宽频频率电压转换电路的利记博彩app

文档序号:7542289阅读:671来源:国知局
专利名称:宽频频率电压转换电路的利记博彩app
技术领域
本实用新型属于信号处理技术领域,更具体的说是涉及一种宽频频率电压转换电路。
背景技术
频率电压转换电路在数据采集、信号处理和测速系统等领域有着广泛的应用。但是由于频率电压转换芯片自身性能的限制,所设计的频率电压转换电路能转换的频率范围一般比较小,很难处理频率比较高的信号。因此为了解决这种问题,就必须对频率电压转换电路允许输入信号的频率进行扩展。现阶段实现宽频频率电压转换电路的方法是直接利用宽频频率电压转换芯片,例如ADI公司生产的基于I A技术的频率电压转换芯片AD7740、AD7741、AD652、AD654、AD650及ADVFC32等。但是这些芯片构成的频率电压转换电路的允许频率范围最大也在3MHz左右,而且芯片的成本较高,构成的电路结构比较复杂,功耗较大。

实用新型内容本实用新型的目的在于提供一种电路结构简单、成本低、功耗小的宽频频率电压转换电路。为实现上述目的,本实用新型所采用的技术方案是一种宽频频率电压转换电路,包括依次相连接的分频电路、频率电压转换电路和放大电路,分频电路和放大电路还分别与主控电路相连接。主控电路包括单片机,单片机分别与晶振电路和复位电路相连接,单片机的P2. 0引脚接第二按键的一端,单片机的P2. I引脚接第三按键的一端,第二按键的另一端和第三按键的另一端分别接地;单片机的Pl. 0引脚分别接反相器的第I引脚和分频电路,单片机的Pl. I引脚分别接反相器的第3引脚和分频电路;单片机的Pl. 2引脚分别与反相器的第5引脚和放大电路相连接;单片机的Pl. 3引脚分别与反相器的第9引脚和放大电路相连接;单片机的Pl. 4引脚分别与反相器的第11引脚和放大电路相连接;单片机的Pl. 5引脚分别与反相器的第13引脚和放大电路相连接;单片机的P3. 5引脚接分频电路,反相器的第7引脚接地,反相器的第14引脚接+5V电源;反相器的第2引脚、第4引脚、第6引脚、第8引脚、第10引脚和第12引脚分别接有一个发光二极管,并与发光二极管的正极相连接,所有发光二极管负极均与排阻的一端相连接,排阻的另一端接+5V电源。本实用新型提供的上述实现宽频频率电压转换电路,扩展了频率电压转换电路允许输入的频率范围,解决了在许多应用领域待处理信号频率较大而处理不便的问题。同时,分频电路部分主要采用双D型触发器74ALS74、十进制同步加/减计数器74ALS168、双4选I数据选择器74ALS153构成,实现了对输入的待处理信号分频的目的,具有速度高、功耗小、成本低、输入阻抗低等特点。另外,放大电路部分主要采用运算放大器0P37、4双向模拟开关CD4066及电阻网络构成,实现了程控放大,具有电路结构简单、实时性好的优点。主控电路系统采用AT89C52单片机,其结构简单、成本低,编程方便。

图I是本实用新型宽频频率电压转换电路的系统结构框图。图2是本实用新型宽频频率电压转换电路中分频电路的结构示意图。图3是本实用新型宽频频率电压转换电路中频率电压转换电路的结构示意图。图4是本实用新型宽频频率电压转换电路中放大电路的结构示意图。图5是本实用新型宽频频率电压转换电路中主控电路的结构示意图。图6是本实用新型宽频频率电压转换电路的程序流程框图。
·[0014]图I中1.主控电路,2.分频电路,3.频率电压转换电路,4.放大电路。
具体实施方式
以下结合附图和具体实施方式
