基于四波混频效应的三角波产生装置制造方法

文档序号:7545896阅读:277来源:国知局
基于四波混频效应的三角波产生装置制造方法
【专利摘要】一种基于四波混频效应的三角波产生装置,包括:一第一激光源和一第二激光源;一光锁相环装置,其分别与第一激光源和第二激光源连接;一3dB光耦合器分别与第一激光源及第二激光源连接;一半导体光放大器或高非线性光纤与3dB光耦合器的输出端连接;一光滤波器与半导体光放大器连接;一第一偏振控制器与光滤波器连接;一可调谐光延迟线与3dB光耦合器连接;一第二偏振控制器与可调谐光延迟线连接;一偏振合束器与第一偏振控制器和第二偏振控制器连接;一光电探测器与偏振合束器连接,用于将光信号光电转换为电信号输出。本发明能够很巧妙地控制微波信号的相位,从而在时域上产生三角波波形。
【专利说明】基于四波混频效应的三角波产生装置
【技术领域】
[0001]本发明属于微波光子学领域,更具体的说是一种基于四波混频效应的三角波产生装直。
【背景技术】
[0002]光生微波技术在光载无线电通信系统,雷达系统及传感网络系统中起着至关重要的作用。当前,微波频段覆盖了从几GHz到几十GHz范围,高频微波的需求越来越迫切。利用光生微波的方法很好的避免了高频微波信号对电子器件的带宽要求。与传统的微波信号产生方法相比,光生微波技术具有以下优势:高带宽特性,低损耗特性,抗电磁干扰特性等。因此,光生微波的方法具有很大的优势。
[0003]当前光生微波信号也是一大研究热点,如对频谱的谱形进行整形,对应到时域上产生三角形电脉冲形式,锯齿波形式等。而产生三角波脉冲的方法也有很多,如利用强度调制器与光滤波器结合产生载波与一阶边带和三阶边带分别拍频产生一倍频和三倍频的微波信号。但是这种方法的缺点是一阶边带和三阶边带与光载波之间的相位相对来说不是很容易控制,并且光滤波器也会对不同的边带引入不同的相位,从而很难保证一倍频与三倍频微波信号的相位满足1:3的关系。
[0004]综上所述,为了解决上述面临的技术瓶颈,针对当前的基于调制器产生三角波脉冲的局限性,本发明提出了一种光生三角波的方案。

【发明内容】

[0005]本发明要解决光生三角波中基于调制器产生的方案中很难控制一倍频与三倍频微波信号相位满足1: 3的关系,提出了一种新的产生一倍频与三倍频微波信号的方法,并能够很巧妙地控制微波信号的相位,从而在时域上产生三角波波形。
[0006]本发明公开的一种基于四波混频效应的三角波产生装置,包括:
[0007]一第一激光源,其用于产生光载波;
[0008]一第二激光源,其用于产生光载波;
[0009]一光锁相环装置,其分别与第一激光源的输出端和第二激光源的输入端连接,用于实现光载波与光载波相位锁定,该第一激光源、第二激光源和光锁相环装置组成锁相光源;
[0010]— 3dB光稱合器,其输入端分别与第一激光源及第二激光源连接,用于将光载波耦合输入分成功率比为1:1的两路输出;
[0011]—半导体光放大器或高非线性光纤,其输入端与3dB光稱合器的输出端连接,用于对输入的光信号进行非线性放大,产生四波混频效应;
[0012]一光滤波器,其输入端与半导体光放大器的输出端连接,用于对四波混频产生的信号进行滤波,并输出给光偏振控制器;
[0013]—第一偏振控制器,其输入端与光滤波器的输出端连接,用于对输入的光信号进行偏振态控制;
[0014]—可调谐光延迟线,其输入端与3dB光稱合器的输出端连接,用于对该路光信号进行相位控制;
[0015]一第二偏振控制器,其输入端与可调谐光延迟线的输出端连接,用于对下路光信号的偏振态进行控制;
[0016]—偏振合束器,其输入端与第一偏振控制器和第二偏振控制器的输出端连接,用于将输入信号分别控制在相互垂直的偏振态上;
[0017]—光电探测器,其输入端与偏振合束器的输出端连接,用于将光信号光电转换为电信号输出。
[0018]本发明的有益效果是,其能够很巧妙地控制微波信号的相位,从而在时域上产生三角波波形。
