专利名称:具有宽广线性动态范围的温度补偿增益控制放大器的利记博彩app
技术领域:
本发明涉及线性放大器的自动增益控制(AGC)电路,尤其涉及具有宽广线性动态范围的改进型温度补偿AGC电路。
在通信无线电收发机中用自动增益控制(AGC)电路来控制放大器增益的应用已在多种电路设计中得以实现。一般地,这种放大器中增益控制的动态范围受到一定程度的限制。在使用场效应晶体管(FET)线性放大器电路时尤其如此,这是由于典型的单栅极和双栅极FET的线性工作范围在一定程度上受限制所造成的。
众所周知,放大器增益控制会随着电路温度的变化而产生漂移。现已采用多种电路设计来进行线性放大器的AGC温度补偿。在信号的幅度极端区域,对于温度感应漂移进行补偿时对器件特征值的要求不同于对非线性器件进行补偿时的要求。
在某些应用中,例如在码分多址(CDMA)蜂窝状电话或个人通信装置无线电收发机中,无线电收发机的功率控制和接收机的自动增益控制对正常的系统运行来说是十分重要的,在一相对较高的动态信号范围中无线电发送接收放大器的增益必需互相跟踪。在这种情况下,要求接收放大器的增益在80dB的范围上与增益控制信号呈线性响应。
将1992年3月24日公布的名为“线性增益控制放大器”、并已转让给受让人的美国专利5099204作为参考文献结合入本文,其中Charles E.Wheatley Ⅲ等人揭示了一种线性增益控制放大器装置,它带有一根据预定的器件特征值产生补偿信号的补偿电路。Wheatley的补偿信号用来使FET器件在动态工作范围极端处的非线性特征值线性化,由此确保宽动态范围内线性放大器的增益控制。Wheatley还提出在AGC补偿电路中使用热敏电阻以补偿热漂移。
在许多数字通信系统中,无线电收发机的AGC回路必须提供在信号功率电平范围上与所测得的接收信号功率呈对数表达关系的信号。在数字接收机中,为了对所接收信号进行适当的信号处理,必须限制已放大的接收信号的功率。在蜂窝状无线电收发机中,数字接收机可接收一信号功率在宽广范围内迅速变化的信号。对CDMA蜂窝状电话无线电收发机中的接收放大器及发送放大器而言,用增益-跟踪的要求较难满足快速的线性AGC的要求。即,在典型的数字接收机中,对接收到的信号功率的电平进行检测、数字化并随后对之进行测量。然后在一般情况下将测得的值与预定控制值进行比较且以数字形式产生误差信号。然后用该误差信号控制接收放大器和发送放大器两者的增益,从而将所接收及所发送信号的强度调节至分别与所要求信号功率相同。谨慎地控制接收放大器的增益从而可对接收信号进行适当的信号处理。同样谨慎地对发送机放大器的增益进行控制,从而能够在没有不必要的功率损耗的条件下确保信道中足够的信号强度,由于发送机热源漂移特征值的变化,进一步恶化了发送机放大器增益要求的所需设置。
为了解决蜂窝状电话无线电收发机放大器增益的线性问题,人们已提出了多种技术方案。例如,这里收编的1992年4月21日公布的名为“高动态范围闭环自动增益控制电路”、并已转让给受让人的美国专利5,107,225用作对比文献,其中,Charles E.Wheatley,Ⅲ等人揭示了一种高动态范围闭环AGC电路,它根据所接收信号之强度指示自动地控制发送和接收放大器的增益。Wheatley等人提出了一种方法,它把所接收信号的强度指示(RSSI)及器件特征值的补偿信号结合起来以提供一种系统,该系统中在一宽动态范围内接收和发送放大器增益的分贝值随控制信号呈线性变化。
在这些应用及其它应用中,可明显地认识到,目前在本技术领域内亟需一种温度变化时补偿放大器增益的方法,从而确保这两个放大器在一宽动态工作范围内可互相跟踪。本发明以下文所述的方法解决了本技术领域中已被明确认识到的但尚未解决的有关问题及不足之处。