对本实用新型进行详细说明。本实用新型宽频频率电压转换电路的结构,如图I所示,包括依次相连接的分频电路2、频率电压转换电路3和放大电路4,分频电路2和放大电路4还分别与主控电路I相连接。当整形后的待处理信号的频率较高时,先将该整形后的待处理信号送入分频电路2进行400分频,然后主控电路I测量待处信号经过400分频后的频率值,比较后,控制分频电路2选择合适的分频倍数对整形后的待处理信号进行重新分频,同时主控电路I控制放大电路4选择合适的放大倍数;重新分频后产生的分频后的信号送入频率电压转换电路3,将分频后的信号fn转换为电压信号,电压信号经放大电路4放大相应的倍数后变为所需的频率电压v0,从而达到扩展频率电压转换电路允许输入信号频率的目的。如图2所示,本实用新型频率电压转换电路中分频电路2的结构,包括第一触发器U1、第一计数器U2、第三计数器U3、第二触发器U4和数据选择器U5 ;第一触发器Ul的第I引脚、第4引脚、第14引脚、第13引脚、第10引脚、第一计数器U2的第16引脚和第二计数器U3的第16引脚分别接+5V电源;第一触发器Ul的第2引脚接第一触发器Ul的第6引脚,第一触发器Ul的第3引脚和数据选择器U5的第6引脚分别接整形后的待处理信号/;.,第一触发器Ul的第7引脚接地;第一触发器Ul的第12引脚接第一触发器Ul的第8引脚,第一触发器Ul的第5引脚和第11引脚分别与第一计数器U2的第2引脚相连接,第一触发器Ul的第9引脚与数据选择器U5的第5引脚相连接,第一触发器Ul的第9引脚是4分频信号的输出端。第一计数器U2的第9引脚、第I引脚和第二计数器U3的第9引脚、第I引脚分别接+5V电源;第一计数器U2的第10引脚、第7引脚、第8引脚和第二计数器U3的第10引脚、第7引脚、第8引脚分别接地;第一计数器U2的第15引脚分别与第二计数器U3的第2引脚和第二触发器U4的第3引脚相连接。第二计数器U3的第15引脚与第二触发器U4的第11引脚相连接。第二触发器U4的第I引脚、第4引脚、第14引脚、第13引脚和第10引脚分别接+5V电源;第二触发器U4的第2引脚接第二触发器U4的第6引脚,第二触发器U4的第7引脚接地,第二触发器U4的第5引脚与数据选择器U5的第4引脚相连接,第二触发器U4的第5引脚作为40分频信号的输出;第二触发器U4的第12引脚接第二触发器U4的第8引脚,第二触发器U4的第9引脚与数据选择器U5的第3引脚相连接,第二触发器U4的第9引脚作为400分频的信号输出。数据选择器U5的第16引脚接+5V电源;数据选择器U5的第I引脚和第8引脚接地,数据选择器U5的第7引脚作为分频后的信号fa的输出端接频率电压转换电路3 ;数据选择器U5的第14引脚和第2引脚分别接主控电路I。第一触发器Ul和第二触发器U4均为双D型触发器74ALS74,其内部有两个独立的D型触发器,最大允许输入的时钟频率为80MHz,属于TTL类型的集成电路。第一计数器U2和第三计数器U3均采用十进制同步加/减计数器74ALS168,该加/减计数器同步置数,功耗为500mW,最高工作频率为40MHz,属于TTL类型的集成电路。数据选择器U5采用双4选I数据选择器74ALS153,其内部有两个公共的地址输入端,但数据输入输出通道却是独立的,功耗为200mV,最高工作频率为140MHz,属于TTL类型的集成电路。如图3所示,本实用新型电压转换电路中频率电压转换电路3的结构,包括转换芯片U6,转换芯片U6采用频率电压转换芯片LM331 ;转换芯片U6的第7引脚分别与第二电阻 R2的一端和第三电阻R3的一端相连接,第三电阻R3的另一端接地;转换芯片U6的第6引脚分别与第一电容Cl的一端和第一电阻Rl的一端相连接,第一电容Cl的另一端作为分频后的信号的输入端接分频电路2 ;转换芯片U6的第5引脚分别与第二电容C2的一端和第四电阻R4的一端相连接;第四电阻R4的另一端、第一电阻Rl的另一端、第二电阻R2的另一端和转换芯片U6的第8引脚分别接+12V电源。转换芯片U6的第I引脚作为转换后的电压信号^的输出端接放大电路4,转换芯片U6的第I引脚还分别与第三电容C3的一端和第五电阻R5的一端相连接,第三电容C3的另一端和第五电阻R5的另一端分别接地;转换芯片U6的第2引脚接第六电阻R6的一端,第六电阻R6的另一端与第七电阻R7的一端相连接,第七电阻R7为滑动变阻器;第七电阻R7的另一端、第七电阻R7的滑动触头、转换芯片U6的第3引脚、转换芯片U6的第4引脚和第二电容C2的另一端分别接地。