具有智能基站的无线本地环路的利记博彩app

文档序号:7652679阅读:504来源:国知局
专利名称:具有智能基站的无线本地环路的利记博彩app
技术领域
本发明的领域涉及通信系统和方法,具体地说,涉及在无线本地环路系统中进行通信的无线本地环路系统和方法。
背景按照传统方式,电话业务通过固定的陆地线路提供给商业和住宅用户,这些陆地线路经交换站从电话网络接到其本地目的地。然而,采用传统的接电缆的方法向一些用户(例如边远地区、地理位置差的环境或者高层建筑中的用户)提供电话业务的相关费用非常昂贵。对于许多网络运营商来说,这种费用是无法避免的,因为在普遍不计成本提供业务的规章要求下,向这类用户提供业务通常不是可选择的,有时又称作“通用业务责任”。
此外,布署传统陆线可能费用高而且耗时。布署电话线路和电缆时会延误提供给潜在用户的业务,从而使这类用户受阻。在某些区域,电话提供商可能必须在电话线路上花费过多费用,但这些线路可能最终只服务于小客户群。另外,维护电话布线(如铜线)的费用高,并且这种布线会遇到需要维修或更换的偶发故障,对用户极为不便。
在某些情况下,现有电话线路的用户希望有额外的线路来为其不断增长的需求提供服务。然而,在向这些用户提供额外电话线路时,会遇到同样的费用和延误问题。
建立陆线的延误和费用,对于希望成本有效地迅速投入新市场的电话提供商来说是不利的。美国最近的法案增加了在提供基本和扩展电话业务的本地市场中的竞争。如果需要布署电缆连接的大规模地面网络以便提供业务,希望迅速投入这些市场、以便与现有的本地接入网运营商竞争的电话提供商可能会处于不利的地位。
仅采用陆线来连接业务,很难满足或者以过高费用为代价来满足某些电话用户的专门需求。具体地说,现有的陆线连接也许不足以为“高产”(即高通话额)的用户或者需要临时提供的用户提供服务。同时,在仅仅需要临时提供的地方增加昂贵的陆线无法节省成本。具有这类专门需求的用户的实例可包括例如大学及其它教育机构、医院、码头、购物商场、大型展览会、建筑工地、旅行驻扎营地等等。
另外还考虑到,单一类型的电话业务也许不足以解决截然不同的用户的需求。例如,工业不发达国家或地区可能只需要基本电话业务(即POTS业务),而工业发达国家或地区可能需要高质量的语音、数据功能以及定制呼叫功能。最初使用基本业务的用户也许最终希望或需要升级到更为先进的电话功能。
需要一种通信系统,能够迅速和/或便利地投入使用,以便及时地为当前服务的市场以及边远地区或难以接入的用户提供服务。还需要一种通信系统,它允许为边远或乡村用户提供更容易且节省成本的服务。还需要一种电话业务,它考虑到基本的和较为先进的这两种用户的需要,并允许功能的向上迁移,例如高质量语音、数据以及定制呼叫选择。此外,还需要一种通信系统,它可以把经济的电话业务提供给具有专门需求、包括“高产”或临时提供的选择用户。
发明概述本发明在一个方面提供一种用于提供无线本地环路业务的通信系统,它能够较快地进行布署并提供先进电话功能的优点。
在一个实施例中,用户住宅远程装置(CPRU)具有用于空中通信的无线收发信机,在物理上放置于用户场所或者其附近。CPRU与智能基站(IBS)进行无线通信,智能基站最好是能够支持多址通信,以便能够支持多个CPRU和/或其它用户。智能基站不需要基站控制器的辅助而直接连接到移动交换中心(MSC),最好是通过GSM A-接口或其衍生物。移动交换中心允许接入公共交换电话网(PSTN)。因此,与CPRU连接的电话或其它设备能够通过CPRU和智能基站之间所建立的连接、经移动交换中心与PSTN进行通信。智能基站宜采用GSM功能性的子集,使CPRU能够充分利用各种先进的电话功能,并为最初使用基本电话业务的用户提供向上迁移的途径。由于智能基站能够直接连接到移动交换中心,因此可以更为迅速地进行部署,而不需要在所服务的地区中连接及配置基站控制器。
在另一个实施例中,在智能基站和移动交换中心之间添加码变换和速率适配单元。在该实施例中,码变换速率适配单元和CPRU代表用于加密的对等端点。
在另一个方面,通过采用多址通信的灵活且坚固的空中协议,直接连接到GSM移动交换中心的智能基站能够与移动用户和固定无线本地环路用户进行通信。在最佳实施例中,通过将时帧分成时隙并将时隙分配给各个用户台,智能基站与用户台(如移动手机或固定CPRU)进行通信,从而进行时分多址通信。智能基站宜发送和接收已利用扩频技术编码的消息,从而通过比典型窄带技术相对宽一些的带宽来发送和接收消息。在一个实施例中,智能基站在第一频带上发送,而用户台在第二频带上发送,从而实现频分多址(FDMA)和/或频分双工(FDD)通信。
在另一个实施例中,无线本地环路子系统和无线移动子系统同时存在于单个通信系统中。无线本地环路子系统包括一个或多个智能基站。智能基站通过GSM A-接口连接到移动交换中心(MSC)。在这种实施例的特定形式中,一个群集中的智能基站被通过物理链路连接,当与群集中的第一智能基站进行通信的移动台切换到该群集中的第二智能基站时,支持该呼叫的信令和承载信道在物理链路上穿过第一智能基站(它成为固定基站)到达第二智能基站(它成为中继基站)。然后,该呼叫继续进行同时通过固定和中继基站来传送的通信。
本文还描述了本发明的其它实施例以及修改、变化、增强。
附图简介

图1是说明根据本发明一个或多个方面的无线本地环路系统的示意图。
图2是最佳用户住宅远程装置(CPRU)的功能框图。
图3是说明最佳智能基站的内部协议体系结构的示意图。
图3A是智能基站的硬件框图。
图4是利用GSM功能性的各方面的无线本地环路系统的协议体系结构的示意图。
图5是为移动和非移动两类用户提供服务的无线通信系统的示意图。
图6是无线本地环路通信系统的示意图,其中,码变换和速率适配单元连接到多个智能基站。
图7是无线本地环路通信系统的示意图,该系统采用与多个基站连接的基站控制器。
图8A-8C是说明在支持移动用户台的无线通信系统、如图5所示的通信系统中切换的示意图。
图9是支持多址通信的示例性框架结构的时序图,这种结构可与无线本地环路系统结合使用。
图10是支持多址通信的另一种框架结构的时序图,这种结构可用于无线本地环路通信系统。
图11是GSM移动系统的协议体系结构的图解说明。
图12是采用GSM和非GSM组件的组合的移动系统的协议体系结构的图解说明。
最佳实施例的详细描述图1是根据本发明一个或多个方面的无线本地环路系统100的一个实施例的示意图。如图1所示,无线本地环路系统100包括“智能”基站104,它通过无线通信接口103与一个或多个用户住宅远程装置(CPRU)102进行通信。每个CPRU 102在物理上可以位于用户场所106中。CPRU 102可以从内部安装在用户场所106的结构中,例如图1所示相对于用户场所106a的CPRU 102a,或者可以从外部安装在用户场所106的结构之外,例如图1所示相对于用户场所106b的CPRU 102b。电话或其它设备(例如传真机、调制解调器等)可以通过诸如标准RJ11和/或其它接口(例如串行或并行数据端口)之类的数据接口109连接到CPRU 102。
又如图1所示,智能基站104通过回程连接114连接到交换子系统115(包括例如GSM移动交换中心),回程连接114可包括例如铜电缆、T1或部分T1线、或者光纤。从智能基站104开始的回程连接可以有选择地通过码变换和速率适配单元112。智能基站104最好通过GSM“A”接口119与码变换和速率适配单元112和/或交换子系统115进行通信。
每个CPRU 102最好具有至少一个天线121,用于向智能基站104发送或接收通信信号。智能基站104最好具有多个天线122,以便实现天线分集,从而改善发送和/或接收信号的质量。
图2是最佳用户住宅远程装置(CPRU)201(如图1中的CPRU 102)的功能框图,它可用于本文所述的无线通信系统的各种实施例。如图2所示,CPRU 201包括适配模块205和伪手机模块211。适配模块205提供一组适配功能,而伪手机模块211提供一组“伪手机”功能。适配模块205可分为多个其它功能子模块,包括例如固定电话适配子模块212和数据适配子模块214。同样,伪手机模块211也可以分为多个其它功能子模块,包括例如声码器子模块221、处理器控制子模块223以及无线电子模块224。
CPRU 201还可以包括标准RJ11接口231以及数据接口232(例如RS232端口之类的串行数据端口或者其它并行数据端口),以便允许CPRU 201与诸如电话235、计算机236(即调制解调器)和/或传真机237之类的各种最终使用设备234(以下称作用户住宅设备或“CPE”)之间进行通信。