本发明通过增加一独立的增益补偿电路来产生根据预定特征值的响应温度变化的第二补偿信号,从而解决了温度-补偿增益跟踪问题。本发明的方法中可采用低价的应用双栅极FET器件的放大器或采用本技术领域中众所周知的任何其它类型的合适的线性放大器件。
补偿电路采用热敏电阻来提供一接收机增益补偿信号,用所述补偿信号来调节接收放大器的增益随温度的变化。随后根据第二预定特征值调整接收机增益补偿信号以产生一发送放大器增益补偿信号,该补偿信号适用于调节发送放大器的增益随温度的变化。
本发明的温度补偿方法可用于在上文引用的专利5,099,204中由Wheatley所述及的双栅极FET线性增益控制放大器;且通过增加一根据本发明的第二补偿电路随后将所得到的温度补偿控制信号加到每一放大级的第一栅极电路,从而在上文所引用的由Wheaeley等人提出的专利5,107,225中的接收和发送放大器AGC环路中使用该温度补偿方法。
本发明电路的一个目的是采用保持放大器的线性增益跟踪特征的方式来对无线电收发机中两个线性放大器的增益进行补偿。本发明电路的一个特点是温度补偿控制信号在每一FET级的第一栅极上,从而使之与根据上文所引用的专利中所说的加在其第二栅极上的器件特征值增益补偿信号相隔离。
参照下文的描述、权项及附图将使本发明的上述主要目的及其它目的、特性和优点都更为明确。
为了完全地理解本发明,下文将对如附图所示的实施例进行详细描述。
图1示出了采用本发明热补偿方法的表示增益控制无线电收发放大电路的功能方框图;
图2示出了一个两级放大器的简单方框图,所述放大器采用了本发明的温度补偿电路;
图3和4是图1和2中温度和器件补偿控制电路的图解实施例;
图5是图1中接收放大器的图解实施例;
图6是图1中发送放大器的图解实施例;
图7示出了以温度为参数的对数的装置增益控制率;
图8示出了第一栅极电压对增益控制斜率的作用;且图9表示,在增加了图3所示的温度补偿控制电路以后,作为器件增益补偿电压之函数的线性增益误差的分贝量。
图1提供了典型的无线电发送机中所选择单元的功能方框图,它包括本发明的温度补偿电路10。按照上文引用的美国专利5,107,225中由Wheaeley等人所提出的方法构成接收放大器补偿电路12及发送放大器补偿电路14。当所需线性增益未超过放大器16和18的线性增益范围时,无需因为非线性而对电路12和14进行补偿。根据本发明的热补偿方法,接收放大器16和发送放大器18如图所示均带有两个补偿信号输入端。
图2提供了采用本发明之温度补偿电路10的一个两级放大器的简单方框图。在参照本文上面所引美国专利第5,099,204号中Wheaeley的描述的最佳结构中,通过滤波器22将第一放大级20连接到第二放大级24上。除了一个器件增益补偿信号在导线28上被加到两个放大器20和24上这一点之外,所述单个放大器的器件增益补偿电路26与电路12和14(图1)的功能相似。可注意到,当放大器未超出线性工作区域时,无需对电路26进行非线性补偿。
图3和4提供了图1中温度补偿电路10及器件补偿电路12和14的较佳实施例。图3示出了带有单个运算放大器(op amp)30及热敏电阻32的电路10。工作中,电路10首先对加在电阻R1和热敏电阻32上的电源电压Vcc进行分压以产生中值电压34。在由电阻R2和R3形成的分压器上对中值电压34进行分压导线36上所得到的电压是热补偿信号(VG1-RX),它用于接收放大器16(图1)和图2中的放大器20和24。