第一电容Cl的电容值470pF,第一电阻Rl和第二电阻R2的阻值IOKQ,第三电阻R3的阻值68K Q,第六电阻R6的阻值12K Q,第七电阻R7的阻值5K Q,第四电阻R4和第五电阻R5为待定电阻,第二电容C2为待定电容。如图4所示,本实用新型频率电压转换电路中放大电路4的结构,包括模拟开关U7和运算放大器U8 ;模拟开关U7的第13引脚、第5引脚、第6引脚和第12引脚分别与主控电路I相连接,模拟开关U7的第14引脚接+12V电源,模拟开关U7的第7引脚接地。模拟开关U7的第I引脚分别与第八电阻R8的一端和运算放大器U8的第6引脚相连接,运算放大器U8的第6引脚作为本宽频频率电压转换电路的输出端V0 ;第八电阻R8的另一端分别与模拟开关U7的第4引脚和第九电阻R9的一端相连接,第九电阻R9的另一端分别与模拟开关U7的第8引脚和第十电阻RlO的一端相连接,第十电阻RlO的另一端分别与模拟开关U7的第11引脚和第十一电阻Rll的一端相连接,第十一电阻Rll的另一端接地;模拟开关U7的第2引脚、第3引脚、第9引脚和第10引脚分别与运算放大器U8的第2引脚相连接,运算放大器U8的第3引脚作为转换后的电压信号&的输入端,运算放大器U8的第4引脚分别接-12V电源和第四电容C4的一端,第四电容C4的另一端接地;运算放大器U8的第I引脚和第8引脚分别接电位器Rp的两端,运算放大器U8的第7引脚分别与第五电容C5的一端、+12V电源和电位器Rp的滑动触头相连接,第五电容C5的另一端接地。[0023]模拟开关U7采用四双向模拟开关CD4066,其内部每个开关独立控制,控制端为高电平时开关接通,当控制端为低电平时开关断开,导通电阻较小为50Q,最高频率为40MHz,工作速度高,属于CMOS类型的集成电路。运算放大器U8采用噪声低、速度高、带宽为63MHz的0P37运算放大器。放大电路4中的模拟开关U7和由电阻组成的电阻网络接在运算放大器U8的反相输入端之前,使得模拟开关U7的电阻对放大电路4的放大倍数几乎没有影响;电位器Rp用于实现运算放大器U8的调零。第八电阻R8的阻值30K Q,第九电阻R9的阻值9K Q,第十电阻RlO的阻值0. 9K Q,第i^一电阻Rll的阻值0. 1KQ,第四电容C4和第五电容C5采用电容值为0. Iii F的滤波电容,电位器Rp采用10 KQ电位器。如图5所示,本实用新型频率电压转换电路中主控电路I的结构,包括单片机U9、反相器UlO和排阻Ra ;单片机U9的第19引脚分别与晶振Xl的一端和第六电容C6的一端相连接,单片机U9的第18引脚分别与晶振Xl的另一端和第七电容C7的一端相连接,第六 电容C6的另一端和第七电容C7的另一端分别接地。单片机U9的第40引脚分别与第一按键Kl的一端、+5V电源和第八电容C8的一端相连接,单片机U9的第9引脚分别与第八电容CS的另一端、第十二电阻R12的一端和第十三电阻R13的一端相连接,第十二电阻R12的另一端接第一按键Kl的另一端;第十三电阻R13的另一端和单片机U9的第20引脚分别接地。单片机U9的P2.0引脚接第二按键K2的一端,单片机U9的P2. I引脚接第三按键K3的一端,第二按键K2的另一端和第三按键K3的另一端分别接地;单片机U9的Pl. 0引脚分别接数据选择器U5的第14引脚和反相器UlO的第I引脚,单片机U9的Pl. I引脚分别接数据选择器U5的第2引脚和反相器UlO的第3引脚(由图2和图5得);单片机U9的Pl. 2引脚分别与模拟开关U7的第13引脚和反相器UlO的第5引脚相连接;单片机U9的Pl. 3引脚分别与模拟开关U7的第5引脚和反相器UlO的第9引脚相连接;单片机U9的Pl. 4引脚分别与模拟开关U7的第6引脚和反相器UlO的第11引脚相连接;单片机U9的Pl. 5引脚分别与模拟开关U7的第12引脚和反相器UlO的第13引脚相连接;单片机U9的P3. 5引脚接数据选择器U5的第7引脚(由图2和图5得)。