专利名称:梯形滤波器的利记博彩app
技术领域:
本发明涉及一种梯形滤波器,该滤波器包括至少一个串联谐振器和一个并联谐振器,这两个谐振器相互连接构成一个梯形,更具体地说,本发明是对构成串联和并联谐振器的谐振器结构的改进。
图1表示了一个传统结构的梯形滤波器,该梯形滤波器由多个具有膨胀振动态的角形压电谐振器构成。也就是说,具有图2所示电路中的四个元件的二级梯形滤波器是由矩形板状串联谐振器1和2以及矩形板状并联谐振器3和4构成。
参见图1,标号2a表示一个设置在串联谐振器2的一个主表面上的电极,而在串联谐振器2的另一个主表面上也设置有一个类似的电极,此外,串联谐振器1的两个主表面上均设置有类似的电极。另一方面,在串联谐振器3和4的整个主表面上分别设置有电极3a和4a。
标号5至11表示滤波器的金属端子,它们与串联谐振器1和2及并联谐振器3和4相互连接(如图2所示)。上述金属端子5至11、串联谐振器1和2以及并联谐振器3和4放置在壳体元件12中,壳体元件12是由绝缘材料制成的。盖件(图中未示出)盖在壳体元件12上部的开口12a上,从而构成一个梯形滤波器。金属端子9至11从壳体元件12中引出,以便作为与外界相连接的端子。
为了驱动上述梯形滤波器,放置在壳体元件12中的串联谐振器1和2及并联谐振器3和4应当能以所需的状态振动。换句话说,壳体元件12中的谐振器1至4的振动不能受到阻碍。因此,设在一个端部的金属端子11是用具有弹性的所谓弹簧端子制成的。
然而,在图1所示的梯形滤波器中,由于金属端子11的存在构成了一个很大的不需要的空间,该金属端子11是一种弹性端子,以便允许壳体元件12中的谐振器进行振动。因此,整个梯形滤波器的尺寸显著增加。举例来说,如图1所示的包括四个元件的两级梯形滤波器其组装后的尺寸约为7.0mm×8.0mm×8.0mm。
另一方面,近年来与其它电子元件一样,也需要一种作为表面安装型电子元件的梯形滤波器。
为此,美国专利申请07/941,081号及国际专利公开WO92/16997号提出了一种梯形滤波器,它可以缩小整体形状并形成一表面安装型的电子元件。在该梯形滤波器中,串联和并联谐振器由音叉型压电谐振器构成,在压电板的一个边缘上形成音叉型振动件。另外,构成串联和并联谐振器的若干音叉型压电谐振器通过槽形件相互叠放,以确保留出若干槽,允许相互连成整体的音叉型振动件进行振动。
在上述采用音叉型压电谐振器的梯形滤波器中,可以实现小型化、表面安装以及组装步骤的简化。但是,在该梯形滤器中,由于采用了音叉型压电谐振器,不可能保证足够的频带宽度。
本发明的一个目的是提供一种梯形滤波器,它可以实现制造步骤的简化、小型化以及表面安装,同时确保足够的频带宽度。
根据本发明的广义的方面,它提供了一种梯形滤波器,包括至少一个构成串联支路的串联谐振器、至少一个构成并联支路的并联谐振器,串联和并联的谐振器中的至少两个沿水平方向彼此相连。
根据本发明的梯形滤波器,由于至少两个串联和并联谐振器在与安装表面平行的方向上彼此水平相连,因而该滤波器的厚度可以减少。另外,由于这种连接结构,该梯形滤波器还可以容易地制成片状元件。
另外,根据本发明,串联和并联谐振器中的至少两个是由能陷型压电谐振器构成的,该压电谐振器具有一个板形压电振动件、一个连接到该压电振动件上的支承件以及一个连接到该支承件上的固定件,以便阻止振动能量传递到支承件上。因此,该压电谐振器可以通过该固定件固定到另一个压电谐振器或表面基片上,而不会使该压电谐振器的谐振特性变劣。
该能陷型压电谐振器可以选自各种类型的压电谐振器。
第一类压电谐振器是一种采用横向膨胀态的能陷型压电谐振器,它包括一个具有长边和短边的矩形板状压电振动件、一个连接到该压电振动件的每个短边中心处的支承件以及一个连接到该支承件外端的固定件,所述长边和短边的边比b/a处于下列值b/a=n(-1.47σ+1.88)…(1)的±10%的范围内,其中a和b分别代表短边和长边的长度,σ代表压电振动件所用材料的泊松比,n代表一个整数。
从下面所述的实施例中可以清楚地看到,上述横向膨胀态是矩形板状振动器的一种振动态,这种振动态是处于正方形振动器的膨胀态振动与矩形振动器的横向态振动之间的一种振动状态。
在上述采用横向膨胀态的压电谐振器中,当通过将支承件简单固定到或整体成形到压电振动件每一短边的中心而将其振动能量捕集起来时,便可以支承住压电振动件,因此支承结构可以被简化。这样便可以通过安装在支承件外侧的固定件将压电谐振器与其它谐振器组合,从而形成一个小型化的梯形滤波器。
另外,压电振动件是以横向膨胀态被激励的,因此可以获得与现有技术相比具有更宽频带的梯形滤波器。
根据本发明的一个方面,采用横向膨胀态的矩形板状压电振动件的长边与短边之边比被设定在上述特定范围内,从而使横向膨胀态的振动被有效地激励和捕集。该现象已被发明人的实验所证实。
第二类压电谐振器是一种采用切变态的能陷型压电谐振器,它包括一个带有沿一个方向极化的板形压电元件的压电振动件,及设置在该压电元件上并垂直于极化方向施加交流电压的第一和第二谐振电极,一个平行于该极化方向并呈矩形的压电元件的表面,其边比b/a处于下列值b/a=n(0.3σ+1.48)…(2)的±10%的范围内,其中a和b分别代表上述矩形压电表面的短边和长边的长度,σ代表压电元件所用材料的泊松比,n代表一个整数,一个连接到该压电振动件上的支承件以及一个连接到该支承件上的固定件。
在第二类压电谐振器中,该压电振动件被制成上述的特殊形状,因此,当交流电压施加到第一和第二谐振电极之间使压电振动件谐振时,振动能量被有效地捕集在该压电振动件中。该现象已被发明人的实验所证实。
如上所述,在第二类能陷压电谐振器中,上述振动能量被有效地捕集在压电振动件中,于是第二类能陷压电谐振器可以通过固定件来支承,而基本上不会使谐振特性变劣。这样,通过用固定件将压电谐振器与其它谐振器结合,可以容易地制作一种小型梯形滤波器。
由于压电谐振器为切变态,所以,与音叉型压电谐振器相比,本发明梯形滤波器的频带宽度可以加宽。
第三类压电谐振器是一种能陷型压电谐振器,它包括一个具有一对相对的矩形表面及连接这对矩形表面的四个侧表面的板状压电振动件,设置在压电振动件的这对矩形表面上的第一和第二谐振电极,沿矩形表面的短边连接到压电振动件侧表面一端上的支承件,以及连接到该支承上的固定件。在该压电谐振器中,边比b/a设定在下述值b/a=n(0.3σ+1.48)…(3)的±10%的范围内,其中a和b分别代表矩形表面的短边和长边的长度,σ代表压电振动件所用材料的泊松比,n代表一个整数,以便通过横向压电效应激励出2n(n为整数)度的弯曲态振动。在第三类压电谐振器中,压电振动件被制作成具有上述特殊形状,这样,2n度的弯曲态振动被有效地捕集到该压电振动件中。这种现象业已为发明人的实验所证实。
在采用第三类压电谐振器的梯形滤波器中,谐振能量也可以有效地捕集到压电振动件中,因此,第三类压电谐振器可以容易地通过固定件与其它压电谐振器结合,或粘接到一个表面基片上,而基本上不会使谐振特性变劣。这样,就可以做出一种具有稳定特性的小型梯滤波器,其中可以简化支承结构。
第四类压电谐振器是一种带有动态阻尼器的能陷型压电谐振器,该阻尼器设置在压电振动件与支承件之间。在这种结构中,由于动态阻尼现象,振动能量被有效地捕集到一个部分中,该部分的范围直至动态阻尼器为止。这种动态阻尼现象例如在Corona出版有限公司出版的、作者为Osamu Taniguchi的“振动工程”第113到116页有详细的说明。简而言之,动态阻尼现象是这样一种现象,即当副振动器连接到具有适当选择的固有频率的主振动器时,主振动器的振动被抑制,而主振动器的振动正是必需加以避免的。在这种动态阻尼现象中,上述动态阻尼器相当于副振动器,随谐振件振动,而振动的支承件相当于主振动器。
在采用第四类压电谐振器的梯形滤波器中,至少一个谐振器由具有动态阻尼器的压电谐振器构成,从而使振动的能陷效率得以改善,这样就可以缩小压电谐振器。由于采用了这种压电谐振器,该梯形滤波器也可以缩小。
如上所述,第四类能陷压电谐振器的特征在于设置了动态阻尼器,对该压电振动件本身并没有特殊的限制。当动态阻尼器设置到上述第一到第三类能陷压电谐振器中的任何一个上时,该动态阻尼器可以轻微地抑制振动的泄漏,从而进一步改善了能陷效率。另外,可以适当地选用压电振动件,例如采用纵向态的压电振动件、采用切变态的普通压电振动件、或者是采用膨胀态的方板状压电振动件,该方板状压电振动件不同于第一到第三类能陷压电谐振器中的压电振动件。也就是说,上述具有动态阻尼器的第四类能陷压电谐振器可以用任何一种压电振动件,这些振动件按目标谐振频率被激励起各种振动态,因此,人们很容易得到一种可用于各种频带的梯形滤波器。
由于设置了动态阻尼器,振动能量被有效地捕集到一个部分中,该部分的范围直至动态阻尼器为止。因此,与第一到第三能陷压电谐振器类似,第四类压电谐振器可以通过固定件加以固定,并且基本不会使谐振特性变劣。这样就可以容易地制作一种具有稳定特性的小型梯形滤波器,特别是其厚度可以被降低。
根据本发明的优选实施例,上述支承件和固定件被连接到压电振动件的两侧,以便让压电振动件由支承件从其两侧支承,从而可获得一种结构更稳定的梯形滤波器。当固定件布置到压电振动件的两侧时,可以通过设置在两侧的上述固定件将压电谐振器固定,从而稳定了上述支承结构。
如上所述,本发明的梯形滤波器具有至少两个在与安装表面平行的方向上彼此水平相连的板状谐振器。更实际地说,可以通过在第一和第二表面基片之间设置连接结构来制作这种连接结构,该层状结构由上述表面基片固定,从而构成一个片状的梯形滤波器。另外,上述连接结构可以叠放在一个底座基片上,一个盖件固定到该底座基片上,以封闭该连接结构,从而构成一种片状梯形滤波器。
如上所述,当串联和并联谐振器中的至少一个带有一个板形压电件、一个支承件和一个固定件时,所有谐振器都可以带有板形压电振动件、支承件和固定件。在这种情况下,所有谐振器通过上述固定件相互连接起来,并固定到表面基片或类似物上,由此可以容易地构成一种片状梯形滤波器。
根据本发明,在压电谐振器的两侧设置有固定件的上述结构中,第一和第二间隔板设置在至少两个上述压电谐振器的两侧。第一和第二间隔板与压电谐振器相连,以便让压电振动件振动,这样,上述至少两个压电谐振器及第一和第二间隔板就构成了一个谐振板。一旦构成了这样的谐振板就可容易地制作出一种具有层状结构的片状梯形滤波器。
当构成谐振板的至少两个上述压电谐振器及第一和第二间隔板相互形成一个整体时,谐振器侧部的空间可以被的效地封闭起来,从而可以容易地得到这样一种梯形滤波器,它具有出色的防止外界影响(如防潮)的特性。
此外,可以在上述谐振板上叠放一附加谐振板。也就是说,本发明的梯形滤波器可以包括两个或更多的谐振板。