在一个方面,CPRU 201为位于用户住宅处的固定电话设备及类似设备提供接口,从而允许以无线方式通过智能基站104与公共交换电话网(PSTN)(图2中未示出)进行通信。伪手机模块211最好是重复移动手机的核心功能性,但人机接口(MMI)功能性的多个方面除外。因此,CPRU 201可以利用为移动通信而开发的无线通信特征,并允许智能基站104对移动用户和固定用户采用基本相同的空中协议,经CPRU 201与移动用户(如手机)和固定用户进行通信。
伪手机模块211的无线电子模块224管理与智能基站104进行的空中连接。处理器控制模块223对无线电子模块224下指令,并为适配模块205提供接口。声码器模块221处理从智能基站104接收的数据以及要向其发送的数据,从而支持CPE 234和PSTN之间的话音通信。
作为多个接口231、232的结果,CPRU 201最好与大量设备兼容。通过连接具有适当接口的附加插入模块,CPRU 201可以配置为支持多种线路(或者RJ11型线路,或者串行和/或并行数据线路)。除了支持话音传送和接收之外,CPRU 201还允许通过数据接口232进行非话音数据的发送和接收。在最佳实施例中,CPRU 201在本地产生声音,诸如拨号音、DTMF(双音多频)音、振铃音、忙信号等等。CPRU 201最好还检测来自CPE 234的摘机转换,并对摘机转换作出响应,向网络发起呼叫释放程序。当呼叫完成时,CPRU 201提供对CPE 234所发起的用于清除的断开程序的陆线透明控制。作为该功能的一部分,CPRU 201实现传统的有线系统所支持的释放保护时间。
CPRU 201的适配模块205最好包括用于允许CPE 234(通常是传统电话)与伪手机模块211交互所需的所有功能。在电话的情况下,适配模块205的固定电话适配子模块212最好至少支持RJ11接口231(即线路的阻抗匹配)、环路检测(挂机/摘机)、声音生成以及脉冲检测。还可以通过RJ11接口231连接传统的传真机。对于数据应用,适配模块205可以包括类似于基于GSM的数据处理的功能性。例如,适配模块205的数据适配子模块214可以支持“3类”传真数据、双向消息传递、异步数据电路双工(如300-9600比特/秒)、同步数据电路双工(如1200-9600比特/秒)以及异步PAD接入电路(如300-9600比特/秒)。还可以提供高级特征,比如ISDN互配、真分组数据功能、数据压缩以及高带宽数据的时隙集合。
除了上述功能,CPRU 201在有效呼叫期间还支持DTMF数字的信令。作为该功能的一部分,CPRU 201在有效呼叫期间检测来自CPE234的DTMF音,并经DTAP信令将该数字转送给网络。在呼叫过程中,CPRU 201还可以透明地通过承载通路将从网络接收的呼叫进行音传递给CPE 234。每当从网络接收到呼叫进行DTAP信令时,CPRU 201将该呼叫进行DTAP信号转换为发给CPE 234的呼叫进行音。必要时,CPRU 201可以对CPE 234产生再命令音,以便对CPE 234指示无线网络拥塞或永久信号定时器到期状况。
此外,CPRU 201最好还执行与承载处理有关的多个功能。例如,在最佳实施例中,CPRU 201为话音通信执行话音编码。在这方面,声码器功能221包括发给网络的话音的编码/压缩以及相反方向(即发给CPE 234)的话音的解码/解压缩。CPRU 201最好还执行前向纠错(FEC)、承载话音的加密和解密(CPRU 201及码变换和速率适配单元112为用于加密的对等端点)以及回波消除功能。对于加密和解密,CPRU 201在通过空中(即通过无线通信接口103)进行传送之前对承载数据进行加密,并对从网络接收的承载数据进行解密。回波消除功能由CPRU 201来支持,以便在例如与CPE 234的接口中存在2-4有线混合结构时,抑制可能对无线网络产生的回波。
在一个最佳实施例中,CPRU 201与无线系统配合,支持管理和安全特征,例如呼叫登记、撤消登记、用户鉴权、承载信息加密以及网络管理功能。除了提供出局话音呼叫的方法,CPRU 201还可以支持有效呼叫过程中的出局紧急呼叫(即“911”)以及端到端DTMF信令。
图4示出一个无线本地环路系统的最佳实施例的协议体系结构。通过与图11和12所示的协议体系结构进行比较,可以更好地理解图4的协议体系结构,图11和12的协议结构与分别包含GSM移动交换中心接口的完整GSM移动系统以及另一种类型的移动系统相关。在图11和12中,移动台1102或1202标为“MS”,基站1104或1204标为“BS”,基站控制器1109或1209标为“BSC”,以及GSM移动交换中心1112或1212标为“MSC”。如图11所示,对于GSM移动系统,移动台1102和基站1104通过GSM空中接口1103进行通信;基站1104和基站控制器1109通过A-bis接口1105进行通信;以及基站控制器1109和移动交换中心1112通过GSM A-接口1110进行通信。在图12中,移动台1202和基站1204通过非GSM空中接口1203(例如美国专利5671219中所述的空中接口,就如全面陈述一样通过引用合并于此)进行通信;基站1204和基站控制器1209通过非GSM信令接口1205进行通信;以及基站控制器1209和移动交换中心1212通过GSM A-接口1210进行通信。
对于GSM移动系统,如图11所示,连接管理(CM)协议和移动性管理(MM)协议在移动台1102和移动交换中心1112之间起作用。例如,连接管理协议层通常处理呼叫控制、补充业务管理以及短消息业务,而移动性管理协议层通常处理支持我们与用户的移动特性(即位置更新、鉴权等)相关的功能所需的信令。基站控制器1109中的直接传递应用部分(DTAP)实体(图11中未示出)起到对等连接管理和移动性管理的中继功能。
又如图11所示,无线电资源管理(PR)协议在移动台1102和基站1104之间运行,正如D信道的链路接入协议(LAPDm)和物理无线电(RF)连接一样。无线电子系统管理(RSM)功能在基站1104和基站控制器1109之间工作,正如D信道链路接入协议(LAPD)和物理层(PhL)协议一样。基站子系统管理应用部分(BSSMAP)协议在基站控制器1109和移动交换中心1112之间运行,正如信令连接控制部分(SCCP)协议、消息传递部分(MTP)协议以及物理层(PhL)协议一样。BSSMAP协议层执行基站控制器1109和移动交换中心1112之间的信令业务,以便实现无线电资源管理和切换功能,包括例如寻呼、信道分配、信道释放、加密以及切换。SCCP和MTP协议层共同将GSM A-接口1110上的链路层业务提供给DTAP和BSSMAP实体。MTP协议层分为两个子层MTP层2,通过基站控制器1109和移动交换中心1112之间的物理信令链路提供可靠的传送业务;MTP层3,处理链路激活与去活功能以及链路故障。对于BSSMAP和DTAP实体,除了为其提供无连接业务之外,SCCP还建立和管理基站控制器1109与移动交换中心1112之间的逻辑信令连接。
基站控制器1109包括在通过GSM A-bis接口1105连接的协议层(如无线电子系统管理(RSM)协议层和LAPD协议层)与通过GSM A-接口1110连接的协议层(如BSSMAP协议层和SCCP/MTP协议层)之间的互配(IWF)功能。同样,基站104也包括在通过无线接口1103连接的协议层与通过GSM A-bis接口1105连接的那些层之间的互配(IWF)功能。
在图12中,所示的协议体系结构用于另一种全移动性系统,该系统采用非GSM空中协议,但与GSM移动交换中心1212相联。图11和12中相同的协议具有相同的命名(应当理解,物理通信协议可能不同,尤其对于物理无线电(RF)连接)。因此,通过图11和12的比较可以看出,通过图12中的GSM A-接口1210的连接性与通过图11中的GSM A-接口1110的连接性极为相似,只不过移动性管理(MM)协议层不是驻留在移动台1202中,而是包含在基站控制器1209中。然而,连接管理(CM)协议继续在移动交换中心1212和移动台1202之间运行。基站控制器1109在移动性管理(MM)协议和BSSMAP协议之间转换到专用的信令协议,在图12中称作“Notes”协议。Notes协议在基站控制器1209和基站1204之间运行。在图12所示的协议体系结构中,非GSM空中(OTA)协议和非GSM D信道链路接入协议(LAP)在基站1204和移动台1202之间运行。有关用户台、基站以及基站控制器之间传送信息的特定协议和方法的其它信息可以在共同未决的序列号为08/532466的美国专利申请中查找,该申请于1995年9月22日提交,已转让给本发明的受让人,从而通过引用合并于此,如同完全陈述的一样。