反相器UlO的第7引脚接地,反相器UlO的第14引脚接+5V电源;反相器UlO的第2引脚与第一发光二极管的正极相接,反相器UlO的第4引脚与第二发光二极管的正极相接,反相器UlO的第6引脚与第三发光二极管的正极相接,反相器UlO的第8引脚与第四发光二极管的正极相接,反相器UlO的第10引脚与第五发光二极管的正极相接,反相器UlO的第12引脚与第六发光二极管的正极相接;所有发光二极管的负极均与排阻Ra的一端相连接,排阻Ra的另一端接+5V电源。单片机U9采用AT89C52单片机。反相器UlO为7406反相器。排阻Ra的阻值为470 Q。将整形后的待处理信号首先经过分频电路2进行400分频后送入主控电路I中的单片机U9,单片机U9在其内部经过参数计算比较后选择合适的分频倍数,并控制分频电路2重新对整形后的待处理信号进行分频,同时单片机U9控制放大电路4产生相对应的放大倍数,重新分频后的待处理信号经过频率电压转换电路3后将频率信号转换为电压信号,然后将该电压信号输入放大电路4,经过放大电路4放大相应的倍数后输出的电压就是本宽频频率电压转换电路的最终转换电压。在进行频率电压转换时,由于所采用的单片机U9的最大测量频率为500KHZ ;因此,当待处理信号的频率较高时,必须先对其进行分频(我们选择400分频),分频后的信号送入单片机U9的P3. 5引脚,单片机U9对送入的分频后的信号进行测量,并将测得的该信号的频率进行比较,当测得信号的频率为75KHz IOKHz时,单片机U9的PO 口送出00100011(通过单片机的PO 口发送高低电平来选择对待处理信号到底是几分频同时要放大几倍,00100011表示对待处理信号400分频同时放大器选择放大400倍),此时待处理信号将被400分频后输入频率电压转换电路3,同时放大电路4会选择放大400倍的档位;当测得信号的频率为IOKHz 4KHz时,单片机U9的PO 口送出00010010 (00010010表示对待处理信号40分频同时放大器选择放大40倍),此时待处理信号将被40分频后输入频率电压转换电路3,同时放大电路4会选择放大40倍的档位;当测得信号的频率为4KHz 250Hz时,单片机U9的PO 口送出00001001 (00001001表示对待处理信号4分频同时放大器选择放大4倍),此时待处理信号将被4分频后输入频率电压转换电路3,同时放大电路4会选择放大4倍的档位;当测得信号的频率小于250Hz时,单片机U9的PO 口送出000000100(00000100表示对待处理信号不分频同时放大器选择不放大),此时待处理信号不分频直接输入频率电压转换电路3,同时放大电路4变成了电压跟随器不对待处理信号进行放大。六 个发光二极管的作用是显示对应的输出引脚是否正常工作,当单片机U9在相应的引脚上输出高电平时,对应的发光二极管就会亮,否则发光二极管熄灭。第一按键Kl是单片机U9的复位键,第二按键K2是单片机U9的启动键,第三按键K3是单片机U9的停止键。单片机U9通过向Pl 口写控制字,控制放大电路4中的模拟开关U7选择合适的开关接通,从而调节放大电路4的放大倍数。整形后的待处理信号经过第一个D触发器组成的第一个2分频电路进行2分频,2分频后的信号一路经过第二个D触发器组成的另一个2分频电路再进行2分频,这样就实现了对整形后的待处理信号A的4分频,同时第一个2分频电路2分频后的另一路信号输入第一计数器U2组成的第一个10分频电路后实现对待处理信号L的20分频,该20分频后的信号再经过第三个D触发器组成的2分频电路进行分频,这样就实现了对整形后的待处理信号的40分频;同时20分频后的信号再输入第二计数器U3组成的10分频电路后实现对待处理信号的200分频,200分频后的信号再经过第四个D触发器组成的2分频电路进行分频,这样就实现了对整形后的待处理信号的400分频;这样设计电路的原因是因为频率电压转换电路3要求输入的脉冲信号的占空比必须为30%以上,而分频电路2输出的脉冲信号的占空比为50%,能满足频率电压转换电路3的要求。分频后的信号经过频率电压转换电路3转换后,输出电压Kil与输入的信号的频率fa之间的关系式如下式所示
权利要求1.一种宽频频率电压转换电路,其特征在于,包括依次相连接的分频电路(2)、频率电压转换电路(3)和放大电路(4),分频电路(2)和放大电路(4)还分别与主控电路(I)相连接。