【专利附图】

【附图说明】
[0019]为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明如后,其中:
[0020]图1是基于四波混频效应的二角波广生装置结构不意图;
[0021]图2是基于四波混频效应的三角波产生装置的光谱示意图;
[0022]图3是基于四波混频效应的三角波产生装置的时域波形示意图;
[0023]图4是基于四波混频效应的三角波产生装置的频谱示意图。
【具体实施方式】
[0024]请参阅图1所示,本发明提供一种基于四波混频效应的三角波产生装置,包括:
[0025]一第一激光源a,其用于产生光载波;
[0026]一第二激光源b,其用于产生光载波;
[0027]—光锁相环装置C,其分别与第一激光源a的输出端和第二激光源b的输入端连接,用于实现第一激光源a的光载波与第二激光源b的光载波相位锁定,该第一激光源a、第二激光源b和光锁相环装置c组成锁相光源,所述的锁相光源是由相位锁定的两根光梳梳齿组成;
[0028]— 3dB光稱合器d,其输入端分别与第一激光源a及第二激光源b连接,用于将光载波耦合输入分成功率比为1:1的两路输出;
[0029]—半导体光放大器e或高非线性光纤,其输入端与3dB光I禹合器d的输出端连接,用于对输入的光信号进行非线性放大,产生四波混频效应;
[0030]一光滤波器f,其输入端与半导体光放大器e的输出端连接,用于对四波混频产生的信号进行滤波,并输出给光偏振控制器,该光滤波器f的作用是滤除第一激光源a和第二激光源b,产生三倍频微波信号,其中光滤波器f为光纤布拉格光栅;
[0031]—第一偏振控制器g,其输入端与光滤波器f的输出端连接,用于对输入的光信号进行偏振态控制;
[0032]一可调谐光延迟线h,其输入端与3dB光耦合器d的输出端连接,用于对该路光信号进行相位控制,所述的可调谐光延迟线h是用于引入固定相位差,满足一倍频和三倍频信号的相位差为1: 3的关系;
[0033]一第二偏振控制器i,其输入端与可调谐光延迟线h的输出端连接,用于对下路光信号的偏振态进行控制;
[0034]—偏振合束器j,其输入端与第一偏振控制器g和第二偏振控制器i的输出端连接,用于将输入信号分别控制在相互垂直的偏振态上,该偏振合束器j用于将光分在垂直的偏振态上传输,即第一激光源a和第二激光源b所在偏振态与四波混频产生的上变频光与下变频光所在偏振 态垂直,这种方式可以避免一倍频与二倍频信号的产生,所述的两路的第一偏振控制器g和第二偏振控制器i与偏振合束器j结合起来,通过控制两路的偏振态可以间接的控制一倍频微波信号与三倍频微波信号功率比满足三角波产生的条件,即实现9:1的关系;
[0035]—光电探测器k,其输入端与偏振合束器j的输出端连接,用于将光信号光电转换为电信号输出。
[0036]如图1所示,第一激光源a与第二激光源b由两个独立的激光器产生,两激光源相位通过光锁相环c锁定,产生锁相光源输出。第一激光源a与第二激光源b可以为相位相同,也可以存在固定的相位差Φ,输出光波长分别为入…入卩波长差为匕两光波长经过3dB光耦合器输出给两路,上路经半导体光放大器e,基于非线性四波混频效应,产生上变频光信号X1和下变频光信号λ 2,基于四波混频效应的特性,上变频光信号X1和下变频光信号入2波长差为3f,并且其相位与入3和入“自频产生微波信号相位相同。经过光滤波器f滤除上路光信号中的入3和Ab成分,只在上路中保留上变频光信号入1和下变频光信号入2,也就是只在上路中保留频率间隔为3f的两光信号,其中光滤波器f可以由光纤布拉格光栅实现。通过控制偏振控制器g输出给偏振合束器j 一输入端口。3dB光稱合器d下路输出给一可调谐光延迟线h,其中下路光信号中只包含入3和Xb成分,通过调节可调谐光延迟线h长度保证下路中入3和Xb成分拍频产生的微波信号f的相位是上路微波信号3f的1/3,从而满足三角波产生的相位条件。同时,上下路信号通过控制偏振控制器g、i实现下路产生的微波信号f的微波功率是上路产生微波信号3f的9倍,从而满足三角波产生的功率条件。通过控制下路的光偏振控制器i输入给偏振合束器j的另一输入端。基于偏振合束器j的两输入端是偏振态垂直,所以不会产生上路信号与下路信号互相拍频产生2倍频微波信号的影响。通过光电探测器k平方率检波,并将输出电信号输出给频谱分析仪和采样示波器检测频域谱形与时域波形。