再看图4,所示的协议体系结构401用于无线本地环路系统的最佳实施例。图4中说明了与CPRU 402、智能基站(IBS)404以及GSM移动交换中心(MSC)415相关的协议。参照图4所示的协议体系结构401所述的原理可以与图1所示的无线本地环路系统100结合使用。在一个方面,智能基站404可以看作是图11和12所示的基站控制器1109和/或1209的结合的协议功能性,以便为CPRU 402提供具有GSM功能性(但不一定是GSM物理连接性)的无线接入。下面说明与无线本地环路系统的各种协议层的特定功能性有关的其它详细情况。
对于图4所示的无线本地环路系统协议体系结构,连接管理(CM)协议在CPRU 402和移动交换中心415之间运行。例如,连接管理协议层通常处理呼叫控制、补充业务管理以及短消息业务。智能基站404中的直接传递应用部分(DTAP)实体(图4中未明确示出)起到用于对等连接管理的中继功能,同时有一些稍后指出的例外情况。
移动性管理协议(MM)通过A-接口419在智能基站404和移动交换中心415之间运行。由于移动性管理协议层处理执行与用户的移动特性有关的功能(即位置更新、鉴权等等)所需的信令,以及由于这些功能基本上不是CPRU 402所必需的,因此移动性管理协议并不直接用于CPRU 402(如图11所示的GSM系统的情况)。在图4所示的无线本地环路系统体系结构中,移动性管理等效功能和无线电资源管理(RR)功能结合为空中(OTA)协议。移动性管理协议和OTA接口上的移动性管理等效功能之间任何必要的互配由智能基站404的互配(IWF)实体来完成。
没有基站控制器,BSSMAP协议层驻留在智能基站404中,并在智能基站404和移动交换中心415之间运行。BSSMAP协议层实现智能基站404和移动交换中心415之间的信令业务,以便实现无线电资源管理和切换功能。例如,这些功能包括寻呼、信道分配、信道释放、加密以及切换。智能基站404的互配(IWF)实体在A接口上的BSSMAP协议消息和通过无线连接至CPRU 402的信令业务之间执行任何必要的转换。
对于图11和12所示的协议体系结构,SCCP和MTP协议层共同将GSM A-接口419上的链路层业务提供给DTAP和BSSMAP实体。MTP协议层分为两个子层MTP层2,通过基站控制器1109和移动交换中心1112之间的物理信令链路提供可靠的传送业务;MTP层3,处理链路激活与去活功能以及链路故障。对于BSSMAP和DTAP实体,除了为其提供无连接业务之外,SCCP还建立和管理在基站控制器1109与移动交换中心1112之间的逻辑信令连接。
图3提供一种无线本地环路系统的最佳协议体系结构的附加详细情况,着重介绍智能基站404(同样适用于图1所示的智能基站104)。在最佳实施例中,智能基站404包括两个处理器302和303,第一处理器302处理空中通信,第二处理器303则用于处理其它功能,包括回程连接上的通信。智能基站404的两个处理器302和303最好共享一个双端口存储器,通过该存储器交换信息。
图3A说明智能基站404(或104)的示例硬件框图。如图3A所示,智能基站351(比如可以用作图1无线本地环路系统的智能基站104)可以包括具有一个或多个天线360的空中(OTA)收发信机355,用于与多个移动台或固定用户台(图3A中未示出)进行通信。OTA收发信机355由OTA处理器352控制。OTA处理器352和OTA收发信机355与诸如回程接口365和线路处理器353之类的回程组件共享双端口存储器354(最好为RAM)。OTA收发信机355把从用户台接收的信息储存在双端口RAM 354内的接收缓冲器中,并根据系统所采用的空中协议,从双端口RAM 354内的发送缓冲器中检索信息,用于格式化以及向用户台发送。在线路处理器353的控制下,回程接口365从双端口RAM 354内的接收缓冲器中检索信息,把该信息格式化并通过回程连接366发送。回程接口365还通过回程连接366从系统的上游组件中接收信息,比如从移动交换中心或基站控制器中接收(如图7所示),这取决于特定的系统体系结构。回程连接366可包括T-1或部分T-1线路,或者任何其它高速通信链路。虽然图3A说明了智能基站351的特定硬件配置,但许多其它的变化对于本领域的技术人员是显而易见的。
如上所述,图3说明用于智能基站351的最佳实施例中的一种协议体系结构301。如图3所示,协议体系结构301的底层包括与空中处理器302相关的双端口存储器协议层314以及与线路处理器303相关的双端口存储器协议层330,以便允许信息以有序的方式储存在双端口存储器中以及从中检索。与空中处理器302相关的内部信令协议层312(本文中有时称作“Notes”协议)以及与线路处理器303相关的对应的内部信令协议层322允许空中处理器302和线路处理器303之间信令信息的通信。空中协议层311和“层2”空中协议层313管理协议功能,使空中处理器302能够以无线方式与包括一个或多个CPRU 102(如图1所示)或者402(如图4所示)在内的各种用户台进行通信。
对于线路处理器303,基站子系统管理应用部分(BSSMAP)层325执行信令通信(即控制业务),这在典型的GSM交换子系统中是由基站控制器来处理的。这样,BSSMAP层325执行在智能基站404(或104)和移动交换中心415(或图1所示的交换子系统115)之间的信令传递,以便实现无线电资源管理和切换功能。总起来说,这些处理程序包括寻呼、信道分配、信道释放、加密、切换等等。线路处理器303的互配实体320执行A-接口419上的BSSMAP程序与内部信令协议(即Notes)层322的无线电资源管理及切换程序之间的转换。
信令连接控制部分(SCCP)层327和消息传递部分(MTP)层328、329共同将A-接口419上的链路层业务提供给DTAP实体323、324和BSSMAP实体325。“层2”消息传递部分(MTP)层329和“层3”消息传递部分(MTP)层330管理协议功能,这些协议功能使线路处理器303能够通过回程连接来传递承载业务。“层2”MTP层329通过基站控制器(或者智能基站404中的等效功能性)与移动交换中心415之间的物理信令链路提供可靠的传送业务。“层3”MTP层328处理链路激活与去活功能以及链路故障。对于BSSMAP实体325和DTAP实体323、324,除了为其提供无连接业务之外,SCCP层327还建立基站控制器(或者智能基站404中的等效功能性)和移动交换中心415之间的逻辑信令连接并对其进行管理。
OTA处理器302的空中(OTA)协议层311和“层2”OTA层313共同管理与用户台(无论是移动还是固定的)的空中通信所必需的功能。在物理层,各种不同的空中协议可以与智能基站404结合使用,在图9和10中给出这类协议的实例,稍后进行详细说明。
下面参照图3和4来说明信令和协议功能性的详细情况,首先从MTP、SCCP以及BSSMAP功能开始进行说明。智能基站控制器404的“层2”MTP层329处理与信令链路上的A-接口信令消息的可靠有序的流控制传送有关的功能和程序。由较高层传送的信令消息以变长“信号单元”在信令链路上传送。“层2”MTP层329通过标志来界定信号单元(采用位填充来防止标志模拟),并通过包含在各信号单元中的校验位来实现错误检测。各信号单元中的显式序号与用于接收的显式确认的使用一起来协助控制信号单元排序。通过来正确接收的信号单元的重发来处理纠错。通过监测信号单元误码率来检测信令链路的故障,“层2”MTP层329负责故障时的信令链路恢复。“层2”MTP层329所采用的程序在某些方面是基于GSM建议08.06(又涉及CCITT建议Q.703),通过引用合并于此,如同完全陈述的一样。
智能基站控制器404的“层3”MTP层328提供消息路由选择、信令业务以及信令链路管理功能。具体地说,“层3”MTP层328将出局信令消息传送给信令链路,并将入局信令消息传送给SCCP层327。“层3”MTP层328最好能够管理多条信令链路,并在管理命令中禁止或不禁止信令链路。“层3”MTP层328在链路故障的情况下执行信令业务向正常信令链路的转换,并且能够在原故障链路变为有效时执行信令业务的转回。由“层3”MTP层328所执行的信令管理功能包括信令链路的激活、去活以及恢复。在某些方面,“层3”MTP层328所采用的程序是基于前面通过引用结合的GSM建议08.06(又涉及CCITT建议Q.704)。
智能基站404的SCCP层327支持智能基站404与移动交换中心415之间的信令消息。BSSMAP实体325、DTAP移动性管理(MM)实体324以及DTAP连接管理(CM)实体323均使用智能基站404的SCCP层327。SCCP层327提供面向连接的以及无连接的两种业务。SCCP层327所采用的程序是在前面已通过引用结合于此的GSM建议8.06(又涉及CCITT建议Q.711-Q.714)中提出的。其中,GSM建议8.06规定了无连接业务的0类SCCP以及面向连接的业务的2类SCCP的用法。