该压电振动件最好带有第一和第二谐振电极,以便激励该压电振动件,而一个铅电极则设置在固定件上。在这种情况下,第一和第二谐振电极与该铅电极电连接。于是,通过铅电极与外界的电连接就可以激励该压电振动件。
更有利的是将若干外部电极设置在本发明梯形滤波器的外表面,并使这些外部电极电连接到上述铅电极上。这样,就可以把梯形滤波器制成一个具有若干外部电极的片状电子元件。
在第一到第三类能陷压电谐振器的每一个中,构成压电振动件的压电材料可以由LiTaO3或LiNbO3的压电单晶体以及压电陶瓷制备。另外,压电薄膜可以设置到金属板或半导体板的表面,用这种复合件构成压电振动件。当压电振动件由上述复合件构成时,其泊松比σ根据上述复合材料的泊松比来选定。
下面结合附图对本发明的前述及其它的目的、特征、情形及优点进行更详细地说明。
附图的简要说明图1是一种传统的梯形滤波器的部分分解立体图;
图2表示了上述传统梯形滤波器的电路结构;
图3是用以说明横向膨胀态压电谐振器中的压电振动件的立体图;
图4为说明膨胀态的平面示意图;
图5为说明横向膨胀态的平面示意图;
图6为说明横向态的平面示意图;
图7A和图7B则分别表示了用有限元法对横向膨胀态的振动进行分析后得出的位移分布,以及图7A中所采用的座标系;
图8表示了沿轴X的位置和如图7所示位移分布中的位移量之间的关系;
图9表示了用以激励横向膨胀态的泊松比和边比b/a之间的关系;
图10说明了边比b/a与图7所示位移分布中的相对位移之间的关系;
图11说明了泊松比与边比b/a之间的关系;
图12A和图12B分别表示了第一类能陷压电谐振器中的一种的平面图和侧视图;
图13表示了第一类能陷压电谐振器中的再一种的平面图;
图14则表示了第一类能陷压电谐振器中的另一种的平面图;
图15是第二类能陷压电谐振器中的一种的侧视图;
图16是图15所示压电谐振器的立体图;
图17A是一个以切变态振动的振动器的振动状态模型图,图17B则表示了图17A所采用的座标系;
图18示意性地表示了压电元件的侧视图;
图19表示了压电材料的泊松比σ与边比b/a之间的关系;
图20表示了在第二类能陷压电谐振器中采用有限元法分析得出的振动位移分布;
图21给出了整数n与相对位移量之间的关系;
图22是第二类能陷压电谐振器中的再一种的侧视图;
图23是第二类能陷压电谐振器中的又一种的立体图;
图24是第二类能陷压电谐振器中的还有一种的平面图;
图25是第二类能陷压电谐振器中的另外一种的平面图;
图26是第二类能陷压电谐振器中的其它一种的立体图;
图27表示了由压电振动件、支承件、动态阻尼器和固定件制成一体而构成的第二类能陷压电谐振器结构的立体图;
图28是将连接件和固定件制成一体的压电板的立体图;
图29是本发明第一实施例的梯形滤波器的立体分解图;
图30是上述第一实施例的梯形滤波器的外观立体图;
图31A和31B为用于第一实施例中带有阻尼器的压电谐振器的立体图;
图32是用于说明第一实施例的端子电极连接状态的典型的平面图;
图33是本发明第一实施例的梯形滤波器的电路结构图;
图34是本发明第二实施例的梯形滤波器的立体分解图;
图35是上述第二实施例所用的T形连接式滤波器的外观立体图;
图36为用于第二实施例中的T形连接式滤波器的电路结构图;
图37是本发明第二实施例所用的π形连接式滤波器的立体分解图;
图38是本发明第二实施例所用的π形连接式滤波器的立体图;
图39是上述第二实施例所用的π形连接式滤波器的电路结构图;
图40是本发明第三实施例所用的T形连接式滤波器的立体分解图;
图41是本发明第三实施例所用的T形连接式滤波器的外观图;
图42是上述第三实施例所用的T形连接式滤波器的立体分解图;
图43是本发明第三实施例所用的T形连接式滤波器的立体分解图;
图44是本发明第四实施例的梯形滤波器的立体分解图;
图45是上述第四实施例的梯形滤波器的外观立体图;
图46是本发明第四实施例的梯形滤波器的电路结构图;
图47是本发明第五实施例的梯形滤波器的立体分解图;
图48是本发明第五实施例的梯形滤波器的外观立体图;
图49是上述第五实施例的梯形滤波器的电路结构图;
图50是本发明第六实施例的梯形滤波器的立体分解图;
图51是本发明第六实施例的梯形滤波器的外观立体图;
图52是本发明第七实施例的梯形滤波器的立体分解图;
图53是本发明第七实施例的梯形滤波器的外观立体图;
图54是本发明第八实施例的梯形滤波器的立体分解图;
图55是本发明第八实施例的梯形滤波器的外观立体图;
图56是本发明第九实施例的梯形滤波器的立体分解图;
图57是图56所示实施例中所用压电谐振器的立体图;
图58是本发明第十实施例的梯形滤波器的立体分解图;
图59为用以说明第三类压电谐振器的压电板模型的立体图;
图60表示了采用有限元法分析得出的如图59所示的压电板的位移状态的典型的平面图;
图61表示了如图59所示的压电板与支承件和固定件连接后采用有限元法分析得出的位移状态的典型的剖视图;
图62是在图61所示位移状态下的电荷分布的平面图;
图63A表示了泊松比与边比b/a之间的关系,图63B则表示了整数n与相对位移量之间的关系;
图64是第三类压电谐振器中的一种的平面图;
图65是一种电极形状的典型的平面图,该电极通过压电板设置在图64所示的压电谐振器的下表面上;
图66是本发明第十一实施例的梯形滤波器的立体分解图;
图67是本发明第十一实施例的梯形滤波器的外观立体图;
图68是上述第十一实施例的梯形滤波器的电路结构图;
图69是本发明第十二实施例的梯形滤波器的立体分解图;
图70是本发明第十二实施例的梯形滤波器的外观立体图;
图71是本发明第十二实施例的梯形滤波器的电路结构图;
图72是第十一和第十二实施例的梯形滤波器相互连接的平面图;
图73是第三类压电谐振器中的再一种的平面图;
图74是通过压电板设置的第三类压电谐振器的下部电极形状的平面图。
下面将对用以说明本发明的非限制性的实施例进行说明。
<第一类能陷压电谐振器>
首先对本发明中所使用的第一类压电谐振器进行描述,随后对使用该第一类谐振器的梯形滤波器进行说明。
图3示意性表示了用于本发明的第一类能陷压电谐振器205。在该压电谐振器205中,电极207和208均设置在矩形压电陶瓷板206的主表面上,该压电陶瓷板被极化,使极化轴沿板的厚度方向正则化设置。假设a和b分别表示压电陶瓷板206的短边和长边的长度,边比b/a处于上面所述的特定范围内,这样,横向膨胀态被强烈地激励(容后详述)。下面将描述边比在上面所述的范围内时横向膨胀态的激励情况。
图4到图6是振动器振动状态的平面示意图,以便分别说明膨胀态、横向膨胀态和横向态。本发明人用有限元的方法在改变矩形板的长边和短边时对矩形板振动器的振动态进行了分析。当各长边的长度b与各短边的长度a之边比b/a为1,即振动器是正方形时,激励出如图4所示的一个膨胀振动态的振动。也就是说振动是在虚线A和点划线B所示的状态之间重复进行,振动器201具有如图4所示的正方形的平面,因此可以激励出强烈的膨胀态。
当边比b/a明显大于1时,即当b/a>>1时,矩形振动器在虚线A和实线B所示的状态之间进行振动,如图6所示,因此,可以激励出强烈的横向态振动。
如图5所示,在振动器203中,当边比b/a大于1而小于产生前述横向态振动的边比时,点划线A与虚线B之间的振动,即横向膨胀态振动被强烈地激励。
由于前述横向膨胀态被认为是处于公知的膨胀态和横向态之间的中间振动态,由此而将其定名为横向膨胀态。
基于上述认识,本发明人制备了若干如图3所示的压电谐振器205的样品,该样品由具有在特定值范围内选定的边比b/a的压电陶瓷板制成。
在上述压电谐振器的样品中,当改变边比b/a,以激励前述横向膨胀态时,可以肯定如果边比b/a满足-1.47σ+1.88,横向膨胀态得到最强烈的激励。采用有限元的方法对该压电谐振器205的这个样品中的位移分布进行分析,所得结果如图7A所示。
在用有限元法分析的位移分布中,各部分的位移状态是沿图7B所示的X轴和Y轴测量的,X和Y轴的原点在压电谐振器205主表面的中心,测出的结果如图8所示。可以看出,在图7B所示的中心O和点X1(即短边中心)处位移量最小;而在压电谐振器205的上述两点之间的中间位置处位移量增大,该压电谐振器被激励为沿X轴的横向膨胀态。这意味着,在横向膨胀态时,节点位于压电谐振器205主表面的中心和短边的中心。因此,如果将另一个支承元件支承在主表面的中心或短边的中心,则可以支承该压电谐振器,而不影响所述的横向膨胀态。
另外,还可以肯定,前述边比b/a与压电谐振器205的泊松比有关。当改变振动器的泊松比,以测量用于激励上述横向膨胀态的边比b/a,并将该边比b/a绘图时,即可得到如图9所示的结果。从图9所示的直线可以确定地看出,在选定的边比b/a满足下列方程时b/a=-1.47σ+1.88…………(4)能可靠地激励一个横向膨胀振动态。
另外,人们还认识到,不仅当边比b/a满足方程(4)时,可以强烈地激励出横向膨胀振动态,而且,当边比b/a稍微偏离方程(4)时,同样可以强烈地激励出横向膨胀振动态。因此,采用的压电陶瓷板的泊松比σ为0.324,并且改变边比b/a,以确定横向膨胀振动态的激励存在/不存在。假设D(X1)表示图7B中点X1处的位移量,而D(C)表示点C(参见图7)处的位移量,在横向膨胀态中C点的位移量最大,于是点X1与点C的相对位移D(X1)/D(C)可被测出。图10显示了测量结果。
从图10中可清楚地看到,当泊松比σ为0.324,边比b/a处在1.26-1.54范围内时,相对位移处于±10%之内。于是,制备若干个如图3所示压电谐振器205的样品,以便使边比b/a处在上述最佳值的±10%之内,并且支承元件连接到短边的中心,以测量谐振特性。从测量结果可以看出,当相对位移处于上述±10%之内时,可以出色地捕集到横向膨胀振动态。
从图11中可以看到,当边比b/a设定在满足方程(4)值的±10%之内时,可以出色地激励上述横向膨胀振动态。人们还认识到,当边比b/a是n(n为整数)倍于(-1.47σ+1.88)值时,也可以出色地激励出横向膨胀振动态。
图12A和12B是平面图和正视图,表示应用横向膨胀态的压电谐振器,即根据前面已知的方法生产出的第一类压电谐振器。该压电谐振器211具有一个压电振动件212,作为矩形板状的振动器。该压电振动件212呈矩形平面状,且在其结构上使谐振电极214和215完全覆盖在压电陶瓷板213的两个主表面上,该陶瓷板沿厚度方向均匀地极化。支承件216和217连接到压电振动件212短边的中心,当激励出横向膨胀振动态时,该中心为节点。固定件218和219分别连接到支承件216和217的外端部。
支承件216和217以及固定件218和219与压电陶瓷板213整体成型。也就是说,一块矩形的压电陶瓷板被加工制作成图12A所示的形状。或者,支承件216和217以及固定件218和219可以由独立于压电振动件212的元件制成,并用适当的方法(例如粘接)与之相连接。