2.按照权利要求I所述的宽频频率电压转换电路,其特征在于,所述的主控电路(I)包括单片机(U9 ),单片机(U9 )分别与晶振电路和复位电路相连接,单片机(U9 )的P2. O引脚接第二按键(K2)的一端,单片机(U9)的P2. I引脚接第三按键(K3)的一端,第二按键(K2)的另一端和第三按键(K3)的另一端分别接地;单片机(U9)的PI. O引脚分别接反相器(UlO)的第I引脚和分频电路(2),单片机(U9)的Pl. I引脚分别接反相器(UlO)的第3引脚和分频电路(2);单片机(U9)的Pl. 2引脚分别与反相器(UlO)的第5引脚和放大电路(4)相连接;单片机(U9)的Pl. 3引脚分别与反相器(UlO)的第9引脚和放大电路(4)相连接;单片机(U9)的Pl. 4引脚分别与反相器(UlO)的第11引脚和放大电路(4)相连接;单片机(U9)的Pl. 5引脚分别与反相器(UlO)的第13引脚和放大电路(4)相连接;单片机(U9)的P3. 5引脚接分频电路(2),反相器(UlO)的第7引脚接地,反相器(UlO)的第14引脚接+5V电源;反相器(UlO)的第2引脚、第4引脚、第6引脚、第8引脚、第10引脚和第12引脚分别接有一个发光二极管,并与发光二极管的正极相连接,所有发光二极管负极均与排阻(Ra)的一端相连接,排阻(Ra)的另一端接+5V电源。
3.按照权利要求2所述的宽频频率电压转换电路,其特征在于,所述的单片机(U9)采用AT89C52单片机;反相器(UlO)为7406反相器。
4.按照权利要求I所述的宽频频率电压转换电路,其特征在于,所述的分频电路(2)包括第一触发器(U1)、第一计数器(U2)、第三计数器(U3)、第二触发器(U4)和数据选择器(U5);第一触发器(Ul)的第I引脚、第4引脚、第14引脚、第13引脚、第10引脚、第一计数器(U2)的第16引脚和第二计数器(U3)的第16引脚分别接+5V电源;第一触发器(Ul)的第2引脚接第一触发器(Ul)的第6引脚,第一触发器(Ul)的第3引脚和数据选择器(U5)的第6引脚为信号输入端,第一触发器(Ul)的第7引脚接地;第一触发器(Ul)的第12引脚接第一触发器(Ul)的第8引脚,第一触发器(Ul)的第5引脚和第11引脚分别与第一计数器(U2)的第2引脚相连接,第一触发器(Ul)的第9引脚与数据选择器(U5)的第5引脚相连;第一计数器(U2)的第9引脚、第I引脚和第二计数器(U3)的第9引脚、第I引脚分别接+5V电源;第一计数器(U2)的第10引脚、第7引脚、第8引脚和第二计数器(U3)的第10引脚、第7引脚、第8引脚分别接地;第一计数器(U2)的第15引脚分别与第二计数器(U3)的第2引脚和第二触发器(U4)的第3引脚相连接;第二计数器(U3)的第15引脚与第二触发器(U4)的第11引脚相连接;第二触发器(U4)的第I引脚、第4引脚、第14引脚、第13引脚和第10引脚分别接+5V电源;第二触发器(U4)的第2引脚接第二触发器(U4)的第6引脚,第二触发器(U4)的第7引脚接地,第二触发器(U4)的第5引脚与数据选择器(U5)的第4引脚相连接,第二触发器(U4)的第5引脚作为40分频信号的输出;第二触发器(U4)的第12引脚接第二触发器(U4)的第8引脚,第二触发器(U4)的第9引脚与数据选择器(U5)的第3引脚相连接,第二触发器(U4)的第9引脚作为400分频的信号输出;数据选择器(U5)的第16引脚接+5V电源;数据选择器(U5)的第I引脚和第8引脚接地,数据选择器(U5)的第7引脚与接频率电压转换电路(3)相连接;数据选择器(U5)的第14引脚和第2引脚分别接主控电路(I)。
5.按照权利要求4所述的宽频频率电压转换电路,其特征在于,所述的第一触发器(Ul)和第二触发器(U4)均为双D型触发器74ALS74 ;第一计数器(U2)和第三计数器(U3)均采用十进制同步加/减计数器74ALS168 ;数据选择器(U5)采用双4选I数据选择器74ALS153。
