行混频。应注意,该来自LO2 442的2802MHz信号亦与该上变频混频器426耦合。与LO电路310与LO电路410不同,由于LO电路410的上变频电路与下变频电路中不包括缓存器,因此降低了复杂性。可将从混频器413及414输出的该已下变频信号输入信标解调器415,该解调器可使用264MHz信号来驱动,该264MHz信号由分频器417对924MHz的固定LO 440进行分频而生成。信标解调器415用于对信号411及412上的信令信息进行解调,例如,如上所述。可将该已下变频信号441及412,现分别为中频的594MHz及330MHz,分别输入中频混频器420及419与该来自固定LO 440的924MHz信号进行混频。
中频混频器419及420中混频的效果是将各自信道上的频率交换。因此,来自信道13的330MHz的已下变频信号变换为594MHz,而该来自信道1的594MHz的已下变频信号变换为330MHz。可将从中频混频器419及420输出的该些已交换中频信号与混频器427及426耦合来进行上变频。混频器427将来自LO1 441的1818MHz信号与来自中频混频器419的594MHz信号(源自信道13)进行混频以生成与信道1相关的2412MHz信号。类似地,混频器426将该来自LO2 442的2802MHz信号与该来自中频混频器420的330MHz信号(源自信道1)进行混频以生成与信道13相关的2472MHz信号。可该些将来自混频器427及426的信号通过缓存器429及428输出至输出选择开关430,该开关所示为在2472MHz频率的信道13进行中继的位置。因此,由于该中继器配置为在两根信道上进行检测、下变频及上变频,而有如所述的输出选择开关430执行最终输出选择,所以LO电路410范例便于中继器信道的快速改变。
LO电路410的一个明显优点是,基于将LO1 441及LO2 442锁定至相同的基准时钟,中继信号的频率误差大大降低了。举例来说,LO电路410中,任何信号路径中,该中继信号将经过三个配置为“高边、高边、低边”或“低边、高边、高边”的混频器。应理解,“高边”是指该LO混频频率高于该信号路径频率。由于每一高边混频导致了频谱倒置,因此,每一信号路径中必需有两个高边混频来校正由任一高边混频引起的频谱倒置。可根据ppm误差因素以及该LO的频率来消除该两个高边混频器之间的任何偏差。
一实例中,在“高边、高边、低边”情况下,设具有15ppm漂移率的基准漂移升高10ppm。若RF频率=2412GHz的信号输入至一混频器,该混频器具有正常在3006MHz但现漂移至3006.030060MHz或漂移10ppm的高边LO,得到频率为3006.030060MHz-2412GHz=594.030060MHz的IF信号,由于该IF正常为594MHz,因此该IF太高。接着,该高IF信号注入另一混频器,该混频器具有正常在1056MHz但现漂移至1056.010560MHz高的高边LO。该结果IF信号为1056.010560MHz-594.030060MHz=461.980500MHz,由于该IF正常为462MHz,因此该结果IF太低。然后该IF信号注入上变频混频器,该混频器具有正常在2000MHz但现漂移至2000.020000MHz的低边LO。该结果信号为2000.020000MHz+461.980500MHz=2462.000500MHz,由于该已上变频信号正常为2462MHz,因此该结果信号为高。结果总TX误差为500Hz/2462MHz=0.203ppm误差,该误差小于最初发生于该基准的实际的10ppm移动。
另一实施例中,在“低边、高边、高边”情况下,仍然设具有15ppm漂移率的基准漂移升高10ppm。若RF频率=2462GHz的信号输入至一混频器,该混频器具有正常在2000MHz但现漂移至2000.020000MHz的低边LO,得到频率为2462MHz-2000.020000MHz=461.980000MHz的IF信号,由于该IF正常为462MHz,因此该IF太低。接着,该IF信号注入另一混频器,该混频器具有正常在1056MHz但现漂移至1056.010560MHz的高边LO。该结果IF信号为1056.010560MHz-461.980000MHz=594.03056MHz,由于该IF正常为594MHz,因此该结果IF太低。然后该IF信号注入上变频混频器,该混频器具有正常在3006MHz但现漂移至3006.030060MHz的高边LO。该结果已上变频信号为3006.030060MHz-594.030560MHz=2411.999500MHz,由于该已上变频信号正常为2412MHz,因此该结果信号太低。结果总TX误差为500MHz/2412MHz=0.207ppm误差。