通过分别设置在支承件216和217一侧表面上的铅制导电件214a和215a,使得所述谐振电极214和215与铅电极220和221电连接,这些铅电极分别设置在固定件218和219的一侧表面上。
当交流电压加到铅电极220和221之间时,在压电谐振器211内压电振动件212激励出横向膨胀态。在这种情况下,压电振动件212短边的中心位置几乎不振动,形成振动的节点,因此,尽管支承件216和217与压电振动件212相连,横向膨胀态振动几乎不受干扰。这样,可以有效地捕集位于支承件216和217之间的横向膨胀态的振动。
人们认识到,可以制成一个能陷压电谐振器,它适用于800KHz到2MHz的频率范围。这是因为当该压电振动件212的规格分别为2.5mm宽、3.5mm长以及1.0mm宽、1.4mm长时,该压电振动件表现出的谐振频率是800KHz和2MHz。
对于谐振频率来说,有效频带当然随着压电谐振件的材料不同而改变。因此,获得能陷压电谐振器是可能的,该谐振器适用于各种频带,频带的不同是由于构成压电振动件的压电材料不同而造成的。
图13显示出一个利用横向膨胀态的能陷压电谐振器。该压电谐振器231具有一个作为矩形板式振动器的压电振动件232。在该压电振动件232中,沿着其长边将一对谐振电极232b和232c安装在压电板232a的上表面上。压电板232a是沿箭头P所示被极化的,即从谐振电极232b向谐振电极232c的方向被极化。也是在这个实施例中,压电振动件232的每个长边的长度b与每个短边的长度a之边比b/a则被设定在满足方程(1)的值的±10%的范围内。
当交流电压作用在谐振电极232a和232b之间时,压电振动件232便以横向膨胀态振动。在这种情况下,该压电振动件232在与所施加的电场平行的方向上移动,从而使得压电谐振器231利用纵向压电效应。
还是在该实施例的压电谐振器231中,以横向膨胀态谐振的压电振动件232的振动节点上连接着支承件236和237,而固定件238和239则分别连接在支承件236和237的外端部上。参见图13,标号234a和235a是铅制导电件,而标号240和241则是各铅制电极。
图13所示的实施例清楚地表明,根据本发明采用横向膨胀态的谐振器不仅可利用横向压电效应,也可以利用纵向压电效应。
图14表示了本发明所用的利用横向膨胀态的能陷压电谐振器的再一实施例。图14所示的压电谐振器251的特点是带有动态阻尼器252和253及连接部分254和255,而该实施例的其它情况则与图12所示的能陷式压电谐振器211相近似。因此,图中相同的部分由同样的标号表示,不再赘述。
连接在支承件216和217的外端的动态阻尼器252以及253构成垂直延伸的杆型部分。连接部分254和255设置在动态阻尼器252和253以及相应的固定件218和219之间。
由于支承件216和217是连接在压电谐振件212的振动节点上的,因而漏向支承件216和217的振动极小。然而,在这个实施例中,动态阻尼器252和253是靠略微的振动泄漏来谐振的,以此抑制这种振动。因而,可以有效地捕集到动态阻尼器252和253之间部分的振动能量。这样压电谐振器可以作得更为小型化。
由于压电谐振器251的特征之一在于设有动态阻尼器252和253,因而,图14所示的压电谐振器251也是一个用于本发明梯形滤波器的第四类能陷压电谐振器的实施例。
<第二类压电谐振器>
图15和图16是用来说明第二类压电谐振器的能陷型压电谐振器311的侧视图和立体图,这类用于本发明的压电谐振器采用了切变态。
压电谐振器311由矩形压电陶瓷板312构成,该压电陶瓷板312是被这样极化的,它的极化轴在与主平面平行的方向上被正则化,即沿箭头P所示的方向被正则化。
第一谐振电极313位于压电陶瓷板312的上表面312a上,从端面312c一直伸向另一端面312d,但并未到达该端面312d。类似地,第二谐振电极314位于压电陶瓷板312的上表面312b上,从端面312d一直伸向另一端面312c,但是并未到达这个端面312c。
此外,在压电陶瓷板312的上下表面312a和312b上分别设有横向延伸的第一和第二槽315和316。第一和第二谐振电极313和314在压电陶瓷板313的某一部分上相互重叠,该部分是压电陶瓷板312中由第一和第二槽315和316固定的部分,这样便形成了一个压电振动件。也就是说,第一和第二槽315和316是分别形成于第一和第二谐振电极313和314的前端的,从而在它们之间确定出一个谐振件。当作用在第一和第二谐振电极313和314上的交流电压能够使压电振动件产生振动时,便可强烈地激励出切变态的振动,这样,由于第一和第二槽315和316的结构型式,可使切变态振动被有效地捕集在压电振动件中。
在压电谐振器311中,位于槽315和316之间的部分构成了压电振动件,而位于槽315和316上下之间的压电陶瓷板部分则构成了本发明的支承件。此外,位于槽315和316之上的压电板部分形成了本发明的固定件。谐振电极313和314是用于使位于电极间的压电振动件产生谐振的电极,而该电极也可以起到如固定件中前述铅电极的作用。
在压电谐振器311中,与压电振动件的极化方向相平行的压电表面是一个矩形表面,该表面的长边为b,短边为a。假设σ表示构成压电陶瓷板312的压电材料的泊松比,则边比b/a处在满足方程(2)值的±10%的范围内,即槽315和316的结构是会使边比处于上述范围内,从而确定出压电振动件的尺寸。
本发明人经过实验确认,当压电振动件311的边比b/a处于上述范围内时,切变态的振动能量能够更有效地捕集在压电振动件中。以下将参照图17A至21加以说明。
图17A是一个侧视图,假设谐振电极322和323是在压电元件321上的,压电元件321沿箭头P所示方向,即与上下表面平行的方向上被极化,且该压电元件的边比b/a为1。当将交流电压作用在谐振电极322和323之间时,压电元件321产生轮廓切变态振动。同时,压电元件312产生一个如图17A中的虚线A所表示的振动和另一个与虚线A所示的形状水平对称的振动状态。
图17B沿坐标X-Y示出了振动器321的各个部分。在这种情况下,角部A振动时在X和Y方向上的位移最大。压电元件321的中心O是振动的节点。另一方面,在压电元件321侧面垂直部分的中间点O1和O2也产生位移。
由于在点O1和O2处产生了位移,所以当压电板与压电元件321的外表面相连接形成轮廓切变态的谐振器时,振动能陷效率不高。
另一方面,还可以认识到,当边比b/a为如下所示时b/a=0.3σ+1.48则位移分布表示在图18中,就是说,该图表示的压电元件331在图中的虚线B表示的振动态和与之水平对称的另一振动态之间产生振动。在这种情况下,各短边的位移向量只有X方向的分量,如图19所示。在压电元件331的侧表面331a以及331b上的位移方向在上下两半是相反的。
将上述边比b/a变化,且使用不同的压电材料,来检验支承件与压电元件相连接的结构中位移的情况。该测试结果被显示在图19中,该图中分别表示出了压电材料的泊松比和边比b/a。从图19所示的结构中可看出,当边比b/a满足下式时b/a=0.3σ+1.48传到支承件上的位移可以降低,即有效地捕集了压电振动件中的振动能量。
此外还证明,当边比b/a是(0.3σ+1.48)的n倍时(n为整数),也能够有效地捕集振动能量。
因而,能够通过选择符合方程(2)的尺寸来捕集压电振动件中的振动。基于这一结果,用泊松比σ为0.31的压电材料制成边比b/a为1.57的压电振动件341。其结果如图19所示。
当厚度等于压电振动件341的支承件344和345,通过支承件342A和343A与压电振动件341制成一体时,便形成了谐振器346,用有限元的方法对所形成的谐振器的位移分布进行检测,即得到如图20所示之结果。
从图20中可以清楚地看出,在该谐振器346中,压电振动件341的切变态振动能量几乎不泄漏到支承件342A和343A中。也就是说,选择边比b/a使之满足方程(2),就可以制成一个应用切变态的谐振器,其具有高的能陷效率。
然而,上述方程(2)中的整数n在某一泊松比σ条件下,在0.85到1.1的范围内改变,以测量最小值点Q的位移量与最大值点P的位移量的比率,如图20所示,即相对位移(%)。其结果如图21所示。
从图21中可以清楚地看到,当n值处于0.9到1.1时,相对位移不大于10%。另一方面,人们还认识到,当相对位移不大于10%时,基本上不会影响谐振器的结构。因此当边比b/a处于满足方程(2)值的±10%的范围内时,谐振件中能够有效地捕集振动能量。
在图15和16所示的第二类压电谐振器311中,第一和第二槽315和316这样设计压电振动件中的压电陶瓷板的厚度a和沿谐振件极化方向P的纵向尺寸b(即矩形压电表面的短边和长边的长度a和b)的边比b/a在方程(2)表示值的±10%的范围内,上述矩形压电表面平行于压电振动件的极化方向,由此改善了能陷效率。
图22表示了第二类压电谐振器另一个实例的侧视图。
在这个压电谐振器351中,压电陶瓷板352的一个上表面352a上第一槽355的外侧还设第三槽357,该压电陶瓷板352沿箭头P极化;而第四槽358则设置在压电陶瓷板352下表面352b上的第二槽356的外侧,由此分别构成了第一和第二动态阻尼器359和360。根据动态阻尼器的已知现象,由于振动的泄漏使这些动态阻尼器359和360产生谐振,从而消除振动的泄漏。因此,可根据动态阻尼器的这一现象来选择动态阻尼器359和360的尺寸,以便消除上述振动泄漏。
除设置第三和第四槽357和358以构成动态阻尼器359和360外,压电谐振器351与压电谐振器311的结构是相同的,因此相同部分用同样标号表示,不再赘述。
在压电谐振器351的谐振件中,边比b/a设定在方程(2)表述值的±10%范围内,因此,在谐振件中振动能量被有效地捕集。另外,根据动态阻尼器现象,动态阻尼器359和360消除了细微的振动泄漏。因此,当压电谐振器351被分别机械地固定到位于第三和第四槽357和358外侧的固定件361和362上时,谐振特性基本上不会变劣。于是,与压电谐振器311相比有可能进一步改善能陷效率,从而提供更小的压电谐振器。
压电谐振器351具有动态阻尼器359和360,它也是本发明所采用的第四类压电谐振器。