6.按照权利要求I所述的宽频频率电压转换电路,其特征在于,所述的频率电压转换电路(3)包括转换芯片(U6),转换芯片(U6)的第7引脚分别与第二电阻(R2)的一端和第三电阻(R3)的一端相连接,第三电阻(R3)的另一端接地;转换芯片(U6)的第6引脚分别与第一电容(Cl)的一端和第一电阻(Rl)的一端相连接,第一电容(Cl)的另一端接分频电路(2);转换芯片(U6)的第5引脚分别与第二电容(C2)的一端和第四电阻(R4)的一端相连接;第四电阻(R4)的另一端、第一电阻(Rl)的另一端、第二电阻(R2)的另一端和转换芯片(U6)的第8引脚分别接+12V电源;转换芯片(U6)的第I引脚接放大电路(4),转换芯片(U6)的第I引脚还分别与第三电容(C3)的一端和第五电阻(R5)的一端相连接,第三电容(C3)的另一端和第五电阻(R5)的另一端分别接地;转换芯片(U6)的第2引脚接第六电阻(R6)的一端,第六电阻(R6)的另一端与第七电阻(R7)的一端相连接,第七电阻(R7)为滑动变阻器;第七电阻(R7)的另一端、第七电阻(R7)的滑动触头、转换芯片(U6)的第3引脚、转换芯片(U6)的第4引脚和第二电容(C2)的另一端分别接地。
7.按照权利要求6所述的宽频频率电压转换电路,其特征在于,所述的转换芯片(U6)采用频率电压转换芯片LM331。
8.按照权利要求I所述的宽频频率电压转换电路,其特征在于,所述的放大电路(4)包括模拟开关(U7),模拟开关(U7)的第13引脚、第5引脚、第6引脚和第12引脚分别与主控电路(I)相连接,模拟开关(U7)的第14引脚接+12V电源,模拟开关(U7)的第7引脚接地;模拟开关(U7)的第I引脚分别与第八电阻(R8)的一端和运算放大器(U8)的第6引脚相连接;第八电阻(R8)的另一端分别与模拟开关(U7)的第4引脚和第九电阻(R9)的一端相连接,第九电阻(R9)的另一端分别与模拟开关(U7)的第8引脚和第十电阻(RlO)的一端相连接,第十电阻(RlO)的另一端分别与模拟开关(U7)的第11引脚和第十一电阻(Rll)的一端相连接,第十一电阻(Rll)的另一端接地;模拟开关(U7)的第2引脚、第3引脚、第9引脚和第10引脚分别与运算放大器(U8)的第2引脚相连接,运算放大器(U8)的第3引脚与频率电压转换电路(3)相连接,运算放大器(U8)的第4引脚分别接-12V电源和第四电容(C4)的一端,第四电容(C4)的另一端接地;运算放大器(U8)的第I引脚和第8引脚分别接电位器(Rp)的两端,运算放大器(U8)的第7引脚分别与第五电容(C5)的一端、+12V电源和电位器(Rp)的滑动触头相连接,第五电容(C5)的另一端接地。
9.按照权利要求8所述的宽频频率电压转换电路,其特征在于,所述的模拟开关(U7)采用四双向模拟开关⑶4066 ;运算放大器(U8)采用OP37运算放大器。
专利摘要本实用新型公开了一种宽频频率电压转换电路,包括依次相连接的分频电路、频率电压转换电路和放大电路,分频电路和放大电路还分别与主控电路相连接。该宽频频率电压转换电路利用模拟芯片搭建分频电路和放大电路,利用单片机控制数据选择器选择合适的分频数,对待处理信号进行分频,同时单片机控制模拟开关选择相对应的放大倍数。分频后的信号输入频率电压转换电路,将频率信号转换为电压信号后再经过放大电路,放大电路输出的电压就是宽频频率电压转换电路的最终输出电压,实现了允许输入信号的频率范围为10KHz~30MHz;具有频率范围宽、使用方法灵活、结构简单、功耗小、成本低、实时性好等特点。
文档编号H03L7/18GK202513907SQ201220135799
公开日2012年10月31日 申请日期2012年3月31日 优先权日2012年3月31日
发明者冉兴萍, 冯菁, 张亚辉, 张维昭, 李珍霞, 王科宁, 范满红, 贺瑞粉, 马智峰, 马胜前 申请人:西北师范大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1