SCCP层327的无连接业务由BSSMAP实体325使用。面向连接的业务由BSSMAP实体325、DTAP-MM实体324以及DTAP-CM实体323使用。对于面向连接的业务,在智能基站404的同等SCCP用户和移动交换中心415之间、消息的双向传送是通过建立SCCP连接来执行的。若干信令链路可以复用在一个物理信令信道上。对具有一项以上事务的每个用户(如CPRU 402)建立一个SCCP连接。可以根据需求通过智能基站404或移动交换中心415经SCCP层327来建立SCCP连接;然而,链路释放最好是只能由移动交换中心415发起。在特定实施例中,由SCCP层327提供仅仅基本的面向连接业务,而没有对用户数据的排序或流控制。
BSSMAP实体325的面向连接功能通常是与呼叫/事务相关的,并用来支持特定的用户台(移动台或CPRU 402)。这些面向连接的功能包括资源分配、资源释放、初始用户台消息、阻断/解阻、全局复位、寻呼、复位电路以及切换。用来支持BSSMAP实体325的面向连接的功能的协议消息最好是采用SCCP层327的面向连接业务来进行传送。
详细地检查与BSSMAP实体325的面向连接功能相关的程序,其中,资源分配还涉及在通信的初始建立过程中无线电信令信道的分配。在一个实施例中,采用了TDD和/或TDMA的一些方面,当用户台需要时隙时,执行无线电信令信道的分配。随后,在呼叫建立阶段,移动交换中心415使用资源分配程序将承载资源分配给该呼叫。例如,移动交换中心415可以通过向智能基站404发送“BSSMAP分配请求”消息来请求它分配资源,该消息包括与所需无线电资源的详细情况(如话音/数据速率、信道类型等等)以及要在智能基站404和移动交换中心415之间使用的陆地承载信道有关的信息。作为响应,智能基站404进行几项操作。智能基站404为IBS/MSC接口(即A-接口419)留出所请求的承载陆地资源以及该呼叫所需的任何码变换单元资源(如果采用如图1所示的码变换单元112)。智能基站404为空中连接分配该呼叫所需的承载无线电资源。如果可行的话,智能基站404采用码变换单元实现任何所需的信令,以便使其同步并准备用于呼叫处理,并通过将所分配的无线电信道与链接智能基站404和移动交换中心415的陆地信道相连接,将承载通路接到智能基站404。通过将“BSSMAP分配完成”消息从智能基站404发送给移动交换中心415,向移动交换中心415通知分配程序的完成。
在CPRU 402和移动交换中心415之间的连接管理(CM)级的呼叫/事务释放之后,或者在智能基站404和移动交换中心415之间的移动性管理(MM)程序完成之后,进行资源释放。在本文所述的一个实施例中,要释放呼叫资源,移动交换中心415将“BSSMAP清除命令”消息发送给智能基站404,请求释放用于呼叫/事务的无线电和陆地资源。然后,智能基站404在内部(即Notes)接口上发起信令,以便释放该无线电资源,释放智能基站404和移动交换中心415之间的接口419上的任何陆地资源,并将“清除完成BSSMAP”消息返回给移动交换中心415。在接收到“清除完成BSSMAP”消息时,移动交换中心就释放用于该呼叫/事务的SCCP信令链路。同时,CPRU402和智能基站404互相配合来释放用于该呼叫/事务的无线电资源。
如果由于智能基站404中出现的任何原因而要求无线电信道释放,则智能基站404向移动交换中心415发送“BSSMAP清除请求”消息,并开始内部(即Notes)接口上的资源释放。A-接口419上的释放过程继续进行,而移动交换中心415和智能基站404进入“清除命令-清除完成”交换,以及随后的SCCP信令链路释放。
当智能基站404和移动交换中心415之间的信令链路的SCCP连接建立发生时,智能基站404将初始“层3”消息(例如“MM或CM业务请求”、“位置更新请求”、“IMSI分离”或“RR寻呼响应”)作为“BSSMAP完成层3信息”消息的一部分进行传递。初始“层3”消息作为相关SCCP连接请求(CR)消息的一部分捎带到移动交换中心415。
智能基站404使用BSSMAP阻塞程序来通知移动交换中心415有关在智能基站404被阻塞的陆地电路的情况,移动交换中心则禁止为呼叫分配这类陆地电路(但陆地电路上正在进行的呼叫不会受到该阻塞的影响)。作为呼叫建立的一部分,如果智能基站404接收了表示承载陆地资源在智能基站404受阻塞的“BSSMAP分配命令”,则智能基站404将“BSSMAP分配失败”消息返回给移动交换中心415,同时还包含表示该资源受阻塞的事件代码,并与移动交换中心415一起对该电路重复阻塞程序。陆地电路可以由于多种原因而受到阻塞,包括例如使该电路不可用的操作和维护干预;使电路不可用的设备故障;或者不能够从陆地资源接入无线电资源。阻塞作用通过解阻程序来逆转。
在一个实施例中,通过从智能基站404向移动交换中心415传送标识受影响电路的“BSSMAP阻塞消息”,发起阻塞。在“BSSMAP阻塞消息”传送之后,智能基站404将不允许移动交换中心415选用所标识的电路,尽管如所指出的,该电路上正在进行的呼叫不会受到阻塞程序的影响。移动交换中心415用“BSSMAP阻塞确认消息”作出响应。如果在预定超时阶段内没有收到“BSSMAP阻塞确认消息”,智能基站404则可以重发该“BSSMAP阻塞消息”。如果第二个“BSSMAP阻塞消息”发送之后在预定超时阶段内若未接收到任何确认,智能基站404则将受影响的电路标为“已阻塞”,并向操作管理与维护(OA&M)中心发送告警。
通过从智能基站404向移动交换中心415发送标识受影响电路的“BSSMAP解除阻塞消息”,发起解除阻塞。在“BSSMAP解除阻塞消息”的传送之后,智能基站404释放该阻塞的电路,并使其可以由移动交换中心415使用。移动交换中心415用“BSSMAP解除阻塞确认消息”进行响应。如果在预定超时阶段内没有接收到“BSSMAP解除阻塞确认消息”,智能基站404则可以重发该“BSSMAP解除阻塞消息”。如果第二次“BSSMAP解除阻塞消息”传送之后在预定超时阶段内若未收到任何确认,智能基站404则将受影响的电路标记为“已解除阻塞”。
在呼叫建立的过程中,如果智能基站404从移动交换中心接收到标识承载陆地资源在智能基站404受到阻塞的信道分配命令(即“BSSMAP分配命令消息”),则智能基站404将“BSSMAP分配失败消息”返回给移动交换中心415,同时还包含表示该资源受到阻塞的参数。然后,智能基站404与移动交换中心415一起对所标识的电路执行阻塞程序。
由BSSMAP实体325实现的另一个功能是全局复位程序,用于在故障时对智能基站404和移动交换中心415进行初始化。在智能基站404因事务参考信息的丢失而产生故障时,由智能基站404向移动交换中心415发送“BSSMAP复位消息”。移动交换中心415释放受影响的呼叫,删除受影响的参考,并将所有电路置于空闲状态。在预定的保护时段之后,移动交换中心415将“BSSMAP复位确认消息”发送给智能基站404。另一方面,在移动交换中心415产生故障时,向智能基站404发送“BSSMAP复位消息”。智能基站404释放受影响的呼叫,并删除受影响的参考。然后,智能基站404与移动交换中心415一起对所有已阻塞的电路执行上述BSSMAP阻塞程序。在预定的保护时段之后,智能基站404将“BSSMAP复位确认消息”返回给移动交换中心415。
还提供了一种复位程序。如果在某个电路因异常的SCCP连接释放而必需在移动交换中心415中被置于空闲状态,移动交换中心415则向智能基站404发送“BSSMAP复位电路消息”。智能基站404将该电路置于空闲状态,并将“BSSMAP复位电路确认消息”返回给移动交换中心415。如果该电路在智能基站404被标记为“已阻塞”,则智能基站404还对该电路执行BSSMAP阻塞程序。
在BSSMAP层还实现寻呼和切换功能性。来自移动交换中心415的寻呼消息经BSSMAP层作为无连接消息发送。智能基站404将所接收的“寻呼请求消息”转换为内部寻呼“Note”,以便通过智能基站404内的内部Notes接口传送,随后由智能基站404的OTA协议层311进行处理。