热增益补偿信号同样输入运算放大器30的非倒相输入端,所述运算放大器被用作一单位增益隔离放大器。因此,导线38上的输出信号放大器输出端上所产生的温度增益补偿信号36幅值相同。由电阻R4和R5对导线38上的输出信号进行分压从而在导线40上产生第二热补偿信号。第二热补偿信号被用作图1中所示的发送放大器热补偿信号(VG1-TX)。在这一实例中,由于发送和接收放大器的差别使得用来发送和接收的热补偿信号相互不同。导致产生两个热补偿信号之差别的因素可包括器件类型,器件驱动的阻抗或器件的工作频率。在一般情况下,接收和发送电路的热补偿信号可以是相同的。
图4示出了接收放大器的器件补偿电路12的较佳实施例(图1)。电路12采用运算放大器42来比较导线44上的AGC参考信号和导线46上的接收信号强度指示信号(RSSI),在导线28上产生放大器件增益补偿信号(图1的VG2-RX和图2的VG2)。在工作中,电路12在导线46上接受来自运算放大器42倒相输入端之高阻抗源的RSSI信号。导线28上的器件补偿信号通过电容器C1被反馈至运算放大器42的非倒相输入端。这样运算放大器42构成一积分器,而电阻R6设置了时间常数。由电阻器R7和R8对导线44上的AGC参考信号进行分压,且得到的分压信号48被输至运算放大器42的非倒相输入端。并联在电阻器R8两端的电容器C2在较高频率下用作一滚降滤波器。这样,器件补偿信号就表示了RSSI的低频成分与AGC参考信号间的差。
图4还提供了一种用于图1的发送放大器器件补偿电路的较佳实施例。电路14未用于图2。采用一运算放大器50使接收放大器增益补偿信号与导线52上的发送增益调节信号以及导线54上的发送机增益控制信号相加,从而在导线56上产生如图1中所示的发送放大器增益补偿信号(VG2-TX)。导线28上的接收放大器增益补偿信号被加至由电阻器R10和R11和旁路电容器C3组成的低通分压器上,它从接收放大器增益补偿信号中除去所有显著的交流成分。导线56上经分压滤波后的信号被输至运算放大器50的非倒相输入端。
分别通过电阻器R13和R14使导线54上的发送机增益信号和导线52上的发送机增益调节信号相加并由导线58输入运算放大器50的倒相输入端。通过由R15和C4组成的非线性分压网络将导线60上的运算放大器输出信号反馈到运算放大器50的倒相输入端,从而使运算放大器50用作一低通加法器。最后,通过由电阻器R16和电容器C5组成的网络对导线60上的运算放大器输出信号进行分路从而在导线56上产生发送放大器增益补偿信号(VG2-TX)。上述线性和非线性分压网络中的每一网络互相作用从而在导线56上产生用于适当的器件增益补偿信号电平的必要特征值。
图5提供了图1中接收放大器16采用三级放大器的实施例。所述三级中的第一级均采用了一个双栅极场效应晶体管(FET)。在导线62上将一接收信号输入放大器16并使用FET64的第一级使用FET66的第二级及采用FET68的第三级对它进行放大,从而在导线70上产生输出信号。如图5所示,图5中导线36上的接收放大器热补偿信号(图1的VG1-RX及图2的VG1)通过一串联电阻被引至每个FET64、66及68的第一栅极G1。同样地,图4中导线28上接收放大器的增益补偿信号(图1的VG2-RX及图2的VG2)通过一串联电阻器被输至每一FET的第二栅极G2。连接至每一级FET之漏极的非线性电路是用来向每一级FET的漏极提供纯电阻负载的调谐网络。接收放大器16被调谐为图1所示的发送机所预定的中间载波频率,它例如可等于70MHZ。
图6示出了图1中发送放大器18的图解实施例。放大器18是一个三级双栅极FET调谐放大器,这一点上它与放大器16(图5)非常相似。放大器18被调谐至一发送中间载波频率,该频率是为图1所示的无线电收发机预先设定的,它例如可以为115MHZ。发送中继载波信号输至放大器的输入端72随后由三个FET级FET74、76和78依次对它进行放大。第三级输出信号在导线80上。再一次地,如图5所示,图3中导线40上的发送放大热补偿信号(图1的VG1-TX)通过一串联电阻被送至每一FET的第一栅极G1。图4中导线56上的发送放大器增益补偿信号(图1的VG2-TX)通过一串联电阻器被独立地连接到每一FET的第二栅极G2。