[0037]图2示出了基于四波混频效应的三角波产生装置的光谱示意图,上路光波入3和λ )3经过四波混频效应产生上变频光与下变频光入1和λ 2上路经过光滤波器滤除光波Aa和入b,下路只有光波、和λ,。
[0038]图3示出了基于四波混频效应的三角波产生装置的时域波形示意图,该时域波形图由光采样示波器采集生成;
[0039]图4示出了基于四波混频效应的三角波产生装置的频谱示意图,图中给出了一倍频微波信号与三倍频微波信号的功率差在19dB左右会产生很好的三角波形状电脉冲。
[0040]以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
【权利要求】
1.一种基于四波混频效应的三角波产生装置,包括: 一第一激光源,其用于产生光载波; 一第二激光源,其用于产生光载波; 一光锁相环装置,其分别与第一激光源的输出端和第二激光源的输入端连接,用于实现光载波与光载波相位锁定,该第一激光源、第二激光源和光锁相环装置组成锁相光源; 一 3dB光稱合器,其输入端分别与第一激光源及第二激光源连接,用于将光载波I禹合输入分成功率比为1:1的两路输出; 一半导体光放大器或高非线性光纤,其输入端与3dB光稱合器的输出端连接,用于对输入的光信号进行非线性放大,产生四波混频效应; 一光滤波器,其输入端与半导体光放大器的输出端连接,用于对四波混频产生的信号进行滤波,并输出给光偏振控制器; 一第一偏振控制器,其输入端与光滤波器的输出端连接,用于对输入的光信号进行偏振态控制; 一可调谐光延迟线,其输入端与3dB光耦合器的输出端连接,用于对该路光信号进行相位控制; 一第二偏振控制器,其输入端与可调谐光延迟线的输出端连接,用于对下路光信号的偏振态进行控制; 一偏振合束器,其输入端与第一偏振控制器和第二偏振控制器的输出端连接,用于将输入信号分别控制在相互垂直的偏振态上; 一光电探测器,其输入端与偏振合束器的输出端连接,用于将光信号光电转换为电信号输出。
2.根据权利要求1所述的基于四波混频效应的三角波产生装置,其中所述的锁相光源是由相位锁定的两根光梳梳齿组成。
3.根据权利要求1所述的基于四波混频效应的三角波产生装置,其中光滤波器的作用是滤除第一激光源和第二激光源,产生三倍频微波信号,其中光滤波器为光纤布拉格光栅。
4.根据权利要求1所述的基于四波混频效应的三角波产生装置,其中可调谐光延迟线是用于引入固定相位差,满足一倍频和三倍频信号的相位差为1: 3的关系。
5.根据权利要求1所述的基于四波混频效应的三角波产生装置,其中偏振合束器用于将光分在垂直的偏振态上传输,即第一激光源和第二激光源所在偏振态与四波混频产生的上变频光与下变频光所在偏振态垂直,以避免一倍频与二倍频信号的产生。
6.根据权利要求1所述的基于四波混频效应的三角波产生装置,其中两路的第一偏振控制器和第二偏振控制器与偏振合束器结合起来,通过控制两路的偏振态可以间接的控制一倍频微波信号与三倍频微波信号功率比满足三角波产生的条件,即实现9: I的关系。
【文档编号】H03K3/02GK103986441SQ201410232047
【公开日】2014年8月13日 申请日期:2014年5月28日 优先权日:2014年5月28日
【发明者】李伟, 孙文惠, 王文亭, 刘建国, 祝宁华 申请人:中国科学院半导体研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1