图23是第二类能陷压电谐振器的又一实例的立体图。该压电谐振器371由细长的矩形压电陶瓷板372构成,该陶瓷板沿其纵向P极化。在压电陶瓷板372中,第一和第二谐振电极373和374沿两边设置在板372的上表面上。另外,槽375以及376分别设置在上述两个边上。固定在槽375和376之间的压电板部分构成了一个压电振动件。在该压电振动件中,一个上表面(即压电表面)平行于极化方向P,并且呈矩形。压电振动件上表面的这种形状是这样选定的,它应使短边和长边的长度a和b间的边比b/a处于满足上述方程(2)的一个值的±10%的范围内。当交流电压施加在第一和第二谐振电极373和374之间时,压电振动件是以与图15所示的压电谐振器311相似的切变态进行谐振的,并且该谐振能量被有效地捕集在压电振动件中。位于槽375和376一侧的压电板部分确定出一个本发明的支承部分,而那些超出槽375和376外的部分则根据本发明分别确定出固定部分。而且,铅制电极377和378分别形成于与第一和第二谐振电极373和374相连接的固定部分的上表面上。
图24表示第二类能陷压电谐振器的再一实施例的平面图。在这个压电谐振器381上,槽383到386形成于同一侧表面上,而槽387到390则形成于另一个表面上,因而分别构成了动态阻尼器391到394。而且位于槽384和385之间的压电基片部分根据本发明确定出了一个压电振动件395。另外,固定件396和397分别形成于槽383和386的外侧。本发明的支承件由位于槽384和388之间及槽385和389之间的压电基片部分确定出来。位于槽383和387之间的压电基片部分和位于槽386和390之间的一个薄的压电基片部分分别构成了连接件。
压电振动件395被沿箭头P方向,即沿着压电基片382的纵向极化。另一方面,谐振电极398和399形成于与极化方向P平行的压电基片382的上表面上。压电振动件395的上表面呈矩形,它的边比b/a处在满足方程(2)的值的±10%的范围内,假定a和b代表上表面的较短一侧和较长一侧的长度。
当交流电压施加在谐振电极398和399之间时,所述压电振动件395以切变态谐振,以便使谐振能量被有效地捕集在压电振动件395上。动态阻尼器391到394通过动态阻尼器的现象抑制了轻微漏泄的振动。在压电谐振器381上,振动能量被可靠地捕集到带有动态阻尼器391到394之间的部分上。
铅制电极400和401则分别形成于固定件396和397上。
图25显示出图24所示压电谐振器381的改进型式。与压电谐振器381不同,该压电谐振器411的压电振动件395沿箭头P(即平行于压电基片382的宽度方向)被极化,并且谐振电极398和399沿着宽度方向延伸。
图26是表示图24的压电谐振器381另一改型的立体图。在该压电谐振器421中,一个压电振动件395沿箭头P极化,即平行于压电基片382的纵向被极化。该压电谐振器421的电极位置不同于压电谐振器381。
在压电谐振器421中,谐振电极398和399设置在压电振动件395的压电基片382的两侧。
另外,在压电谐振器421中,铅电极400和401分别设置在固定件396和397的压电基片382的两侧。将该铅电极400和401与谐振电极398和399连接起来的导电连接件也分别沿着压电基片382的侧表面设置。
从压电谐振器421清楚地看到,谐振电极可以设置在构成压电振动件的压电板的侧表面上,进一步来说,在第二类压电谐振器中,谐振电极设置在上表面和下表面上。在图24所示的压电谐振器381中,谐振电极399例如可以设置在压电基片382的下表面上;而压电谐振器421中,谐振电极398和399中的一个例如可以设置在压电基片382的一个主表面上。
在第二类压电谐振器中,压电振动件、支承件、固定件以及需要时设置的动态阻尼器可以在一块单独的压电基片上制作。这些元件还可以制成分离的元件。
如图27所示,绝缘板432和433可以粘接到厚度相同的矩形压电板431上以形成压电振动件,从而构成一个基片434。该基片434可以构成前述的第二类压电谐振器。在图27所示的那个基片434上,动态阻尼器435和436以及固定件437和438与绝缘板432和433整体地成形。另外,上述元件还可以分别独立地成形。
如图28所示,宽度相同的基片件439和440还可以设置在动态阻尼器435和436外侧。在这种情况下,基片件349和440还可以用作连接和固定件。
第一实施例图29是表示本发明第一实施例的梯形滤波器20的分解立体图,图30是其外观立体图。
梯形滤波器20的结构由表面基片21、第一谐振板22、绝缘间隔件23、第二谐振板24及一个表面基片25叠加而成,如图29所示。
第一谐振板22的结构是将压电谐振器26和27及压电谐振器28粘结成一体,再用粘接剂把与压电谐振器26到28厚度相同的间隔板29和30粘接到整体结构的外侧而形成的,上述压电谐振器26和27具有采用切变振动态的动态阻尼器,而压电谐振器28具有采用横向膨胀态的动态阻尼器。间隔板29和30由适当的具有一定强度的绝缘材料,例如绝缘陶瓷、铝土或合成树脂制成,并且间隔板29和30带有缺口29a和30a,以便允许压电谐振器26和27的振动件进行振动。
如图31A所示,具有动态阻尼器的压电谐振器26由细长的沿箭头P均匀极化的压电陶瓷板26a构成。谐振电极26b设置在压电陶瓷板26a的一个侧表面上,从压电陶瓷板26a的第一端向第二端延伸。谐振电极26b的前端终止于凹槽26c处,凹槽26c则是通过切去侧表面而形成的。另一凹槽26d设置在距凹槽26c规定距离处,由此在凹槽26c和26d之间构成动态阻尼器26e。
类似地,谐振电极26f位于压电陶瓷板26a的另一侧表面上,从其第二端伸向第一端。与谐振电极26b上的侧表面相类似,两个槽26g和26h之间确定出一个动态阻尼器26i。
在第二的类压电谐振器26中,谐振电极26b和26f的重叠部分确定出压电振动件,且该压电振动件的边比b/a处在满足方程(2)的值的±10%范围内。也就是说压电谐振器26与图23所示的压电谐振器371相似。位于压电振动件及动态阻尼器26e、26i之间的部分为支承件;位于槽26d和26h上部的压电陶瓷板部分构成了固定件,在固定件和动态阻尼器26e、26i之间宽度较窄的压电陶瓷部分则确定出了连接件。
当在具有动态阻尼器的压电谐振器26的谐振电极26b以及26f之间施加交流电压时,谐振电极26b和26f之间的重叠部分就会产生出切变态谐振,从而形成压电谐器的工作过程。此外,谐振部分具有上述特定的边比,以便有效地捕集谐振能量。
即使谐振电极26b和26f重叠部分的振动有所泄漏,这部分振动也可以被有效地捕集在动态阻尼器26e和26i中,即如果切变振动态的谐振从谐振件中泄漏出来,泄漏的振动也可以使动态阻尼器26e和26i产生谐振,以便让动态阻尼器抑制上述振动的泄漏。因此,在传到位于动态阻尼器26e和26i上部压电陶瓷板部分的过程中,振动基本上没有泄漏。这样,把位于动态阻尼器26e和26i上部的压电陶瓷板部分与其它元件相连接时,压电谐振器可以被机械地固定,而不会抑制谐振件的谐振。
再参见图29,它与图31B一起描述了具有用于第一谐振板22的动态阻尼器的压电谐振器28。带有动态阻尼器的压电谐振器28是前述第一类或第四类的压电谐振器,它是由图31B所示的平板形压电陶瓷板28a构成的。压电陶瓷板28a的中心有一个矩形板形的压电振动件28b。压电振动件28b沿箭头P方向被极化,且其两个主表面上均设有谐振电极28c(其中设置在下表面上的那一个电极在图31B中未示出)。
在振动件28b中,边比b/a处在满足所述方程(1)的值±10%的范围内。
当在位于压电振动件28b的两主表面上的谐振电极28c上施加交流电压时,压电振动件获得横向振动态的谐振,此时,由于边比b/a处在上述范围内,所以谐振能量可以被有效地捕集在压电振动件28b中。
另一方面,纵向杆型支承件28d和28e连接到压电振动件28b的相对侧表面上,而动态阻尼器则分别设置在支承件28d和28e的外侧。动态阻尼器28f和28g产生由传递到压电振动件28b的振动而谐振引起的弯曲态振动。即使谐振能量从压电振动件28b中泄漏出来,这部分能量也可以被有效地捕集在动态阻尼器28f和28g中。
此外,连接件28h和28i分别连接到动态阻尼器28f和28g的外侧,而固定件28j和28k则分别连接到连接件28h和28i的外端。固定件28j和28k用来将压电谐振器28与其它元件相连,或者将其机械固定,而且如图31B所示,它具有较大的面积。
每个带有如图31A和31B所示的动态阻尼器的压电谐振器26和28都可以通过对上述单独一片压电陶瓷板进行加工而形成,而其中的各部分则可以通过由粘接剂或类似物互相连接的分离元件构成。在如图31B所示的压电陶瓷板28a中,如一块构成压电振动件的矩形压电陶瓷板可以采用如下方式构成将支承件28d和28e、动态阻尼器28f和28g、连接件28h和28i以及固定件28j和28k由粘接剂或类似物粘接其侧部并相互成为一体。这里要指出,压电陶瓷板和确定出每个压电谐振器的件,可以通过加工出一块压电陶瓷板、或将一组元件互相连接在每个带有动态阻尼器的压电谐振器上而形成,所述动态阻尼器分别在第二到第十实施例中进行描述。
图31B中所示的谐振电极28c连接到电极28m上,该电极28m则通过导电连接件28l而形成于固定件28k的上表面上。相似地,另一个形成于谐振件28b下表面上的谐振电极,则与通过导电连接件形成于固定件28j下表面上的电极相连。
再参照图29,带有动态阻尼器的压电谐振器27和带有动态阻尼的压电谐振器26及28均通过将其固定件的侧表面由粘接剂相互粘接而形成一体,该压电谐振器27与带有动态阻尼器的压电谐振器26结构相同,然后再将第一和第二间隔板29和30粘接在成一体的侧面部分上,从而形成第一谐振板22。
谐振板22的上表面上设置有电极22a和22d,用以将压电谐振器26和28互相连接,构成下述的梯形滤波器。电极22a与压电谐振器26的谐振电极26f连接(见图31A)。类似地,电极22c与谐振电极26b相连接,而电极22b和22d则与形成于压电谐振器27侧面的单独一块谐振电极相连接。压电谐振器28带有一个电极28m,该电极与谐振电极28c一起连接到图31B所示的谐振板22的一个边缘上,而另一个与谐振电极相连的电极则将其下表面设置在谐振板22下表面另一个相对的边缘上。
在第二谐振板24中,带有动态阻尼器的压电谐振器32以及33粘接在一带有动态阻尼器的压电谐振器31的两侧,所述压电谐振器22和23采用了横向振动态,它的结构与具有动态阻尼器的压电谐振器28相类似,而该压电谐振器31则采用了切变振动态,其结构与压电谐振器26相同。此外,第一和第二间隔板34和35与压电谐振器31至33的厚度相同,且第一和第二间隔板由具有一定强度的适当的绝缘材料(如绝缘陶瓷和合成树脂)制成,它们被粘接到压电谐振器32和33的侧面。如图29所示,间隔板34和35上靠近压电谐振器32和33的边缘处带有大致为U形的槽34a和35a,这些槽能确保压电谐振器32和33的谐振和动态谐振件的振动。
压电谐振31到33本身的结构与压电谐振器26、28类似,因此不再赘述。