在图5和6中,利用每一FET的双栅极特性将所述两个相互隔离的信号引至每一级FET。所述两信号中的一个设置了器件的增益系数,另一个对作为温度的函数的增益的变化进行补偿。这种结构可用一独立于器件增益控制机构的简单的温度补偿信号来进行补偿。
图7示出了对用作可变增益放大器的FET电路中温度补偿的要求。图7中,给出了三种不用温度下的实验数据。水平轴代表加在FET级第二栅极G2上的电压电平,垂直轴代表归一化的FET级增益,从而使所测得的最高增益为0dB。由约0.5伏至约3.5伏的曲线部分表示了FET级的可使用范围,在该电压范围内电路的响应几乎为线性。(可使用前面提到的美国专利第5,107,225号中所描述的技术来扩展该区域)。曲线102图示了作为室温下一组FET的第二栅极G2电压之函数的归一化增益,曲线100图示与曲线102相同的区域上呈线性,但其斜率比曲线102陡。曲线100偏离曲线102,这导致了当第二栅极G2的电压约为3.5伏时温度误差大于7dB。曲线104图示了温度上升后同一电路的归一化增益。曲线104在与曲线102相同的电压下呈线性,但其斜率不如曲线102陡。曲线104偏离曲线102,这导致了在第二栅极G2电压为3.5伏时,其温度误差大于-6dB。本发明的温度补偿机构寻求一种补偿在图7中可见的斜率变化的方法。
图8示出了固定温度下在第一栅极G1电压范围内同一FET级的斜率。所测得的数据反映了第一栅极G1电压改变增益曲线之斜率的能力。图8中,水平轴代表加在FET级第一栅极G1上的电压电平伏特量。垂直轴代表从第二栅极G2等于1伏至第二栅极G2等于2伏时增益的变化,其单位为分贝/伏。由于第一栅极电压可用来改变增益曲线的斜率,第一栅极电压可在独立于第二栅极G2电压的任何特定值的条件下补偿温度对增益曲线斜率的作用。本发明产生一G1电压,它是温度的函数,因此它使用对斜率变化有相反作用的第一栅极电压G1的变化来抵消温度变化,从而补偿由温度引起的斜率变化。
图7中,第一栅极G1的电压随温度保持不变。图9中使用相同的FET级,加在第一栅极G1上的电压值作为温度的函数进行变化,且图9的这些曲线都紧密跟踪温度而变化。曲线112为室温下的增益曲线,曲线110和114分别代表在降温和升温时的增益曲线。在FET级有用区域上的误差是温度的递减函数,且所述三曲线的斜率几乎相同。三条曲线间的误差约为1dB,与图7相比这是一个显著的改进。
显然,从上文的解释看来,本领域内的一般技术人员可方便地得出本发明的其它实施例及修改方案。例如,若要求得到比图9中所示的结果更小的误差,最好也把温度的依赖关系加到增益补偿信号中。简单地将温度补偿信号(或其标度型式)加入增益补偿信号便可获得增益补偿信号的温度依赖性。这种补偿的效果或许能覆盖图9的平行线。
上述对较佳实施例所作的描述是为了使得本技术领域内的技术人员可制作或使用本发明。对于本领域内的技术人员而言,易于对这些实施例进行多种修改,无需使用创造力便能将本文所述的一般原理用到其它实施例中。因此,本发明的目的并不在于将其局限于本文所示的几个实施例,其保护范围与本文所揭示的原理及新颖特征相同的最宽范围一致。
权利要求
1.一种放大具有大动态范围的输入信号的方法,它使信号增益控制的分贝量为功率控制信号的线性函数,其特征在于,所述方法包括以下步骤(a)根据第一预定特征值产生对应于所述功率控制信号的第一补偿信号;(b)根据第二预定特征值产生对应于温度的第二补偿信号;(c)用一对应于所述第一和第二补偿信号之组合的信号增益系数放大所述输入信号并提供一相应的输出信号,在一预定范围内,所述信号增益系统的分贝量成为与温度无关的所述功率控制信号的线性函数。