切换功能可以但不必在无线本地环路体系结构401中实现。如果所有用户台(即CPRU 402)均为非移动的,则不需要提供切换。然而,在某些实施例中,切换可以作为一种扩展来添加,以便处理固定无线本地系统中可能产生的干扰,或者在需要时适应移动用户台以及固定用户台。如果提供了切换,则在BSSMAP层(如图4所示)进行用于切换的GSM“A-接口”信令程序。在BSSMAP层接收的信令消息在智能基站404中被映射到用于内部Notes接口的相应内部信令消息。有关切换的详细情况稍后结合图5进行说明。如下所述,切换可以是透明的也可以是非透明的。如果实现透明切换,则在两个智能基站404之间的切换会要求移动交换中心415的最小干预,并且智能基站404会向移动交换中心415发送“BSSMAP切换已执行消息”以指明切换的完成。另一方面,如果实现非透明切换,则对于移动交换中心415来说,智能基站404之间的每个切换都会类似于基站控制器(如图11中的1109或图12中的1209)之间的切换。在这种情况下,A-接口基站控制器间切换信令程序将会用于这种非透明切换。
在无线本地环路体系结构401中还提供了移动性管理功能。位置更新程序在CPRU 402首次上电时由登记请求来触发,或者由智能基站404和/或移动交换中心415定期触发。对于登记请求,“位置更新请求消息”由DTAP-MM实体324制定,并采用GSM A-接口信令程序发送给移动交换中心415。移动交换中心415根据它接受还是拒绝该登记请求,用“位置更新接受消息”或“位置更新拒绝消息”作出响应。移动交换中心415可以选择在位置更新程序内发起鉴权程序。当用户撤消登记时(例如CPRU 402断电时),智能基站404通过A-接口进行IMSI分离程序。在“IMSI分离”状态中,移动交换中心415不会将寻呼消息转发给智能基站404,从而保存了寻呼资源。
移动性管理层(包括图4所示的DTAP-MM实体324)还为叠加在上面的连接管理(CM)实体提供了一组连接管理功能,包括比如呼叫控制、补充业务以及短消息业务这类功能。这组移动性管理功能通过移动性管理(MM)连接在GSM中建立模型。
在连接管理(CM)实体发出呼叫发起消息时,智能基站404启动用于该CM实体的MM连接程序。对于连接管理呼叫控制(CM-CC)呼叫,当通过智能基站404中的内部接口从OTA侧的内部Notes协议层3 12接收到内部“建立链路”消息(Note)时,启动MM连接程序。对“建立链路”消息作出响应,移动性管理(MM)层将控制管理(CM)“业务请求消息”发送给移动交换中心415,以便开始该呼叫发起。对于连接管理补充业务(CM-SS)呼叫,当智能基站404从CPRU 402接收到连接管理补充业务(CM-SS)“登记消息”时,启动移动性管理(MM)连接程序。作为响应,移动性管理(MM)层将“CM业务请求消息”发送给移动交换中心415。在移动性管理事务(即与CPRU 402信号交换)完成时,DTAP-CM实体323被告知该移动性管理连接程序的顺利完成,并将“登记消息”转发给移动交换中心415。如果移动交换中心415决定调用特殊操作、如鉴权和加密信令,作为呼叫建立的一部分,这类操作可以在移动性管理连接信号交换过程中进行。在一个实施例中,对于特定用户的所有连接管理事务均使用相同的与移动交换中心415的基础SCCP连接。
鉴权程序可以作为呼叫建立或位置更新的一部分来调用,或者由移动交换中心415独立调用。在鉴权程序是独立于呼叫建立或位置更新程序而发起的情况下,首先在智能基站404和移动交换中心415之间建立SCCP连接,以便承载鉴权信令消息。对于作为位置更新程序的呼叫建立的一部分而进行的鉴权,移动交换中心415可以在每次使用时以“N选1尝试”为基础来选择调用鉴权程序—换言之,并不是对每个呼叫建立或位置更新程序的情况都调用鉴权程序。
MM层所提供的其它连接管理功能包括标识程序和异常终止程序。标识程序由移动交换中心415发起,以便请求CPRU 402向网络提供特定的标识参数。异常终止程序由移动交换中心415调用,以便终止任何正在进行的移动性管理连接建立以及特定用户所有已经建立的移动性管理连接。移动交换中心415通过向智能基站404发送“异常终止消息”来开始异常终止程序。智能基站404接收到“异常终止消息”时,终止任何正在进行的移动性管理(MM)连接建立程序,并释放该用户所有现有的移动性管理连接。它还触发内部Notes接口和OTA接口上的信令,以便请求CPRU 402上的连接管理(CM)层释放该用户所有正在进行的连接管理事务。
智能基站404的DTAP-CM实体323(参见图3)提供了各种连接管理功能。但是,DTAP-CM实体323主要执行中继功能,因为它在CPRU 402和移动交换中心415之间传递连接管理(CM)协议消息,而实际上没有处理该消息。在DTAP-CM实体323所提供的连接管理功能中,包括呼叫建立的用户终止。在智能基站404从移动交换中心415接收到连接管理呼叫控制(CM-CC)层“建立消息”时,智能基站404的DTAP-CM实体323存储该建立请求并发起空中接口403上的信令链路建立。当链路建立完成时,DTAP-CM实体323检索“建立消息”并将其转发给CPRU 402。DTAP-CM实体323所提供的另一个连接管理功能是补充业务登记程序。当从CPRU 402接收到连接管理补充业务(CM-SS)“登记消息”以便登记补充业务时,DTAP-CM实体323储存该请求,并在移动性管理(MM)层发起移动性管理(MM)连接程序。当移动性管理连接程序完成时,“登记消息”由智能基站404检索并转发给移动交换中心415。
无线本地环路体系结构402中CPRU 402的寻址可以类似于全移动性系统中的寻址—也就是说,使用唯一的个人标识号(PID)或国际移动用户标识符(IMSI)来标识CPRU 402和/或作为CPRU 402的设备标识符的设备用户号(ESN)或国际移动设备标识符(IMEI)的用户。共同未决的序列号为08/532466的美国专利申请中描述了可以与无线本地环路体系结构402结合使用的其它寻址技术和原理,该专利于1995年9月22日提交,前面通过引用合并于此,如完全陈述的一样。
最好是为无线本地环路系统中的每个智能基站404提供基站标识符。同样,最好为每个小区(假定无线本地环路布署为蜂窝系统的一部分)提供小区标识符。小区标识信息最好能足以使智能基站404fuild全GSM小区标识值,这些标识值可以通过A-接口419在消息中进行传送。此外,最好是提供小区-基站映射,以便指示特定的智能基站404控制哪个(些)小区。
位置区域最好是经该系统的操作管理维护(OA&M)实体进行配置。在GSM用语中,位置区域是一组小区。每个移动交换中心415一般控制一个或多个位置区域。与位置区域有关的信息可以在空中广播中以及在智能基站404和移动交换中心415之间的事务中传送。
智能基站协议体系结构301中的互配功能310、320(参见图3)提供内部基站消息(称作Notes)与通过A接口419发送的消息之间的转换功能。互配功能310、320适用于通过内部和外部基站接口传递的程序、消息以及信息单元。具体地说,这些功能包括包含在内部(Notes)基站协议中的无线电资源管理信令与A-接口419上的BSSMAP信令之间的互配;内部(Notes)基站协议中的移动性管理信令与A-接口419上的移动性管理(MM)层信令之间的互配;以及CPRU 402与移动交换中心415之间通过智能基站404进行的连接管理(CM)消息的中继。这些CM消息作为“传输消息”(又称作“传输Notes”)通过内部(Notes)基站接口进行传输,以及作为DTAP消息通过A接口419进行传输。
某些操作管理与维护(OA&M)功能由智能基站协议体系结构301中的线路处理器303来提供。由于最好是没有基站控制器控制智能基站404,因此线路处理器303一方面作为由操作维护中心(OMC)(未示出)管理的OA&M代理。另一方面,线路处理器303为智能基站404的OTA处理器302(参见图3)协调OA&M功能。在一般水平,线路处理器303包含两类OA&M功能(1)与智能基站404中线路处理器303本身的物理和逻辑实体有关的OA&M;以及(2)为智能基站404的OTA处理器302协调OA&M。与线路处理器303的管理-代理关系中,OTA处理器302作为代理,并实现其本身的OA&M功能。
图6是根据本发明一个或多个方面的无线本地环路系统的另一个实施例的示意图。如图6所示,无线本地环路系统601包括一个或多个智能基站604(如图1所示的智能基站104或图4所示的智能基站404),与各种CPRU 602(如图1所示的CPRU 102或图4所示的CPRU 402)进行通信。每个智能基站604均经码变换和速率适配单元(TRAU)612和信令传送点(STP)单元620与移动交换中心615进行通信。智能基站604可以通过回程线路614(例如可包括T1或部分T1线)与码变换和速率适配单元612连接,码变换和速率适配单元612同样可以通过附加的回程线路616(也可包括T1或部分T1线)与移动交换中心615连接。移动交换中心615还可以连接归属位置寄存器(HLR)631以及电话网(PSTN)625。