在第二谐振板24中,电极24a和24b设置在谐振板的上表面,并伸向不同的边缘。电极24a和24b与一个单独的谐振电极相连接,谐振电极设置在压电谐振器31的两侧表面。然而,在压电谐振器32和33中,设置在固定件上的电极32c和32d伸到谐振板24的不同边缘,上述固定件与上表面上的谐振电极32a和33a连接。另外,压电谐振器32和33的谐振件的下表面上的谐振电极连接到下表面的另一侧的电极上。
表面基片21和25分别在下表面和上表面具有凹槽21a和25a,各层重叠时,凹槽21a和25a可以允许靠近压电谐振器的谐振件和动态阻尼器进行振动。绝缘间隔板23的上表面上设有凹槽23a,下表面上设有同样形状的另一个凹槽(图29中未清楚显示)。这些凹槽可以允许上下布置的各压电谐振器的谐振件和动态阻尼器进行振动。
另外,表面基片21、绝缘间隔板23及表面基片25还可以是平板状,其上不带有凹槽21a、23a和25a。在这种情况下,需要留出类似的间隔,以便压电振动件和动态阻尼器振动,该间隔是通过插入厚度与凹槽21a、23a和25a的深度相应的矩形框状间隔件、或以矩形框状施放绝缘胶来实现的。
表面基片21和25及绝缘间隔板23可以采用具有一定强度的绝缘材料制作,例如绝缘陶瓷、铝土或合成树脂。
按照该实施例,表面基片21、第一谐振板22、绝缘间隔板23、第二谐振板24以及表面基片25被叠放起来,并用绝缘胶相互粘接成一体,制成具有叠层结构的梯形滤波器,如图30所示。
从图30可以清楚地看到,本实施例的梯形滤波器20的结构是由若干个矩形板状件 在一起而获得的。该滤波器还具有端子电板20a到20l,这些电极在侧面上延伸到达上下表面。可以通过涂覆并烘干导电胶、或通过蒸发、电镀或喷镀来制造这些端子电板20a到20l。另外,如图29所示,若干电极21b可以预先设置在表面基片21的上表面上,同时,表面基片25的下表面上也具有若干端子电极部分。这样,当电极材料随后放到图30所示的叠层结构的侧面时,可以构成端子电极20a和20l,这些电极在侧面上延伸,到达上下表面。
可以用图33所示电路,通过将图32所示的端子电极20a与20l相连,来驱动以上述方式获得的梯形滤波器20,从而使端子电极20a作为输入端,端子电极20k和20j作为输出端,而端子电极20l、20f和20b均接地。
在本发明实施例的梯形滤波器20中,串联和并联谐振器均由采用切变和横向振动态的具有动态阻尼器的压电谐振器26到28和31到33构成。因此,与采用音叉型压电谐振器的梯形滤波器相比,可以很容易地加宽通带宽度。
从图29中可以清楚地看出,在梯形滤波器20的谐振板22上,板状压电谐振器26到28横向相互连接起来。同样,在谐振板24上,板状压电谐振器31到33也横向连接在一起。因此,可以在不增加其厚度的情况下制成三级薄片状梯形滤波器。换句话说,由于将一组板状压电谐振器以平行于安装面的方式相互横向连接,因而易于减小梯形滤波器的厚度。
另外,振动能量被有效地捕集到压电谐振器的动态阻尼器部分中,从而使压电谐振器可以很容易地如上所述通过固定件相互连接并呈一体。
第二实施例图34是说明本发明第二实施例梯形滤波器的T形连接式滤波器70的立体分解图,而图35则是表示T形滤波器的外观立体图。
该T形滤波器70由一个表面基片71、一个谐振板72和一个表面基片73相互叠放而成。表面基片71和73的结构与第一实施例中的表面基片21和25相类似。也就是说,凹槽73a是设置在表面基片73的上表面上的,而表面基片71的下表面上也设置有一个类似的凹槽(图中未示出)。
另一方面,谐振板72的结构与用于第一实施例的谐振板22相似。即,带有采用横向膨胀态的动态阻尼器的压电谐振器28设置在谐振板的中心,而带有采用切变态的动态阻尼器的压电谐振器26和27粘接到谐振板的侧部,间隔板29和30则进一步分别粘接到压电谐振板26和27的外侧上。根据本实施例,与压电谐振器26和27的单片谐振电极相连的电极72a和72b分别从一个边缘引出,该边缘也是引出与谐振电极28c相连的电极28m的边缘,该谐振电极28c处在压电谐振器28的上表面上。
此外,如图34右侧的虚线所示,与谐振电极28n相连的电极28o被从与电极72c和72d同侧的边缘中引出,电极72c和72d分别与压电谐振器26和27下表面上的其它谐振电极相互电连接。
从图35可以清楚地看出,端子电极70a到70f是设置在梯形滤波器70上的,其位置分别与电极28m和72a到72d的位置相对应,该梯形滤波器70由上述各元件叠放而成。因此,图36所示的T形滤波器可以这样构成端子电极70c为输入端,端子电极70b接地,端子电极70a为输出端,端子电极70d到70f连接到一起。
在图37和38中,上述滤波器70则连接成π形连接式滤波器80,以构成一个三级梯形滤波器。现在结合图37和38对π形连接式梯形滤波器进行描述。
π形滤波器80是由一个表面基片81、一个谐振板82和一个表面基片83相互叠放而成。所述表面基片81和83的结构与图34所示的表面基片71和73的结构类似。也就是说,表面基片81的下表面上设有一个凹槽,表面基片83的上表面上则设有一个凹槽83a。
另一方面,谐振板82的结构与第一实施例的谐振板24的结构基本相似。谐振板82与谐振板24的区别在于设置在压电谐振器32和33上表面上的两个谐振电极32a和33a均从谐振板82的一条边缘上引出,而设置在谐振器下表面上的两个谐振电极则是从谐振板82的另一条边上引出的(参见图37右侧虚线所示),所述压电谐振器32和33带有横向膨胀态的动态阻尼器。谐振板82的其它方面与谐振板24相类似。因此,图中标号相同的部分这里不再赘述。
端子电极80a到80f设置在π形滤波器80的侧面,这样端子电极80a和80b相互连接形成一个输出端,端子电极80c和80d接地,端子电极80g和80f则相互连接形成一个输入端,参见图38,从而形成了一个如图39所示的π形滤波器。
通过将上述T形滤波器70的输出端与π形滤波器80的输入端相互连接,可以构成一个三级梯形滤波器。也就是说,通过将T形滤波器70与π形滤波器80相连,便可构成一个与第一实施例级数相同的梯形滤波器。
第三实施例本发明第三实施例的梯形滤波器是通过将图40和41所示的T形滤波器90与图42和43所示的π形滤波器100相互连接而构成的一个与第二实施例相类似的三级梯形滤波器。
图40和41所示的T形滤波器90由表面基片71和73以及一个谐振板92相互叠放而构成,该结构与第二实施例的T形滤波器70相类似。谐振板92的中心设置有一个压电谐振器93,该压电谐振器带有横向膨胀态的动态阻尼器。该压电谐振器93的结构与第一实施例所用的带有横向膨胀态动态阻尼器的压电谐振器28的结构相类似。
带有切变态动态阻尼器的压电谐振器94和95通过固定件的粘接而被粘接到压电谐振器93的侧部。
由一块压电陶瓷板机械加工成如图40所示形状的压电谐振器94的中心带有一块矩形板状压电元件92a。压电元件94a也被极化,其极化轴是沿压电板的纵向的。压电元件94a的上表面上设置有沿两相对边缘的一对谐振电极94b和94c。当在谐振电极94b和94c上施加交流电压时,谐振元件94a便产生切变态的谐振。
压电谐振器94的形状参见图40所示,在其右侧以虚线方式示出了压电谐振器94的轮廓。具有较窄宽度的支承件94d以及94e连接在谐振件94a上,而动态阻尼器94f和94g则分别形成于支承件94d和94e的外侧。另外,固定件94j以及94k分别通过连接件94h和94i连接到动态阻尼器94f和94g的外侧表面。各个安装在谐振件94a外面的元件与压电谐振器28的那些元件相似。
采用切变态的压电谐振器95的结构与压电谐振器94相同。
间隔件96和97粘接在压电谐振器94和95的外侧。在接近压电谐振器94和95的部分处,间隔件96和97上分别带有凹槽96a和97a,所述间隔件96和97的厚度与压电谐振器93到95相等。这些凹槽是用来让压电谐振器94和95的振动件进行振动的。
通过将由表面基片71和73固定的谐振板92的叠放,并在其端面形成端子电极90a到90f(见图41),便可获得与第二实施例的T形滤波器70相似的T形滤波器。也就是说,通过将端子电极90c作为输入端,将端子电极90d到90f连接到一起,将端子电极90b接地并将端子电极90a作为输出端,便可以将滤波器作为T形滤波器驱动。
另一方面,如图42所示,π形滤波器100的结构与第二实施例的π形滤波器的结构相似。也就是说,π形滤波器100由表面基片81和83以及一个插在它们之间的谐振板101叠放而成。谐振板101与谐振板82的区别在于在谐振板101的中心设置有一采用切变振动态的动态阻尼器的压电谐振器102。带有动态阻尼器的压电谐振器102的结构与用于T形滤波器的带有动态阻尼器的压电谐振器94相类似。
如图43所示,通过在将表面基片81、谐振板101和表面基片83相叠放而得到的层状物上形成端子电极100a到100f,就可以构成π形滤波器100。这也就是说,通过将端子电极100a和100b连在一起作为输出端,将端子电极100c和100d接地,并将端子电极100e和100f连在一起作为输入端,便可以将滤波器100作为π形滤波器驱动。
因此,与第二实施例相似,通过将T形滤波器90与π形滤波器100相连就可以形成一个三级梯形滤波器。
第四实施例参见图44和45,下面将对本发明第四实施例的梯形滤波器120进行描述。
根据该实施例,压电谐振器26和28互为一体,成为一个单片谐振板121。也就是说压电谐振器26和28经间隔件122相互粘接在一起,而间隔件123和124则分别被粘接在压电谐振器27的侧部以及压电谐振器26的外侧。通过叠放所述表面基片125和126,从上下固定住其间的谐振板121,便可以得到图45所示的层状物。
通过在层状物的相对端面上设置端子电极120a到120d,即可制成一个一级梯形滤波器。也就是说,通过将端子电极120a接地,将端子电极120b用作输入端,并将端子电极120c和120d连接在一起作为输出端,就可以制成图46所示的一级梯形滤波器。通过经带孔间隔板来叠放一系列这种谐振板121就可以方便地制成二级或多级梯形滤波器。
第五实施例图47表示了本发明第五实施例的梯形滤波器130的立体分解图,图48是其外观立体图。
梯形滤波器130通过叠放以下元件而构成,它们是一个表面基片131、一个带孔的间隔板132、一个第一谐振板133、一个带孔间隔板134、一个第二谐振板135、一个带孔间隔板136和一个表面基片137。
表面基片131和137由片状绝缘陶瓷或合成树脂制成,而带孔间隔板132、134和136则与第二实施例所采用的相类似。
第一谐振板133通过将带有动态阻尼器的压电谐振器138和139制成一体,并且通过将固定件互相粘接在一起且将间隔件140和144粘接在表面基片的外侧而构成,所述压电谐振器采用了横向膨胀态。