2.如权利要求1所述的方法,其特征在于,所述放大步骤(c)包括以下步骤(c.1)以由所述第一和第二补偿信号确定的输入增益电平对所述输入信号进行放大并提供一相应的第一放大信号;(c.2)对所述第一放大信号进行滤波;并(c.3)以由所述第一和所述第二补偿信号确定的输出增益电平对所述经滤波的第一放大信号进行放大并提供所述相应的输出信号。
3.如权利要求2所述的方法,其特征在于,所述第一产生步骤(a)包括以下步骤(a.1)当所述功率控制信号低于第一预定电平时,根据第一增益补偿函数修正所述功率控制信号;且(a.2)当所述功率信号高于所述第一预定电平时根据第二增益补偿函数修正所述功率控制信号。
4.一种放大输入信号的电路,其信号增益的分贝量为与温度无关的功率控制信号的线性函数,其特征在于,所述电路包括第一补偿装置,它用来接收所述功率控制信号并根据第一预定特征值产生与所述控制信号相对应的第一补偿信号;第二补偿装置,它根据第二预定特征值产生对温度作出反应的第二补偿信号;及连接到所述第一和第二补偿装置上的放大装置,它用来接收所述输入信号及所述第一和第二补偿信号,用一相应于所述第一和第二补偿信号之组合的信号增益系数来放大所述输入信号,并提供相应的输出信号,所述信号增益系数的分贝量为所述功率控制信号的线性函数且在一定预定范围内与温度无关。
5.如权利要求4所述的电路,其特征在于,所述放大装置包括输入放大装置,它用来接收所述输入信号及所述第一第二补偿信号,并对应于所述第一和第二补偿信号的组合,以输入增益量对所述输入信号进行放大并提供相应的输入放大装置输出信号。连接至所述输入放大装置的滤波装置,它用于接收所述输入放大装置输出信号并对其滤波;及连接至所述滤波装置的输出放大装置,它用来接收所述经滤波的输入放大装置输出信号及所述第一和第二补偿信号,它将所述经滤波的输入放大装置输出信号放大至对应于所述第一和第二补偿信号的组合的输出增益电平,并提供相应的输出放大装置输出信号。
6.如权利要求5所述的电路,其特征在于所述滤波装置具有预定的输入和输出阻抗;所述输入放大装置还用来提供一选择过的输出阻抗,从而与所述滤波装置输入阻抗相匹配;且所述输出放大装置还用来提供一选择过的输入阻抗,从而与所述滤波装置输出阻抗相匹配。
7.如权利要求6所述的电路,其特征在于,所述输入和输出放大装置各包括一场效应晶体管(FET)放大器。
8.如权利要求4所述的电路,其特征在于,所述第一补偿装置包括运算放大器,它带有能够接收参考电压的非倒相输入端,带有能够接收AGC信号的倒相输入端并带有一输出端;及连接在所述运算放大器输出端与所述倒相输入端之间的非线性反馈网路。
9.如权利要求4所述的电路,其特征在于,所述第二补偿装置包括运算放大器,它带有能够接收参考电压的非倒相输入端,还带有一倒相输入端和一输出端;及连接至所述非倒相输入端的热敏电阻。
10.一种用于自动增益控制(AGC)电路的放大器电路,它产生AGC信号,该电路随着所述AGC信号在一高动态范围上对输入信号进行功率增益控制,从而使所述输入信号功率增益的分贝量为所述AGC控制信号的线性函数,所述放大器电路包括带有一输入端和一输出端的第一补偿电路,所述第一补偿电路能够在所述第一补偿电路输入端上接收所述AGC信号,它还能根据一个或更多个增益补偿特征值修正所述AGC信号,从而在所述第一补偿电路输出端上提供一经过修正的AGC信号;带有一输出端的第二补偿电路,所述第二补偿电路能够感知所述放大器电路的环境温度,且能在所述第二补偿电路的输出端根据一个或多个预定温度补偿特征值提供一温度补偿信号;和带有多个输入端和至少一输出端的放大器,将所述放大器输入端中的第一个连接到所述第一补偿电路的输出端,将所述放大器输入端中的第二个连接到所述第二补偿电路的输出端,所述放大器输入端中的第三个能接收所述输入信号,所述放大器具有分贝量对应于所述AGC信号呈逐段线性的增益区域部分,且所述放大器增益区域对应于所述经修正的AGC信号呈线性,所述AGC信号与所述放大器电路的环境温度无关。