因此,根据该LO电路的配置基本将该中继信号校正至零误差。使用两个高边混频的校正效果的结果是不要求频率基准精度与绝对系统RF频率(如2450MHz)有关,该基准的精度可与该中继器的该输入频率与输出频率之间的差别有关,根据示范实施例,对于802.11b/g该差别典型地为小于100MHz。唯一有意义的误差为与输入该信标解调器的信号有关的误差,其原因是在耦合到该解调器的输入级之前仅对该信号进行一次下变频。由于需要50ppm的误差裕度来成功地解调四相移相键控(QPSK)信号,那么15ppm振荡器已足够。若正交频分复用(OFDM)检测器范例可以容许更大误差,可使用具有大于15ppm误差裕度的振荡器来降低成本。由于15ppm是标准的WLAN振荡器,因此选其作为振荡源范例是足够的,特别在设802.11g标准要求不大于20ppm的时钟误差的情况下。
应理解,例如,根据如上文所述的通过引用合并在此的第60/576,290号美国临时申请中所进行的测试,中继器范例能够以11Mbps来接收802.11b波形,以及以54Mbps及6Mbps来接收802.11g波形并且将该些波形中继而没有过多的信号降级。每一测试在CH(信道)1上以其最小灵敏度注入特定波形,然后以全功率将信号中继至CH11,在随后的测试中,以降低的功率将信号中继至CH6。然后检查该已中继的波形以确认已中继了适当的EVM。对于更窄的SAW滤波器,会进一步改良邻信道中继的发送功率。因此,已证明了该中继器范例很容易地在CH1上以最小灵敏度接收信号且以全功率将该信号中继至CH11。只要该接收机与发送机之间间隔有6个(5MHz)信道,该中继器就可以进行全功率中继。因此,CH1上所接收的信号可以全功率在CH8-11上中继。若需在CH6或CH7上中继,需降低输出功率。再者,对于改良的SAW滤波器,仅对邻信道有仅1-2dB的降级。
根据多种示范实施例,下表列出了一些与该中继器范例相关的参数。例如可使用0.35μ SiGe BiCMOS工艺来制造ASIC范例。其规格随该ASIC内部的不同阻抗而改变。
表3
可根据下表4来设置该低边可调合成器(Synth1),该表列出了所支持的适用于不同国家的RF频率以及用于该低边及高边可调合成器的相关LO频率。假设所有该些合成器的基准为22MHz TXCO(温度补偿晶体振荡器)且该些可调合成器使用1MHz比较频率。表5可用来描述该Synth1的特征。
注x代表所标出的国家中使用的信道。
表4
*假设50KHz回路BW(带宽)及10MHz(±10ppm)基准振荡器。
表5可以下表6来描述该Synth2的特征。
*假设50KHz回路BW(带宽)及10MHz(±10ppm)基准振荡器。
表6可以下表7来描述该固定频率合成器的特征。
*假设50KHz回路BW(带宽)及10MHz(±10ppm)基准振荡器。
表7
本领域的普通技术人员可认识到,如上所述,除了在此论述的实例中所示以外,还可使用各种其它技术来确定本发明的不同的本振配置及类似者。该些实例更多地强调从信道1至信道13(或相反)的中继。然而,本领域的普通技术人员可认识到该种实例仅以说明为目的,而且可使用其它中继信道配置。此外,可将各种元件,如RF模块210及中继模块200,以及其它组件,结合在单个集成装置上或者部分在ASIC与分立元件或类似者上实施。本领域的普通技术人员可对特定元件作其它改变或替换而不脱离本发明的范围与精神。
权利要求
1.一种便于中继信号的本振(LO)电路,所述信号在根据无线协议工作的变频中继器中从第一频道上的第一站发送至第二频道上的第二站,所述LO电路包括与所述第一频道相关的第一可调LO,所述第一可调LO在第一频率范围内可调,所述第一频率范围低于所述第一频道的频率;与所述第二频道相关的第二可调LO,所述第二可调LO在第二频率范围内可调,所述第二频率范围高于所述第二频道的频率,所述第二频率范围与第一频率范围不同;及第一下变频器电路,用于将所述第一频道上的所述信号下变频为具有第一中频的第一中频信号,所述下变频使用耦合至所述第一可调LO的第一下变频混频器,并且用于将所述第二频道上的所述信号下变频为具有第二中频的第二中频信号,所述下变频使用耦合至所述第二可调LO的第二下变频混频器。
2.如权利要求1所述的LO电路,进一步包括第二下变频器电路,用于使用高于所述第一中频的频率将所述第一中频信号下变频,从而生成频率为所述第二中频的所述第一中频信号,并且用于使用高于所述第二中频的频率将所述第二中频信号下变频,从而生成频率为所述第一中频的所述第二中频信号;及上变频器电路,用于使用耦合至所述第一可调LO的第一上变频混频器将频率为所述第二中频的所述第一中频信号上变频,并且用于使用耦合至所述第二可调LO的第二上变频混频器将频率为所述第一中频的所述第二中频信号上变频,其中,在所述第一及所述第二下变频器电路中生成的一个或多个频谱倒置在所述上变频器电路中被消除。
3.如权利要求2所述的LO电路,其特征在于所述第一可调LO电路及所述第二可调LO电路直接耦合至所述上变频器电路及所述第一下变频器电路。
4.如权利要求1所述的LO电路,进一步包括耦合至所述下变频器及固定LO的信标解调器电路,所述信标解调器配置为解调与所述无线协议相关的控制信号。
5.如权利要求1所述的LO电路,其特征在于所述无线协议包括时分双工(TDD)协议、802.11b协议及802.11g协议中的一个。