在工作中,智能基站604向码变换和速率适配单元612发送信息以及从其接收信息。码变换和速率适配单元612包括在一个或多个智能基站604的控制下彼此独立地工作的多个码变换单元架。例如,每个码变换单元架可以支持多达92个承载信道。
码变换和速率适配单元612一般提供承载通路上某些功能的网络侧处理。例如,这些功能可包括话音码变换、网络侧前向纠错(FEC)以及承载语音的网络侧加密和解密。
对于话音码变换功能,码变换和速率适配单元612可提供从用户侧接收的编码语音数据与从网络侧接收的“μ律”编码的脉冲编码调制(PCM)数据之间的双向转换。CPRU 602中的声码器(如图2中示例CPRU 201的简图中所示的声码器221)对从电话235(参见图2)接收的话音进行压缩,以便向网络进行空中传输。在相反方向,CPRU602中的声码器在空中话音传送给CPRU 602之前对其进行解压缩。
其中,码变换和速率适配单元612最好包括话音编码器和话音解码器。码变换和速率适配单元612中的话音编码器从网络接收PCM话音数据(例如以64千比特/秒传送),并将该数据压缩到子速率空中信道,以便向CPRU 602传送。由FEC功能在码变换和速率适配单元612中单独增加前向纠错(FEC)信息。码变换和速率适配单元612中的话音解码器处理来自CPRU 602的压缩话音数据,并对该数据进行码变换,从而生成64千比特/秒的PCM话音数据,以便向移动交换中心615传送。码变换和速率适配单元612中的话音解码器另外还提供内插功能,以便在智能基站604检测到含有前向纠错功能无法纠正的错误的帧时,输出预测的话音形式。码变换和速率适配单元612中的话音解码器还提供静音功能,以便在必要时,比如在控制业务量传输期间,对到A接口的输出进行消音。
对于前向纠错(FEC),在用户-网络方向上,由CPRU 602将FEC信息加到消息中。码变换和速率适配单元612中的信道解码功能使用FEC信息来检测是否存在错误,以及给定所接收的估算最大可能的传送比特。在网络-用户方向上,码变换和速率适配单元612将前向纠错运用于从声码功能接收的帧。网络-用户方向上的FEC解码由CPRU 602来执行。
对于加密和解密功能,系统中采用的承载加密机制最好是以GSMA5/1算法为基础,这是一种本领域中众所周知的算法。对于承载话音,系统中加密和解密的两个端点是CPRU 602及码变换和速率适配单元612。在通信分为时帧和时隙的情况下(例如在某些类型的时分多址或TDMA系统中,其实例在图9和10中给出并稍后说明),加密和解密可以以每帧为基础来进行。
CPRU 602用来对帧进行加密的帧号与码变换和速率适配单元612用来解密的帧号是相同的,反之亦然,在这个意义上,CPRU 602与码变换和速率适配单元612可以说是“同步加密”。GSM A5/1算法涉及到根据帧号产生基于每帧的加密/解密掩码。通常,当从由于错误条件引起的加密同步丢失(无论是在空中链路还是在回程链路中出现)进行恢复时,在呼叫建立中发生加密同步的建立或重建。一旦建立(或重建,视情况而定)了加密同步,CPRU 602及码变换和速率适配单元612就加大空中和回程接口上的各帧周期的帧号。最好是对空中和回程时帧使用相同的帧长(如20毫秒),使各帧周期帧号的递增通常在加密/解密功能的两个端点之间保持帧号同步。
专用接口通过STP单元620和移动交换中心615之间的SS7链路672承载集中的A-接口信令。为此,码变换和速率适配单元612可以通过STP单元620对送往或来自智能基站604的信令消息选择路由,以便通过SS7链路672传送。码变换和速率适配单元612最好提供通过SS7链路672在智能基站604与移动交换中心615之间信令的透明传递。其它回程线路616可以承载用于码变换和速率适配单元612的OAM&P控制的信令。带内信令可以在码变换和速率适配单元612及基站控制器112之间执行,用于码变换单元功能的动态按呼叫控制。在码变换和速率适配单元612及智能基站604之间交换的信令可以被集中在特定的T1时隙中(例如时帧的第一时隙),并通过层-2的D信道链路接入程序(LAPD)协议进行控制。
图7是无线本地环路系统701的另一实施例的示意图。图7中的无线本地环路系统701类似于图6所示的无线本地环路系统601,只是图7的系统701采用基站704,这些基站基本上没有结合基站控制器功能;而是在基站704和移动交换中心715之间设置单独的基站控制器780。码变换和速率适配单元781是作为基站控制器780的一部分而结合的。在工作中,将图6的实施例中所述的码变换和速率适配单元612的功能性结合到图7的实施例的基站控制器780中。码变换和速率适配单元781和它在图6中的对等单元一样,提供承载通路上功能的网络侧处理,例如话音码变换、网络侧前向纠错(FEC)以及承载语音的网络侧加密和解密,如上面结合图6的实施例所述。在图7的实施例中,A-接口上的信令功能被结合到基站控制器780中,从而删除了图6的实施例中所采用的STP单元620。
图5说明具有无线本地环路功能性和全移动功能性的通信网络体系结构的一个实施例。如图5所示,通信网络501包括无线本地环路子系统540和无线移动子系统545,其中每个子系统均与移动交换中心515连接。在一个实施例中,无线移动子系统545包括支持全移动性的GSM基础网络,并且可以采用与无线本地环路子系统540相同的移动交换中心515。
再次参照图5,在一个最佳实施例中,无线本地环路子系统540包括一个或多个智能基站504,智能基站504可以按照与图1所示的智能基站104和CPRU 102相似的方式,与一个或多个CPRU 502进行通信。回程线路514(例如可以是T1线路)将智能基站504与码变换和速率适配单元(TRAU)512连接,其用途与图1中所述相似。码变换和速率适配单元512经另一个回程线路516与移动交换中心515连接,回程线路516也可以包括类似于回程线路514的T1线路。
无线移动系统545包括一个或多个基站524,该基站524与固定或移动用户台522进行通信。基站524最好是按照GSM通信协议工作,但基站524也可以按照其它通信协议工作。基站524经回程线路538与基站控制器527连接,回程线路538可以包括例如T1线路。基站控制器527与移动系统操作维护中心(OMC)528连接。基站控制器527还经回程线路539与移动交换中心515连接,回程线路539也可以类似于回程线路538、包括T1线路。
移动交换中心515本身最好链接到多个其它系统组件,这有助于无线通信系统501的操作和机能。因此,图5所示的移动交换中心515连接到全局系统操作维护中心(OMC)530,以及连接到短消息业务(SMS)系统532和归属位置寄存器/设备标识寄存器531。
在一个实施例中,无线本地环路子系统540处理某些移动性管理功能(比如登记、鉴权等等),并进行配置以支持智能基站504之间的移动切换。图8A-8C说明两种不同类型的切换程序的实例。在图8A中,用户802(如移动台)处在通过空中(OTA)通信链路823与智能基站804a通信的过程中。要支持通过OTA通信链路823进行的呼叫,智能基站804a通过信令信道824和承载信道825与移动交换中心815通信。这时,图8A所示的用户802和第二智能基站804b之间没有进行通信。
在必须或想要进行用户台802的切换时,与目标智能基站804b建立新的空中(OTA)通信链路。新的OTA通信链路可以在用户台802初始化时或者在智能基站804b初始化时建立。在最佳实施例中,新的OTA通信链路是在用户台802初始化时、根据例如共同未决的序列号为08/284053的美国专利申请中所述的技术来建立的,该申请于1994年8月31日提交,通过引用结合于此,就如完全陈述的一样。在这种实施例中,智能基站804b在可用于通信的一个或多个时隙中发送一般轮询信号,用户台802则通过发送标识用户台802的一般响应消息,在表示为可用于通信的时隙中对一般轮询消息作出响应。
在一个实施例中,智能基站804a和804b之间的每次切换对于移动交换中心815均为可见的(非透明的)。在这种实施例的最佳方案中,用户台802建立与目标智能基站804b的新OTA通信链路843,如图8B所示。目标智能基站804b通知移动交换中心815和/或源智能基站804a已经请求了切换,然后,该呼叫再传送到目标智能基站804b。因此,在移动交换中心814和目标智能基站804b之间建立了信令信道844和承载信道845,以便支持正在进行的呼叫。在一个方面,移动交换中心815将该切换看作是BSC(基站控制器)间切换,因为对它而言,两个智能基站804a和804b中的每一个均是可见的,表现出基站控制器的容量与图5的基站控制器527相似。因此,该切换程序引起BSC间切换的A接口信令的开销。然而,很少需要硬件改变以支持这种类型的切换程序。