压电谐振器138与第一实施例的采用横向膨胀态并带有动态阻尼器的压电谐振器28相类似。如图47右侧所示,带有动态阻尼器的压电谐振器139通过将谐振电极139a和139b设置在平面状压电陶瓷板的谐振件下表面的一对相对端部上而形成,所述压电谐振器139采用了相似的横向膨胀态,只是它带有纵向效果,所述平面状压电陶瓷板与压电谐振器138的相似。当交流电压施加在谐振电极139a和139b之间时,压电谐振器130作为具有纵向压电效果的横向态压电谐振器工作。谐振电极139a和139b则分别从谐振板133的两相对边缘引出。
第二谐振板135通过将压电谐振器142的固定件与压电谐振器143相粘接并在其两侧粘上间隔件144和145而构成,所述压电谐振器142带有采用具有横向效果的横向态的动态阻尼器,所述压电谐振器143则带有采用纵向效果的动态阻尼器。在第二谐振板135中,在采用纵向效果的带有动态阻尼器的压电谐振器143的上表面上,设置有一对谐振电极143a和143b。
该实施例的梯形滤波器130由上述各元件叠放而成,并且在所得到的层状物的两个端面上设有外部电极130a到130f,参见图48。
也就是说,图49所示的两级梯形滤波器是这样得到的外部电极130c作为输入端,外部电极130a和130d相连接用作输出端,外部电极130e和130f相连接和外部电极130b接地。
第六实施例图50表示了本发明第六实施例的梯形滤波器150的立体分解图,图51是其外观立体图。
该实施例是对第五实施例所示梯形滤波器130的改进,因此,只对第六实施例中与第五实施例不同的部分进行描述。
第一谐振板151通过把压电谐振器153和154的固定件互相粘接在一起而形成,所述压电谐振器带有具有纵向压电效果的动态阻尼器。压电谐振器153和154的结构与第四实施例的压电谐振器143的结构相似。
另外,第二谐振板152通过把压电谐振器155和156的固定件互相粘接在一起而形成,所述压电谐振器带有具有横向压电效果的动态阻尼器。
压电谐振器155和156的结构与第五实施例的压电谐振器138的结构相似。
在第一谐振板151中,电极151a和151b沿着它的一条边缘形成于其上表面上,而且,这些电极151a和151b分别与压电谐振器153和154的第一谐振电极电连接。另一方面,电极151c则沿谐振板151的另一边缘形成,且该电极151c与压电谐振器153和154的第二谐振电极电连接。
在第二谐振板152中,电极152a沿着其一条边缘形成,与压电谐振器155和156的谐振电极155a和156a电连接。另外,在谐振板152的下表面上,电极152b和152c沿其另一边缘形成,分别与压电谐振器155和156的下表面上设置的谐振电极电连接。
标号157和178表示表面基片,标号159a到159c表示带孔间隔板。
参见图51,通过在层状物上形成外部电极150a到150f,便可以获得第六实施例的梯形滤波器150,该层状物则通过把上述各元件相互叠放起来而获得。
通过连接外部电极150a到150f,就可以将梯形滤波器150作为与第五实施例相似的二级滤波器驱动。
第七实施例图52表示了本发明第七实施例的梯形滤波器160的立体分解图,图53是其外观立体图。
该实施例的梯形滤波器160的结构与第五实施例的相似,只是第一和第二谐振板161和166的结构不同于第五实施例。
如图52,采用切变态并带有动态阻尼器的压电谐振器162和采用横向态并带有动态阻尼器的压电谐振器163的固定件相互粘接在第一谐振板161上,成为一体。间隔件164和165则分别粘接在压电谐振器162和163的外侧。
压电谐振器162的结构与第一实施例的切变态的压电谐振器26(图17A)的结构相似。设置在压电谐振器162一侧面上的谐振电极与沿谐振板161边缘的电极161a电连接。另外,设置在压电谐振器另一侧面上的谐振电极则与谐振板161另一边缘上设置的电极161b电连接。
带有横向态动态阻尼器的压电谐振器163的结构与用于第四实施例的压电谐振器138相似。设置在压电谐振器163上表面上的谐振电极163a与电极161c电连接,电极161c与电极161b设置在同一条边缘上。
如图52右侧虚线所示,设置在压电谐振器163下表面上的谐振电极163b与电极161d电连接,电极161d则设置在谐振板161下表面的一条边缘上。
第二谐振板166的结构与第一谐振板161翻转后得到的结构相对应。采用切变态动态阻尼器的压电谐振器167以及采用横向态动态阻尼器的压电谐振器168的固定件相互粘接成一体,所获得的层状物外侧粘有间隔板169a和169b。
由于上述结构与第一谐振板161翻转后得到的结构相对应,与第一谐振板161的电极相比,第二谐振器的两个主表面上的电极被垂直翻转。
图53所示的梯形滤波器160是这样获得的将上述各元件叠放起来,并且在所获的层状物上设置端子电极160a到106f。在本实施例中,梯形滤波器160还可以作为一个两级滤波器来驱动,只要用外部电极160a和160d作为输出端,外部电极160c作为输入端,外部电极160b接地,外部电极160e和160f连到一起即可。
第八实施例在上述第一到第七实施例的每一个中,层状梯形滤波器均由多层元件叠放而成,这样,带有动态阻尼器的压电谐振器的主表面呈水平方向设置。然而,本发明的梯形滤波器并不仅限于采用多层压电谐振器叠放而使其主表面沿着水平方向的结构。在本发明的第八实施例中,多个压电谐振器相互叠放,使其主表面沿着垂直方向。
参见图54,梯形滤波器170包括带有横向膨胀态动态阻尼器的压电谐振器171和173,该横向膨胀态动态阻尼器具有横向压电效果,还带有横向膨胀态动态阻尼器的压电谐振器172和174,而该横向膨胀态动态阻尼器则具有纵向压电效果。这两种压电谐振器水平地间隔叠放,其间以间隔板175分隔开。大致呈U形的间隔板176和177分别粘接在压电谐振器171以及174的外侧。
多个间隔板175及两端的间隔板176和177粘接到压电谐振器171到174的固定件上,在用间隔板175、176和177将压电谐振器171到174相互粘接或一体成形而得到的结构中,压电谐振器171到174的谐振元件和动态阻尼器不会抑制振动。
根据该实施例,表面基片178和179叠放到下述结构的上下表面上该结构通过间隔板175到177将压电谐振器171和174粘接构成或一体成形。
图55是以上述方法获得的梯形滤波器170的外观图。层状物端面上的端子电极170a到170d和170e到170f可用来与外界相连。即可以下述方法获得一个二级梯形滤波器端子电极170a和170g接地,端子电极170b到170d相互连接,端子电极170e和170f连接在一起作为输出端,而端子电极170h则作为输出端。
第九实施例在上述各实施例中,梯形滤波器由多个带动态阻尼器的压电谐振器构成,其中至少一个梯形滤波器可以是本发明实施例中带有动态阻尼器的那种梯形滤波器。下面参照图56和57对该实施例进行说明。
在本发明第九实施例的梯形滤波器180中,表面基片182和183叠放在谐振板181上、下两部分上。表面基片182和183的结构与第一实施例所采用的类似。
在该谐振板181中,带有动态阻尼器的压电谐振器184、185和不带动态阻尼器的采用普通TS态的厚度切变振动态压电谐振器186和187经带孔间隔板188、189和190相互水平叠放在一起。所述间隔板188到190粘接在靠近压电谐振器184到187两端的部分,该间隔板则由绝缘陶瓷或合成树脂制成。
另外,将间隔件191和192粘接到其最外侧,便制成了谐振板181。间隔件191和192则粘接在靠近压电谐振器181和187单一的主表面的两端,而该间隔件也可以由绝缘陶瓷或合成树脂制成。
如图57所示,采用切变振动态的带有动态阻尼器的压电谐振器184包括一个矩形板状压电陶瓷板184a和一个在其主表面上形成的谐振电极184b。谐振电极184b电连接到一个电极184c上,该电极设置在靠近压电陶瓷板184a的一端,并处于图57所示的主表面上。另外,根据本实施例,两个横向延伸的槽184d和184e设置在压电陶瓷板184a上,从而在所述槽184d和184e之间形成一个电极184f,并在槽184e和压电陶瓷板184a的另一端之间设置电极184g和184h。这种结构可以通过下述方式获得在压电陶瓷板184a的两端设置面积相等的电极184c和184h,设置一个细长的电极以使电极184c和184h相互连接,然后用切割或类似加工制成槽184d和184e。
在压电陶瓷板184a另一端的表面上,也有两个槽184i和184j设置在压电陶瓷板184a纵向中心一侧,与槽184d和184e的那一侧相对,从而形成谐振电极以及若干与谐振电极相连接的电极。
因此,谐振电极在压电陶瓷板184a上相互重叠的部分,即位于槽184d和184i之间的部分,构成以切变振动态谐振的谐振件。
另外,位于槽184d和184e之间以及位于槽184i和184j之间的压电陶瓷元件分别构成动态阻尼器。
公知的采用TS态的切变振动态压电谐振器186和187设置有公知的电极结构,该电极结构具有一对设置在矩形板状压电板中心部分上、隔着该压电板相互重叠的谐振电极,这些设置在两个主表面上的谐振电极分别由不同的端部引出。
本发明的梯形滤波器180是通过将表面基片182和183分别粘接到谐振板181的上、下部分上而形成的。通过在所获得的层状物的两相对端表面上设置规定的端子电极,便可以制成与上述实施例相似的采用具有动态阻尼器的压电谐振器的梯形滤波器。同样在该实施例中,梯形滤波器由带有动态阻尼器的压电谐振器构成,因此与采用压电音叉型谐振器的梯形滤波器相比其频带宽度增加了。
第一到第九实施例中每个都被描述成一种采用带有动态阻尼器的压电谐振器的梯形滤波器,而压电谐振器也可以不带动态阻尼器。
第十实施例图58是本发明第十实施例的梯形滤波器的分解立体图。
在本实施例中,谐振板195设置在由底座基片193和盖件194构成的空间中。底座基片193由适当的绝缘材料制成,例如绝缘陶瓷、铝土或合成树脂。若干导电连接件193a到193c设置在该底座基片193上,这些导电连接件193a到193c与压电谐振器的铅电极电连接(容后详述),并与外部电极193d到193g连接。这些外部电极设置在底座基片193的侧表面上。
盖件194用适当的材料制成,例如合成树脂或金属,并且其下部有一个孔。盖件194的这个孔的面积小于底座基片193的上表面积,这样,盖件194的下端面就可以用绝缘胶或类似物粘接到底座基片193的上表面上。于是,盖件194就与底座基片193成为一个整体。另外,盖件194的孔还可以选择尺寸,以便与底座基片193的侧面接触。
根据本实施例,所述谐振板195的结构与图47所示的谐振板135相类似,只是前者的铅电极部分与后者的稍有不同,且谐振板195没有第一和第二间隔板144和145。结构与图47所示压电谐振器142和143相似的压电谐振器196和197相互横向相互连接起来,以便允许压电振动件196a和197a振动,这样就构成了谐振板195。