11.如权利要求10所述的放大器电路,其特征在于,所述放大器包括带有多个输入端和一个输出端的第一放大器,将所述放大器输入端中的第一个连接至所述第一补偿电路的输出端,将所述第一放大器输入端的第二个连接到所述第二补偿电路的输出端且所述第一放大器输入端中的第三个能够接收所述输入信号,所述第一放大器具有分贝量对应于所述AGC信号呈逐段线性的增益区域部分,且所述第一信号放大器增益范围的分贝数对应于所述经修正的AGC信号呈线性;一滤波器,它带有一连接到所述第一放大器输出端上的输入端,它还带有一输出端;和带有多个输入端和一个输出端的第二放大器,将所述第二放大器输入端中的第一个连接到所述第一补偿电路的输出端,将所述第二放大器输入端中的第二个连接到所述第二补偿电路的输出端且所述第二放大器输入端中的第三个被连接到所述滤波器的输出端,所述第二放大器带有其分贝量相对于所述AGC信号逐段呈线性的增益区域部分,且所述第二放大器增益区域的分贝量对应于所述经修正的AGC信号呈线性关系。
12.如权利要求11所述的电路,其特征在于,所述第一和第二放大器各包括一双栅极场效应晶体管(FET)放大器。
13.如权利要求11所述的放大器电路,其特征在于,所述第一补偿电路包括一运算放大器,它带有能接收参考电压的非倒相输入端,还带有能接收AGC信号的倒相输入端及一输出端;及连接在运算放大器输出端与所述倒相输入端之间的非线性反馈网络。
14.如权利要求11所述的放大器电路,其特征在于,所述第二补偿电路包括一运算放大器,它带有能接受参考电压的非倒相输入端,还带有倒相输入端和一输出端;及连接至所述非倒相输入端的热敏电阻。
15.用于带有接收放大器和发送放大器的无线电收发机中的方法,它根据接收到的信号所测得的幅度放大发送信号,在一预定的幅度与温度的范围内使经放大的发送信号的幅度与所述测得的所接收信号之幅度呈相反的变化,其特征在于,所述方法包括以下不按顺序排列的步骤(a)根据代表所述测得的接收信号之幅度分贝量的所述接收信号,产生一接收信号强度指示(RSSI)信号;(b)根据至少一个预定特征值产生对所述RSSI信号作出反应的第一接收器补偿信号(RCS)和第一发送器补偿信号(TCS);(c)根据至少一个预定特征值产生对所述无线电收发器之环境温度作出反应的第二RCS信号和第二TCS信号;及(d)用一对应于所述第一TCS和所述第二TCS之组合的信号增益系数来放大所述发送信号。
16.如权利要求15所述的方法,其特征在于,所述第二产生步骤(b)包括以下步骤(b.1)根据一预定的接收器特征值产生对所述RSSI信号作出反应的所述第一RCS信号;及(b.2)根据第一预定的发送器特征值产生对所述第一RCS信号作出反应的所述第一TCS信号。
17.如权利要求16所述的方法,其特征在于,所述第三产生步骤(c)包括以下步骤(c.1)根据一预定的温度特征值产生对所述环境温度作出反应的所述第二RCS信号;及(c.2)根据第二预定的发送器特征值产生对所述第二RCS信号作出反应的所述第二TCS信号。