图8C说明这样一种切换程序,其中,发生所定义群集内的智能基站之间的切换,而不会为移动交换中心815所见——也就是说,没有必需在A-接口上发生的、通常是BSC相关切换所需的切换信令。要支持图8C的切换程序,智能基站804a和804b最好具有彼此之间的物理连接性,以便可以直接产生智能基站804a和804b之间的切换信令。在图8C所示的切换程序中,切换信令消息在两个智能基站804a和804b之间利用其间的物理连接来交换,并且源智能基站804a使A-接口信令信道864和承载信道865经由图8C中通过连接两个智能基站804a和804b的物理链路承载的信令信道867和承载信道866,通向目标智能基站804b。通过其发起呼叫的第一智能基站804a成为该呼叫的固定基站,第二智能基站804b则成为中继基站。对于其余的呼叫持续时间,用户台802和移动交换中心815之间的信令和业务量的通路穿过两个智能基站804a和804b,并且固定智能基站804a不停止对该呼叫的控制。这种方法的优点在于在智能基站804的所定义群集中,智能基站804之间的切换可以在没有A-接口上所需的有效信令的情况下进行,从而减少了移动交换中心815上的切换负载。可以采用较为简单的协议来处理智能基站804之间的所需信令,以便处理切换情况。
图9和10是两个示例帧结构的时序图,该结构可以用于基站104(或404)与包括CPRU 102(或402)在内的各种用户台之间的通信。在图9所示的帧结构中,采用了时分多址(TDMA)和扩频通信的多个方面。如图9所示,轮询环980(又称作“主帧”)包括多个时隙981(又称作“次帧”)。每个次帧981提供用于基站(如蜂窝基站)和用户台(如固定或移动用户)之间的时分双工(TDD)通信的信道—也就是说,基站104(或404)向用户台(如CPRU 102或402)进行传送,并且用户台在相同的次帧981中向基站104(或404)进行回传。具体地说,如图9中轮询环980部分的分解图所示,次帧981包括位于基站发送983之前的移动或用户发送982。次帧981还包括位于用户发送982之前的可变无线电延迟间隙984,用户发送982之后接着是转向间隙988和保护时间间隙989。在间隙989之后是基站发送983,其后接着是另一个转向间隙993。用户发送982包括前置码985、前置码音响间隙986以及用户消息间隔987。基站发送包括前置码990、前置码音响间隙991以及基站消息间隔992。
在图10所示的另一种帧结构中,采用了频分多址(FDMA)和TDMA的多个方面。如图10所示,第一频带1060分配给基站109,用于基站到用户传送,另一个频带1061分配给用户台(如CPRU、手机或其它无线装置),用于用户到基站传送。为每个频带1060、1061上的通信定义重复的主时帧(或“轮询环”)1051。多个(如十六个)双工时隙可用于通信。基站时隙1052和用户时隙1053都在重复的主时帧1051中定义,同时,用户时隙1053最好滞后于基站时隙1052一段指定的时间(如主时帧1051的持续时间的一半)。时间滞后或时隙偏移1055使用户台时间可以接收在基站频带1060上的指定基站时隙1052中的传输,处理基站到用户传送,执行发送/接收频率切换,以及在相应用户时隙1053中发送反向链路传输,而不需要等待整个时帧持续时间来发送反向链路传输。
虽然图9和10中说明了基站104(或404)和CPRU 102(或402)之间无线通信的示例帧结构,并且概括地说明了与其有关的详细情况和协议,但也可以采用其它帧结构和相关协议。本领域的技术人员会理解,各种各样的帧结构和协议可以用于本文所述的各种无线通信网络体系结构中。
在一个最佳实施例中,基站104(或404)是将FDMA、TDMA和/或CDMA的多个方面用于小区隔离的蜂窝网络的一部分。在示例实施例中,通过TDMA来隔离用户以及实现多址。采用频分双工(FDD)使多个全双工用户共享公共RF射频。对蜂窝网络中的相邻小区分配预定一组频道之一,并使用七的代码再用模式,以便实现小区间的隔离。直接序列扩频传输由基站104和包括CPRU 102(或402)在内的小区内用户来使用。扩频通信减少了小区之间以及与工作在邻近的其它系统(如PCS系统)之间的干扰。相邻群集中的小区采用多种抗干扰技术,包括正交或近似正交扩频码、发射功率控制、定向天线以及时隙交换(TSI)。
通信信道最好是根据需求分配给CPRU 102(或402),虽然在某些实施例中它们也可以是预先分配的。空中通信信道的动态分配的优点在于可以支持更多的用户。对于图10所示的协议,空中通信信道最好是根据从CPRU 102(或402)发到基站104(或404)的请求来分配。对于还与基站102进行通信的移动用户,空中通信信道的分配以同样的方式进行—也就是说,根据该基站102所属网络的蜂窝通信协议来进行。例如,空中通信信道可以在专用控制信道的协助下进行分配。空中通信信道还可以根据类似于例如序列号为08/463220的美国专利申请中所述的技术来进行分配,该申请于1995年6月5日提交,将其通过引用结合于此,正如全面陈述的一样。也可以采用分配或指定空中通信信道的其它任何适当的机制。
与要求从PBX或KTS到网络的陆线连接的系统相比,根据本发明某些方面的局部区域通信系统(即无线本地环路系统)可能更易于布署在边远地区和/或乡村。采用了将无线接入通信装置连接到PBX或KTS的方法,边远局部区域通信系统能够以极少的额外布署花费,来获得无线网络(包括远程接入)的利益。
虽然本文已经说明了本发明的最佳实施例,但许多变更是可行的,它们仍然在本发明的构思和范围内。通过仔细阅读说明书和附图,本领域的技术人员会清楚这些改变。因此,本发明仅受到所附权利要求书的精神和范围的限定。
权利要求
1.一种通信系统,它包括基站,所述基站包括第一发射机和第一接收机;无线装置,所述无线装置包括第二发射机和第二接收机,通过所述第二发射机和所述第二接收机,所述无线装置通过无线通信信道与所述基站进行通信;与所述无线装置连接的非无线装置,所述非无线装置利用所述无线装置与所述基站交换信息;以及移动交换中心,其中所述基站通过接口连接到所述移动交换站。
2.如权利要求1所述的通信系统,其特征在于,它还包括插在所述智能基站与所述移动交换中心之间的码变换和速率适配单元。
3.如权利要求1所述的通信系统,其特征在于,所述非无线装置和所述无线装置通过RJ-11接口进行通信。
4.如权利要求1所述的通信系统,其特征在于,所述无线装置包括RJ-11接口和数据接口,所述数据接口用于发送和接收数字数据。
5.如权利要求1所述的通信系统,其特征在于,所述第一发射机和所述第二发射机均包括扩频发射机,以及所述第一接收机和所述第二接收机均包括扩频接收机。
6.如权利要求5所述的通信系统,其特征在于,所述基站产生包含多个时隙的重复时帧,以及所述无线通信信道由至少一个所述时隙来定义。
7.如权利要求1所述的通信系统,其特征在于,连接所述基站和所述移动交换中心的所述接口包括GSM A-接口。
8.如权利要求7所述的通信系统,其特征在于,所述基站采用非GSM空中协议,通过所述无线通信信道与所述无线装置进行通信。
9.如权利要求1所述的通信系统,其特征在于,所述移动交换中心和所述无线装置是GSM连接管理的对等端点,以及所述移动交换中心通过包括至少一个GSM信令连接控制部分(SCCP)的GSM信令接口与所述基站进行通信。
10.如权利要求9所述的通信系统,其特征在于,所述移动交换中心和所述基站之间的所述GSM信令接口还包括GSM基站子系统移动应用部分(BSSMAP)和GSM移动传递部分(MTP)。
11.如权利要求1所述的通信系统,其特征在于还包括第二基站,所述第二基站通过第二接口连接到所述移动交换中心。
12.如权利要求11所述的通信系统,其特征在于,它还包括至少一个移动用户台,该用户台通过第二无线通信信道与所述第一基站或所述第二基站进行通信;所述第一基站和所述第二基站通过物理链路来连接;连接所述第一基站和所述移动交换中心的所述接口包括第一信令信道和第一承载信道,用于支持来自所述至少一个移动台的呼叫;以及所述第一基站通过连接所述第一基站和所述第二基站的所述物理链路建立所述第一基站和所述第二基站之间的第二信令信道和第二承载信道,以便在所述呼叫从第一基站向第二基站切换时、支持所述至少一个移动台与所述第二基站之间建立的第三无线通信信道。