6.如权利要求1所述的LO电路,其特征在于形成所述第一可调LO、所述第二可调LO、所述第一下变频器、所述第二下变频器及所述上变频器的集成电路包括集成电路、专用集成电路(ASIC)及混合集成电路之一。
7.如权利要求6所述的LO电路,其特征在于所述集成电路包括0.35μ硅锗(SiGe)双极互补金属氧化物半导体(BiCMOS)集成电路。
8.如权利要求1所述的LO电路,其特征在于所述第一可调LO及所述第二可调LO锁定在相同的时钟基准。
9.一种便于中继信号的中继器电路,所述信号在根据无线协议工作的变频中继器中从第一频道上的第一站发送至第二频道上的第二站,所述中继器电路包括RF电路,配置为接收所述第一频道及所述第二频道之一上的所述信号,并且在所述第一频道及所述第二频道之另一上发送所述信号的已中继形式;及耦合至所述RF电路的本振(LO)电路,所述LO电路包括与所述第一频道相关的第一可调LO,所述第一可调LO在第一频率范围内可调,所述第一频率范围高于所述第一频道的频率与所述第二频道的频率之一;及与所述第二频道相关的第二可调LO,所述第二可调LO在第二频率范围内可调,所述第二频率范围低于所述第一频道的频率与所述第二频道的频率之另一;及具有第一高边混频器及第一低边混频器的第一下变频器电路,所述第一高边混频器与所述第一频道与所述第二频道之一相关,并且所述第一低边混频器与所述第一频道与所述第二频率信道之另一相关,所述第一下变频器从所述混频器之一生成第一中频信号,并且从所述混频器之另一生成第二中频信号。
10.如权利要求9所述的中继器电路,进一步包括具有第二高边混频器及第三高边混频器的第二下变频器电路,所述第二高边混频器与所述第一中频信号相关,并且所述第三高边混频器与所述第二中频信号相关;及具有第四高边混频器及第二低边混频器的上变频器电路,所述第四高边混频器与所述第二中频信号的混频相关,并且所述第二低边混频器与所述第一中频信号的混频相关,以生成第一输出信号及第二输出信号,所述第一输出信号及所述第二输出信号具有已校正频谱倒置特性。
11.如权利要求10所述的中继器电路,其特征在于所述第一可调LO直接耦合至所述第一高边混频器及所述第四高边混频器,并且所述第二可调LO直接耦合至所述第一低边混频器及所述第二低边混频器。
12.如权利要求9所述的中继器电路,其特征在于所述第一可调LO及所述第二可调LO以相同的基准工作。
13.如权利要求9所述的中继器电路,其特征在于所述无线协议包括时分双工(TDD)协议、802.11b协议及802.11g协议中的一个。
14.如权利要求9所述的中继器电路,其特征在于形成所述LO电路的集成电路包括集成电路、专用集成电路(ASIC)、混合集成电路之一。
15.如权利要求9所述的中继器电路,其特征在于所述集成电路包括0.35μ硅锗(SiGe)双极互补金属氧化物半导体(BiCMOS)集成电路。
16.一种便于中继信号的非再生、变频中继器,所述信号在根据无线协议工作的变频中继器中从第一频道上的第一站发送至第二频道上的第二站,所述变频中继器包括具有第一可调LO及第二可调LO的本振(LO)电路,所述第一可调LO与所述第一频道相关,并且所述第二可调LO与所述第二频道相关;耦合至所述第一可调LO及所述第二可调LO的下变频器电路,所述第一可调LO耦合至与所述下变频器电路相关的第一混频器,并且所述第二可调LO耦合至与所述LO电路相关的第二混频器,所述下变频器电路用于生成第一中频信号及第二中频信号;具有第三混频器及第四混频器的第一上变频器电路,所述第三混频器与从所述第一中频信号中生成的第一已上变频中频信号相关,所述第四混频器与从所述第二中频信号中生成的第二已上变频中频信号相关。
17.如权利要求16所述的变频中继器,进一步包括具有第五混频器及第六混频器的第二上变频器电路,所述第五混频器与所述第一已上变频中频信号相关,并且所述第六混频器与所述第二已上变频中频信号相关。
18.如权利要求16所述的中继器,其特征在于所述第一可调LO及所述第二可调LO直接耦合至所述下变频器电路。
19.如权利要求16所述的中继器,进一步包括固定LO电路;及耦合至所述下变频器及所述固定LO的信标解调器电路,所述信标解调器配置为解调与所述无线协议相关的控制信号。
20.如权利要求16所述的中继器,其特征在于所述无线协议包括时分双工(TDD)协议、802.11b协议及802.11g协议中的一个。
全文摘要
一种用于时分双工(TDD)无线协议通信系统的变频中继器,包括通过提供隔离、降低相位噪声、降低牵引及类似者以便于中继的本振(LO)电路(210、310及410)。可调LO(441、442)可直接耦合至下变频器(413、414)及上变频器(426、427),用来加强隔离、降低相位噪声、降低所要求的频率精度以及减少潜在的牵引。
文档编号H04B7/155GK1985528SQ200580017806
公开日2007年6月20日 申请日期2005年6月3日 优先权日2004年6月3日
发明者肯尼思·M·盖尼, 凯文·J·尼格斯, 詹姆斯·C·奥托, 小詹姆斯·A·普罗克特 申请人:威德菲公司