因此,横向连接的两个谐振器可以相互构成一体仅通过两个本发明的谐振器形成一个谐振板。
压电谐振器196和197的压电振动件196a和197a的结构分别与压电谐振器143和142的压电振动件基本相似。然而,压电谐振器196和197不带动态阻尼器。也就是说,压电谐振器196和197分别由上述第二和第一类压电谐振器构成。
压电谐振器196以及197的支承件196b、197b、196c和197c相互连接在一起,从而使压电谐振器196和197互为一体。
谐振板195用导电胶固定到底座基片193上。也就是说,一个铅电极199a连接到压电谐振器196的一个谐振电极及压电谐振器197上表面上的一个谐振电极上,该铅电极199a通过导电胶198a连接到导电连接件193a上。与此类似,一个铅电极电连接到压电谐振器197下表面上的一个谐振电极上,该铅电极用导电胶198b电连接到导电连接件193b上。一个铅电极(图58中未示出)设置在压电谐振器196的下表面上,以便与压电谐振器196的另一个谐振电极电连接,该铅电极也是用导电胶电连接到导电连接件193c上。
在这种情况下,按预定的厚度施放导电胶198a和198b,就可以构成若干空间,从而允许压电谐振器196和197的压电振动件196a和197a在压电谐振器196和197与底座基片193之间进行振动。
另外,谐振板195还可以用间隔件粘接到底座基片193上,该间隔件取代上述导电胶从而确保了上述空间。
根据本实施例的梯形滤波器,两个压电谐振器196和197横向连接成一体。因此,可以容易地构成片状压电滤波器,该滤波器的高度可被减小。另外,若干压电谐振器196和197被封闭在一个密闭空间中,该密闭空间位于底座基片193和盖件194之间,这样就可以容易地做出一个梯形滤波器,它具有优良防止外界影响(例如防潮)的特性。
<第三类能陷压电谐振器>
本发明的第三类压电谐振器是一种采用本发明人发现的新振动态的压电谐振器。这种新发现的振动态将参照图59到63进行说明。
如图59所示,设置一个模型,它包括一个矩形压电板521、电极522和523,电极设置在压电板的整个主表面上。该压电板521呈矩形平面状,并具有矩形的上、下表面。另外,压电板521沿其厚度、即沿箭头P被均匀地极化。
当交流电压施加到电极522和523之间使压电板521振动时,通过用有限元方法对压电板521的弯曲振动的二次谐波进行分析,人们认识到,图60所示的振动态是在平面状的压电板521的一定范围内激励起来的。参见表示振动态的图60,该振动态用有限元法进行了分析,压电板521的初始形状由线A表示,振动在线B所示的位移状态及一个与线B所示状态相反的状态之间重复进行。
业已证实,压电板521被激励,发生上述二次谐波的弯曲态振动,当该压电板521在沿两个短边的一对侧表面上的一端被固定时,振动能量的捕集情况如图61所示。图61表示用有限元法分析出的位移分布情况,连接件522连接到压电板521的短边上的侧表面521a上。另一个连接件523连接到另一个侧表面521b的一端,该另一侧表面沿另一短边延伸。在这种情况下,连接件522和523连接到压电板521上表面的对角线的两端。
从图61中可以清楚地看到,当连接件522和523被连接到振动板521上从而将其固定时,在位移状态C中,没有位移波及到连接件522和523的外边。换句话说,显然可以把压电板521的二次谐波的弯曲态振动捕集在连接件522和523之间。
图62表示图61所示的位移状态C的电荷分布情况。正极区沿着压电板521上表面上的假想线D延伸,该假想线基本上沿着一条对角线延伸。此外,具有强的负极性电势的部分出现在靠近另一对角线的转角处。
为在图61的位移状态C和另一与之相反的状态之间通过连接上述连接件522和523激励起强烈的振动,可以设想将谐振电极根据图62所示的电荷分布情况设置。
当连接件522和523被连接到矩形压电板521,并且电压加到设置在两个表面上的电极之间时,二次谐波的弯曲态振动被强烈地激励,这种振动的能量被捕集在连接件522和523之间的那部分中。人们已经认识到,只有当压电板521的尺寸处于特定范围内时才能得到上述效果。
本发明人采用了多个各种材料制成的压电板521的样品,以便在每个样品中激励振动,该振动在图61所示的位移状态C和与之相反的一个状态之间重复进行,由此认识到,当边比b/a的值满足上述方程(3)时,上述振动被强烈地激励起来,并且振动能量被有效地捕集到第一和第二连接件522和523之间的部分中。在上述方程(3)中,假设a和b分别代表压电板521的矩形表面的短边和长边的长度,σ表示压电板521所用材料的泊松比。也就是说,本发明人用各种压电材料按各种边比b/a制作了多个样品,以便用有限元方法对振动状态进行分析,如图61所示。分析结果显示,为有效地将二次谐波的弯曲态振动捕集到所述连接件522以及523之间的部分中,边比b/a和制作压电板521的材料的泊松比σ可以满足图63A所示的关系。从图63A所示的结果可以看出,短边和长边的长度a和b可以进行选择,以便使边比b/a为b/a=0.3σ+1.48另外,发明从还发现,当边比b/a是(0.3σ+1.48)的值的整数倍时,振动能量也可以被类似于上述那样被捕集。
另外,本发明人还采用了由具有一定泊松比σ的压电材料制成的压电板,并且在0.85-1.11的范围内改变方程(3)中的整数n,以测量图61中显示最小值的点P处的位移量与显示最大值的点Q处的位移量之比,即相对位移(%)。其结果在图63B中显示出来。
从图63B中可以清楚地看到,当值n处于0.9-1.1范围内时,相对位移不大于10%。另一方面,人们认识到当相对位移不大于10%时,在谐振器的结构中基本上不会产生问题。因此,当边比b/a处于满足方程(1)的一个值的±10%的范围内时,可以有效地把振动能量捕集到压电振动件中。
如上所述,人们认识到,可以通过把压电振动件的边比b/a限定在满足方程(1)的一个值的±10%的范围内来提供一种具有优良能陷效率的压电谐振器,而该压电振动件具有长度为a的短边和长度为b的长边,并且压电板所用材料的泊松比为σ。关于上述二次谐波的弯曲态振动,业已证实当没有连接件522和523连接到压电板521上时,该振动的节点出现在矩形表面的中心以及沿两短边的侧表面的中心处。
第三类压电谐振器的实例图64是表示第三类压电谐振器531的实施例的平面图,图65是表示压电板下表面上设置的电极的形状的平面图。
压电谐振器531具有一个矩形压电板532、支承件533和534以及固定件535和536。该压电板532由压电材料制成,例如由钛锆酸铅压电陶瓷制成。举例来说,当压电板由压电陶瓷制造时,压电板532沿其厚度方向被均匀地极化。该压电板532为矩形平面形状。第一支承件533被连接到沿短边的第一侧表面532a的一端上,而第二支承件534被连接到沿另一短边的第二侧表面532b的一端上。另外,固定件535和536的面积大于支承件533和534,并分别连接到支承件533和534的外侧表面上。
在压电谐振器531中,压电板532、第一支承件533、第二支承件534、第一固定件535和第二固定件536是由一块单片压电板制成,并在该压电板上开设凹槽537和538。也就是说,压电板532、第一支承件533、第二支承件534、固定件535和536是由相同的材料制成一体的。另外,所述压电板532、第一支承件533、第二支承件534、第一固定件535和第二固定件536还可以由分离的元件构成,将它们用粘接剂或类似物相互粘接成一体。
压电板532具有矩形平面状,其边比b/a处于满足上述方程(3)值的±10%的范围内,设a和b分别表示矩形表面的短边边长和长边边长,σ表示构成上述压电板532的材料的泊松比。
第一谐振电极538形成于压电板532的上表面,而第二谐振电极539则形成于压电板532的下表面,并穿过该压电板与第一谐振电极538相对置。第一和第二谐振电极538和539基本上与图62中所示的正极区相对应。也就是说,第一和第二谐振电极538和539沿着图62中所示的点划线D方向延伸,即基本上沿着一条对角线方向延伸。
铅电极540形成于第二固定件536上,而铅电极541则形成于第一固定件535的下表面上。第一谐振电极538通过导电连接件542与铅电极540电连接,而第二谐振电极539则通过导电连接件543与铅电极541电连接。
当交流电施加于压电谐振器531的两铅电极540和541之间时,交流电压就会施加在第一和第二谐振电极538和539之间,因此强烈激励出上述二次谐波的弯曲态振动。
在这种情况下,压电板532的长边与短边的边长之比,即边比b/a处于满足方程(3)的值的±10%的范围内,因而,振动被有效地捕集在支承件533和534之间的部分中。即使压电板532通过固定件535和536机械固定,谐振特性也几乎不受影响。换句话说,可以提供出一种能陷型压电谐振器531,它可将振动能量有效地捕集在支承件533和534之间的部分中。
第十一实施例图66表示出了本发明第十一实施例的梯形滤波器的立体分解图,图67表示其外观立体图。
本实施例所述的梯形滤波器具有一个谐振板551、表面基片552和553,这些表面基片粘接到谐振板551的上、下表面上。
谐振板551具有与压电谐振器531结构类似的第三类压电谐振器531A。该压电谐振器531A的结构与图64和65所示的压电谐振器531相似,只是设置在上、下表面上的导电连接件542和543形状稍有不同。因此相同部分以相同的标号表示,不再赘述。
根据本实施例,上述采用切变态的能陷型压电谐振器554和555粘接到压电谐振器531A的外侧。压电谐振器554带有槽558和559,这两个槽设置在一个细长的矩形压电板上,这样,压电振动件560就位于槽558和559之间的部分中。在压电振动件560中,压电板沿箭头P,即沿压电谐振器554的纵向被极化。压电振动件560的平面形状是这样选定的,使之满足上述方程(3),假设a和b代表其短边和长边的长度,σ代表压电振动件560所用材料的泊松比。压电谐振器554的上表面的两侧边上还设有第一和第二谐振电极561和562。压电谐振器554的下表面上也设置有第一和第二谐振电极563和564。图66的右侧示意性地表示了谐振板551下表面上的电极形状。在压电谐振器554中,第一和第二谐振电极561和562电连接到铅电极565和566上,铅电极分别设置在固定件的两端。与此类似,第一和第二谐振电极563和564分别电连接到位于压电谐振器554下表面的铅电极567和568上。压电谐振器555在结构上与压电谐振器554类似。
当交流电压施加到压电谐振器554中的第一和第二谐振电极561和562之间及第一和第二谐振电极563和564之间时,压电振动件560被激励起切变态。由于压电振动件560具有特殊形状,谐振能量被有效地捕集到压电振动件560中。也就是说,即使压电谐振器554用设置在槽558和559外侧的固定件机械地固定,压电谐振特性也不会变劣。