18.一种带有接收放大器和发送放大器的无线电收发机,其中所述发送放大器带有发送器输入信号并产生一发送器输出信号,其特征在于,发送放大器自动增益控制(AGC)电路包括连接到所述接收放大器的测量装置,它测量来自所述接收放大器的功率可变的接收信号,并产生表示所述接收信号之功率的接收信号强度指示(RSSI)信号;连接到所述测量装置的积分装置,所述测量装置接收与所述发送放大器输出信号之所需功率电平相对应的功率控制信号,所述积分装置随着时间对所述RSSI信号及所述功率控制信号之差进行积分并产生第一控制信号;连接到所述接收放大器和所述发送放大器的第一补偿装置,它接收所述第一控制信号并根据第一预定特征值产生与所述控制信号相应的第一补偿信号;根据第二预定特征值产生与所述无线电收发机之环境温度相应的第二补偿信号;和连接到所述第一和第二补偿装置的放大器装置,它接收所述发送机输入信号和所述第一和所述第二补偿信号,用与所述第一和所述第二补偿信号之组合相对应的信号增益系数对所述发送机输入信号进行放大,且产生所述发送机输出信号,所述信号增益系数的分贝量在信号功率和温度的预定范围内为所述接收器信号功率分贝量的线性函数。
19.如权利要求18所述的AGC电路,其特征在于,所述放大器装置包括输入放大器装置,它接收所述输入信号和所述第一和第二补偿信号,用一相应于所述第一和第二补偿信号之组合的输入增益系数对所述输入信号进行放大,并产生相应的输入放大器装置输出信号;连接至所述输入放大器装置的滤波器装置,它对所述输入放大器装置的输出信号进行接收及滤波;及连接至所述滤波装置的输出放大器装置,它接收所述经过滤波的输入放大器装置输出信号及所述第一和第二补偿信号,用对应于所述第一和第二补偿信号之组合的输出增益电平对所述经过滤波的输入放大器装置输出信号进行放大,并产生相应的输出放大器装置输出信号。
20.如权利要求19所述的AGC电路,其特征在于,所述滤波装置具有预置的输入和输出阻抗;所述输入放大器装置还提供一选择过的输出阻抗从而与所述滤波装置的输入阻抗相匹配;且所述输出放大器装置还提供一选择过的输入阻抗从而与所述滤波装置的输出阻抗相匹配。
21.如权利要求20所述的AGC电路,其特征在于,所述输入和输出放大器装置各包括一场效应晶体管(FET)放大器。
22.一种电路,其特征在于,包括带有一输出端的温度敏感电路;带有一输出端的增益设置电路;和一双栅极场效应晶体管电路,它带有连接到所述温度敏感电路输出端的第一栅极端和连接到所述增益设置电路之输出端的第二栅极端。
23.如权利要求22所述的电路,其特征在于,所述双栅极场效应晶体管电路还包括连接至所述双栅极场效应晶体管电路之漏极和源极的偏压电路;连接至所述第一栅极端的模拟信号接收电路;及连接至所述漏极端的放大输出信号电路。
24.如权利要求23所述的电路,其特征在于所述模拟信号接收电路包括一电感器,所述电感器提供了具有谐振频率的谐振回路。
25.如权利要求23所述的电路,其特征在于,所述放大信号输出电路包括一电感器,所述电感器提供了具有谐振频率的谐振回路。
26.如权利要求22所述的电路,其特征在于,所述温度敏感电路包括一热敏电阻。
全文摘要
高动态范围线性自动增益控制(AGC)电路,它带有一独立的用于温度补偿的装置。本发明的温度补偿电路可用于闭环AGC电路,例如需在无线电收发机中用它对接收和发送放大器的增益进行补偿从而确保在温度频率和负载阻抗的区域上该两者紧密跟随。将温度补偿信号连接到场效应晶体管(FET)放大器的二个栅极之一上,从而在温度、频率和负载阻抗的区域内维持一恒定的增益函数关系。由接收放大器的热补偿信号取得发送放大器的热补偿。
文档编号H03G1/04GK1098571SQ9410711
公开日1995年2月8日 申请日期1994年6月14日 优先权日1993年6月14日
发明者J·米海尔·普赖斯, 查尔斯·E·惠特利Iii, 凯瑟琳·W·怀特 申请人:夸尔柯姆股份有限公司