13.如权利要求11所述的通信系统,其特征在于,它还包括至少一个移动用户台,该用户台通过第二无线通信信道与所述第一基站或所述第二基站进行通信;连接所述第一基站和所述第二基站的所述接口包括第一信令信道和第一承载信道,用于支持来自所述至少一个移动台的呼叫;以及在所述第二基站和所述移动交换中心之间建立第二信令信道和第二承载信道,以便在所述呼叫从所述第一基站向所述第二基站切换时,支持在所述至少一个移动台和所述第二基站之间建立的第三无线通信信道,在所述呼叫转移到所述第二基站之后,断开所述第一信令信道和所述第一承载信道。
14.如权利要求1所述的通信系统,其特征在于,所述非无线装置包括电话。
15.一种用于本地环路中的无线通信的方法,它包括以下步骤在多个无线装置和基站之间建立多个无线通信信道,并且在所述无线装置和所述基站之间进行通信;将多个非无线装置与所述无线装置连接,将至少一个非无线装置与每个无线装置连接;利用相应的无线装置作为中介,在所述非无线装置和所述基站之间交换信息;以及将所述基站与GSM移动交换中心连接。
16.如权利要求15所述的方法,其特征在于,将所述基站与所述GSM移动交换中心连接的所述步骤包括以下步骤将所述基站与码变换和速率适配单元连接;以及将所述码变换和速率适配单元与所述GSM移动交换中心连接。
17.如权利要求15所述的方法,其特征在于,将所述多个非无线装置与所述无线装置连接的所述步骤包括以下步骤通过RJ-11接口将至少一个所述非无线装置与无线装置连接。
18.如权利要求15所述的方法,其特征在于还包括以下步骤通过对所述基站与所述无线装置中的每一个之间传输的数据进行扩频编码,在所述基站和所述无线装置之间进行通信;以及在所述基站或所述无线装置接收到数据时,对所述数据进行扩频解码。
19.如权利要求18所述的方法,其特征在于还包括以下步骤在所述基站产生包含多个时隙的重复时帧,所述无线通信信道中的每一个由至少一个所述时隙来定义。
20.如权利要求15所述的方法,其特征在于,将所述基站与所述GSM移动交换中心连接的所述步骤包括通过GSM A-接口将所述基站与所述GSM移动交换中心连接的步骤。
21.如权利要求15所述的方法,其特征在于,所述移动交换中心和所述无线装置是GSM连接管理的对等端点,以及将所述基站与所述GSM移动交换中心连接的所述步骤包括通过GSM信令接口在所述移动交换中心与所述基站之间通信的步骤,所述GSM信令接口包括至少一个GSM信令连接控制部分(SCCP)。
22.如权利要求21所述的方法,其特征在于,GSM信令接口还包括GSM基站子系统移动应用部分(BSSMAP)和GSM移动传递部分(MTP),以及在所述无线装置和所述基站之间通信的所述步骤包括采用非GSM空中协议、在所述基站与每个无线装置之间通信的步骤。
23.如权利要求15所述的方法,其特征在于还包括以下步骤通过第一无线通信信道在移动用户台与所述基站之间建立呼叫,当所述移动台切换到另一个基站时,所述基站包括固定基站;在所述基站和所述移动交换中心之间建立第一信令信道和第一承载信道,用于支持所述呼叫;为了将所述呼叫切换到目标基站,在所述移动用户台与所述目标基站之间建立第二无线通信信道;在所述固定基站和所述目标基站之间建立第二信令信道和第二承载信道,以便支持所述第二无线通信信道;以及通过所述第一无线通信信道终止所述固定基站和所述移动台之间的通信。
24.如权利要求15所述的方法,其特征在于还包括以下步骤通过第一无线通信信道在移动用户台和所述基站之间建立呼叫;在所述基站和所述移动交换中心之间建立第一信令信道和第一承载信道,用于支持所述呼叫;为了将所述呼叫切换到目标基站,在所述移动用户台和所述目标基站之间建立第二无线通信信道;在所述目标基站和所述移动交换中心之间建立第二信令信道和第二承载信道,以便支持所述第二无线通信信道;对所述呼叫的支持从所述第一信令信道和所述第一承载信道转移到所述第二信令信道和所述第二承载信道;以及通过所述第一无线通信信道终止与所述移动台的通信。
25.一种通信系统,它包括基站,所述基站包括基站发射机和基站接收机,并且能够使用多个无线通信信道进行通信;多个无线装置,所述无线装置中的每一个包括本地发射机和本地接收机,通过所述本地发射机和所述本地接收机,所述无线装置通过所述无线通信信道之一与所述基站进行通信;多个非无线装置,所述非无线装置中的每一个连接到一个所述无线装置,所述非无线装置中的每一个利用与其连接的相应无线装置与所述基站交换信息;以及移动交换中心,通过接口与所述基站连接。
26.如权利要求25所述的通信系统,其特征在于还包括插在所述智能基站与所述移动交换中心之间的码变换和速率适配单元。
27.如权利要求25所述的通信系统,其特征在于,至少一个所述非无线装置与所述无线装置之一通过RJ-11接口进行通信。
28.如权利要求25所述的通信系统,其特征在于,所述基站发射机和所述无线装置的每个所述本地发射机均包括扩频发射机,以及所述基站接收机和所述无线装置的每个所述本地接收机均包括扩频接收机。
29.如权利要求28所述的通信系统,其特征在于,所述基站产生包含多个时隙的重复时帧,以及所述无线通信信道各由一个或多个所述时隙来定义。
30.如权利要求25所述的通信系统,其特征在于,连接所述基站和所述移动交换中心的所述接口包括GSM A-接口。
31.如权利要求30所述的通信系统,其特征在于,所述基站采用非GSM空中协议,通过所述无线通信信道与所述无线装置进行通信。
32.如权利要求31所述的通信系统,其特征在于,所述移动交换中心和所述无线装置是GSM连接管理的对等端点,以及所述移动交换中心通过包括至少一个GSM信令连接控制部分(SCCP)的GSM信令接口与所述基站进行通信。
33.如权利要求32所述的通信系统,其特征在于,所述移动交换中心和所述基站之间的所述GSM信令接口还包括GSM基站子系统移动应用部分(BSSMAP)和GSM移动传递部分(MTP)。
34.如权利要求25所述的通信系统,其特征在于,一个或多个所述非无线装置包括电话。
35.如权利要求25所述的通信系统,其特征在于还包括第二基站,所述第二基站通过第二接口与所述移动交换中心连接。
36.如权利要求35所述的通信系统,其特征在于,它还包括至少一个移动用户台,所述移动用户台能够通过所述无线通信信道之一与所述第一基站进行通信;所述第一基站和所述第二基站通过物理链路进行连接;连接所述第一基站和所述移动交换中心的所述接口包括第一信令信道和第一承载信道,用于支持来自所述至少一个移动台的呼叫;以及所述第一基站通过连接所述第一基站和所述第二基站的所述物理链路,建立所述第一基站和所述第二基站之间的第二信令信道和第二承载信道,以便在所述呼叫从所述第一基站向所述第二基站切换时、支持所述至少一个移动台与所述第二基站之间建立的新的无线通信信道。
37.如权利要求35所述的通信系统,其特征在于,它还包括至少一个移动用户台,所述移动用户台能够通过所述无线通信信道之一与所述第一基站进行通信;连接所述第一基站和所述移动交换中心的所述接口包括第一信令信道和第一承载信道,用于支持来自所述至少一个移动台的呼叫;以及在所述第二基站和所述移动交换中心之间建立第二信令信道和第二承载信道,以便在所述呼叫从所述第一基站向所述第二基站切换时,支持在所述至少一个移动台和所述第二基站之间建立的新的无线通信信道,在所述呼叫转到所述第二基站之后,断开所述第一信令信道和所述第一承载信道。
全文摘要
一种用于提供无线本地环路业务的通信系统包括用来与一个或多个用户住宅远程装置(CPRU)进行通信的智能基站(604),每个CPRU与非无线装置(634)连接。每个CPRU具有用于与智能基站空中通信的无线收发信机(602)。智能基站不需要基站控制器的协助,通过GSMA-接口(672)或其专用变型与移动交换中心(MSC)连接,从而连接GSM功能性,使CPRU能够利用各种先进的电话功能。可以在具有移动用户和固定无线本地环路用户的智能基站之间增加码变换和速率适配单元(TRAU),采用时分多址(TDMA)与多个用户通信。智能基站可以采用扩频编码来发送和接收消息。如果系统内提供了移动性,则群集内的智能基站可以通过物理链路连接,使得支持来自移动用户的呼叫的信令和承载信道穿过一个智能基站通向另一切换。
文档编号H04M3/00GK1448008SQ01806301
公开日2003年10月8日 申请日期2001年1月11日 优先权日2000年1月13日
发明者N·P·梅农, R·内尔哈姆斯, I·I·索拉 申请人:舍尔科姆公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1