第一和第二间隔板556和557被分别地粘接到压电谐振器554和555的外侧面上。该间隔板556和557由U形件构成,以便形成间隙,允许压电谐振器554和555的谐振部件进行振动。该压电谐振器531A和压电谐振器554和555有间隙地相互粘接起来,以防止压电振动件相互接触。
第一和第二间隔板556和557由适当的材料制成,例如绝缘陶瓷、铝土或合成树脂。第一和第二间隔板556和557的厚度与压电谐振器531A、554和555的厚度相似,也就是说,谐振板551被制成一个厚度基本均匀的板形件。
第一和第二表面基片552和553由绝缘陶瓷、铝土或合成树脂制成。矩形凹槽553a设置在第二表面基片553的上表面,另一个类似的凹槽(图中未特别示出)设置在第一表面基片552的下表面上。
该凹槽553a适于构成一个空间,以便允许谐振板551的压电谐振器531A、554和555的振动件进行振动。
如图67所示,本实施例的梯形滤波器550是这样获得的用粘接剂或类似物将谐振板551及第一和第二表面基片552和553相互粘接而成。外部电极570a到570c及570d到570f设置在所得层状物569的两个侧表面上。
因此,在片形滤波器550中,当外部电极570c、570b和570a作为输入端,采用一个分别与参考电位和输出端相连的端子,并将外部电极570d到570f相互内连接时,即可构成图68所示的T形滤波器。在图68所示的电路中,两串联谐振器是由上述采用切变态的压电谐振器554和555构成的,一个单独的并联谐振器由压电谐振器531A构成。
将上述片状滤波器550与带有以下将要描述的π形连接结构的片状滤波器相连接,即可得到一个三级梯形滤波器。
第十二实施例图69和70分别表示出本发明第十二实施例片状梯形滤波器的立体分解图和外观立体图。该梯形滤波器中带有图71所示的π形电路结构。因此,将该滤波器与前述的带有T形连接结构的梯形滤波器550相连接,即可得到一个三级梯形滤波器。
如图69所示,在本实施例的片状滤波器中,第一和第二表面基片572和573叠放在谐振板571的上部和下部。第一和第二表面基片572和573在结构上与上述的第一和第二表面基片552和553相类似,也就是说,凹槽573a设置在表面基片573的上表面,而另一个凹槽则设置在表面基片572的下表面上。
在谐振板571中,采用切变态的压电谐振器574设置在其中部,第三类压电谐振器531A分别连接到压电谐振器574的两侧。该压电谐振器574的结构与第十一实施例的采用切变态的压电谐振器554相类似。也就是说,第十二实施例梯形滤波器的结构为一个构成串联谐振器的压电谐振器574设置在其中央,而构成并联谐振器的压电谐振器531A粘接到压电谐振器574的两侧。另外,第一和第二间隔板575和576分别粘接到压电谐振器531A的外侧。第一和第二间隔板575和576的结构与第十一实施例中的第一和第二间隔板556和557相似。因此相同部分以相同的标号表示,不再赘述。
在本实施例的片状滤波器中,图70所示的层状物577是这样获得的将表面基片572和573分别粘接到谐振板571的上部和下部。外部电极578a到578c及578d到578f分别设置在该层状物577的两个侧表面上,从而获得第十二实施例的片状梯形滤波器579。
在梯形滤波器579中,外部电极578a和578b连接在一起构成输出端,而外部电极578c和578d连接到参考电位,另外,外部电极578e和578f连接在一起构成输入端,这样具有图71所示π形连接结构的梯形滤波器579就可被驱动。
将第十一和第十二实施例中的梯形滤波器550和579相互连接,就可以构成一个三级梯形滤波器。举例来说,如图72所示,梯形滤波器550的输出端连接到梯形滤波器579的输入端,第十一实施例的梯形滤波器550的外部电极570a电连接到第十二实施例的梯形滤波器579的外部电极578e和578f上,这样形成的滤波器可作为一个三级梯形滤波器来驱动。
其它从以上第一到第十二实施例中可以清楚地看出,在本发明的梯形滤波器中,至少有两个压电谐振器相互叠置而成,这样可以很容易地得到一种片状的梯形滤波器。此外,在第一至第四类压电谐振器中,振动能量能够有效地被捕集到压电振动件中(如上所述),这样,即使压电谐振器是被机械地固定到固定件上,压电谐振器的谐振特性也几乎不会受到影响。因此,参照第一到第十二实施例,当压电谐振器在固定件处与其它元件相连时,每个压电谐振器都可以得到所需的谐振特性。这样便能可靠地得到一个具有稳定特性的梯形滤波器。
在需要时,将第一压电谐振器和附加压电谐振器相互粘接、并将第一和第二间隔板在其两侧相互粘接,从而构成第一至第十二实施例所述的谐振板;谐振板也可由相同材料整体制成。例如,在图29所示的实施例中,矩形压电谐振板可以这样制备,即用激光束或类似物将平面状的谐振板22制成规定的形状,并在其两个表面加工出预定的电极形状,从而得到谐振板22。在这种情况下,因为谐振板22是一个整体元件,所以可以省略谐振板22外周边上的粘接部分,以改善片状滤波器的防潮性能。也就是说,这样得到的片状滤波器的谐振板22的侧面能够避免潮湿渗入。
在第一至三实施例中,采用切变态的第四类压电谐振器是一种与第一类压电谐振器相结合的压电谐振器。但是,这类压电谐振器也可以由另一种如采用横向膨胀态或纵向膨胀态的能陷型压电谐振器制备出来。
此外,第三类压电谐振器的电极形状并不仅限于图64和65所示的形状。例如图73和74所示,一对第一谐振电极601a和601b可以设置在压电振动件600的上表面上,而一对第二谐振电极602a和602b则设置在压电振动件的下表面上,其位置分别与第一谐振电极601a和601b相对。在这种情况下,第一和第二谐振电极601a和602b设置在图62所示电荷分布中具有强负极性的部分中。因此,虽然该压电振动件600与图64所示的压电谐振器531的相位不同,2n度的弯曲态振动也会被可靠地激励起来,以便将能量捕集在压电振动件600中。
尽管上面已对本发明进行了详细的说明,显然它们只是用于说明本发明的例子而不是对本发明的限制,本发明的宗旨和范围仅由所附的权利要求书的条款来限定。
权利要求
1.一种梯形滤波器,它包括至少一个构成串联支路的串联谐振器,至少一个构成并联支路的并联谐振器,所述串联和并联谐振器中的至少两个相对于安装面相互横向连接在一起,串联和并联谐振器中的至少一个是能陷型谐振器,其具有板状压电振动件、一个连接到上述压电振动件上的支承件、以及一个连接到上述支承件上的固定件。
2.如权利要求1所述的梯形滤波器,其特征在于串联和并联谐振器中的至少一个是采用横向膨胀态的能陷型谐振器,它包括一个矩形板状压电振动器,其边比b/a处于下列值b/a=n(-1.47σ+1.88) …方程(1)的±10%的范围内,其中a和b分别代表上述压电振动件的短边和长边的长度,σ代表压电振动件所用材料的泊松比,n代表一个整数,一个连接到该压电振动件的每个短边中心处的支承件以及一个连接到该支承件外端的固定件。
3.如权利要求1所述的梯形滤波器,其特征在于串联和并联谐振器中的至少一个是切变态能陷型压电谐振器,它包括一个带有沿一方向极化的板形压电元件的压电振动件,及设置在该压电元件上并垂直于极化方向施加交流电压的第一和第二谐振电极,一个平行于该极化方向并呈矩形的压电表面,其边比b/a处于下列值b/a=n(0.3σ+1.48) …方程(2)的±10%的范围内,其中a和b分别代表上述矩形表面的短边和长边的长度,σ代表压电元件所用材料的泊松比,n代表一个整数,一个连接到该压电振动件上的支承件以及一个连接到该支承件上的固定件。
4.如权利要求1所述的梯形滤波器,其特征在于串联和并联谐振器中的至少一个是第一类压电谐振器,它包括一个具有一对相对的矩形表面及连接这对矩形表面的四个侧表面的板状压电振动件,设置在压电振动件的这对矩形表面上的第一和第二谐振电极,沿矩形表面的每个短边连接到压电振动件侧表面一端上的支承件,以及连接到该支承件上的固定件,边比b/a设定在下述值b/a=n(0.3σ+1.48) …方程(3)的±10%的范围内,其中a和b分别代表矩形表面的短边和长边的长度,σ代表压电振动件所用材料的泊松比,n代表一个整数,这样构成的第一类压电谐振器通过压电的横向效应,可激励出2m(m为整数)度的弯曲态振动。
5.如权利要求1到4之一所述的梯形滤波器,其特征在于进一步包括一个设置在压电振动件和上述支承件之间的动态阻尼器。
6.如权利要求1所述的梯形滤波器,其特征在于上述支承件和上述固定件被连接到上述压电振动件的每一侧。
7.如权利要求1或6所述的梯形滤波器,其特征在于进一步包括第一和第二表面基片,至少两个固定在上述第一和第二表面基片之间的谐振器的至少一个连接结构。
8.如权利要求1或6所述的梯形滤波器,其特征在于进一步包括一个底座基片和一个固定到该底座基片上的盖件,至少一个将所述至少两个谐振器叠放在该底座基片上连接结构,固定在底座基片上的所述盖件将相互叠放的若干谐振器封闭起来。
9.如权利要求1所述的梯形滤波器,其特征在于所述串联和并联谐振器中的每一个均具有一个板状压电振动件,和在该压电振动件两侧设置的并与该压电振动件相连的支承件,以及与该支承件连接的固定件。
10.如权利要求9所述的梯形滤波器,其特征在于进一步包括连接到至少两个所述压电谐振器的两侧的第一和第二间隔板,所述至少两个压电谐振器相互横向连接在一起,以便允许压电谐振器的振动件进行振动,从而由上述至少两个压电谐振器及第一和第二间隔板构成一个谐振板。
11.如权利要求10所述的梯形滤波器,其特征在于构成上述谐振板的至少两个压电谐振器及第一和第二间隔板被制成一个整体。
12.如权利要求10所述的梯形滤波器,其特征在于设置有若干谐振板,所述这些谐振板被叠放起来,以便允许其压电振动件进行振动。
13.如权利要求1所述的梯形滤波器,其特征在于进一步包括设置在上述压电振动件上的第一和第二谐振电极,设置在上述固定件上的铅电极,上述第一和第二谐振电极电连接到所述铅电极上。
14.如权利要求13所述的梯形滤波器,其特征在于进一步包括若干设置在其外表面上的外部电极,这些外部电极与上述铅电极电连接。
全文摘要
一种梯形滤波器,包括若干串联谐振器和若干并联谐振器连接而成的电路结构。至少两个板状谐振器相对于安装面互相横向连接,串联谐振器和并联谐振器中的至少一个是能陷型压电谐振器,其具有一个板状压电振动件,一个连接到该压电振动件上的支承件以及一个连接到该支承件上的固定件。
文档编号H03H9/58GK1105490SQ94116188
公开日1995年7月19日 申请日期1994年8月17日 优先权日1993年8月17日
发明者开田弘明 申请人:株式会社村田制作所