电感电容自动校准方法及电路的利记博彩app

文档序号:7522071阅读:345来源:国知局
专利名称:电感电容自动校准方法及电路的利记博彩app
技术领域
本发明涉及通信领域,特别涉及射频前端系统。
背景技术
射频系统中LC (电感电容)的精度对射频系统的性能至关重要,在低噪声放大器中一般作为负载选频网络,对有用信号进行放大,对带外干扰进行抑制,Q值越大选频特性越显著,对LC精度要求就越高,然而工艺厂只能保证电感±5%,电容±10%以内的偏差,
由于LC网络的工作频率(/= 2Π^^)完全取决于LC的值。这将导致频率将偏差±8%,
以TD-SCDMA1. 9G来说,中心频率将偏离152MHz,使得射频前端频率偏移,增益下降,系统性能灵敏度恶化,所以需要解决LC工艺偏差的问题。目前时分同步码分多址(Time Division-Synchronous Code Division MultipleAccess,简称“TD-SCDMA”)无线通信产品,解决工艺偏差的主要方案是在射频前端采用片外声表面波(surface acoustic wave,简称“SAW”)滤波器,片上采用较宽频的低Q值LC负载网络,这样LC值的工艺偏差,对系统性能影响不会太大,这种方案主要的缺点是采用高成本的片外SAW滤波器,以及片上采用低Q负载网络,对低噪声放大器的性能指标很难做闻。另一种方案是先通过对芯片的测试,然后通过软件写入控制位的方式,来进行频率偏差校准。但是,这种方案缺点是在不同的晶圆(Wafer),甚至是同一片晶圆,都有不同的LC工艺偏差,导致芯片灵敏度下降,需要对每一块芯片进行手动测试校准,这种对于大规模量产并不适用。

发明内容
本发明的目的在于提供一种电感电容自动校准方法及电路,使得在低成本的条件下,实现射频前端模块中电容电感的工艺偏差的自动补偿校准,提高芯片工作的性能和成品率,实现大规模量产。为解决上述技术问题,本发明的实施方式提供了一种电感电容自动校准方法,包含以下步骤检测电感电容中的电容阵列为不同取值时,相对应的直流偏移的信号强度,直至检测出所述直流偏移的信号强度的最大值;其中,所述直流偏移为基准频率Vkf与本振信号Vlo混频后产生的直流偏移;根据所述信号强度的最大值所对应的电容阵列取值,对所述电感电容中的电容阵列进行校准。本发明的实施方式还提供了一种电感电容自动校准电路,包含信号强度检测模块,用于检测电感电容中的电容阵列为不同取值时,相对应的直流偏移的信号强度,直至检测出所述直流偏移的信号强度的最大值;其中,所述直流偏移为基准频率Vkf与本振信号Vw混频后产生的直流偏移;校准模块,该校准模块与所述信号强度检测模块相连接,用于根据所述信号强度检测模块检测出的信号强度的最大值所对应的电容阵列取值,对所述电感电容中的电容阵列进行校准。本发明实施方式相对于现有技术而言,利用基准频率Vkf与Vw进行混频后产生的直流(DC)偏移(I通路有效,Q通路为O),通过ADC (模数转换器)进行模数转换得到该直流偏移的数字量即直流偏移的信号强度。当电感电容中的电容阵列为不同取值时,检测相应的直流偏移的信号强度,直至找到直流偏移的信号强度 的最大值,并根据该最大值所对应的电容阵列取值,对LC中的电容阵列进行校准。由于LC的偏差是通过调整电容阵列的取值检测得到,并不需要根据不同的晶圆,不同的工艺结果对芯片一一测试后确定LC偏差,再软件写入控制位。因此能有效提高芯片工作的性能和成品率,满足芯片大规模量产需要,可以高精度快速自动LC工艺补偿校准。而且,不需要采用片外SAW滤波器,有效控制了成本。另外,通过将电容阵列的取值增加后检测到的对应的直流偏移的信号强度Y,与电容阵列为初始值时检测到的所对应的直流偏移的信号强度X,进行比较,如果X大于Y,则继续增加所述电容阵列的取值,并检测对应的直流偏移的信号强度;如果X小于或等于Y,则将所述Y作为所述直流偏移的信号强度的最大值。算法简单,进一步保证了 LC工艺补偿校准的快速实现。另外,在增加电容阵列的取值后,延迟预定时长后再检测电容阵列的取值增加后对应的直流偏移的信号强度Y。通过在增加电容阵列的取值后,延迟预定时长以保证系统已进入稳定状态后再进行检测,进一步提闻了检测准确性。另外,预先对滤波器的直流偏移进行校准。由于基准频率Vkf与本振信号Vm进行混频后的信号将通过跨阻放大器和滤波器后再输入到模数转换器,因此通过预先对滤波器的直流偏移进行校准,可保证检测到的直流偏移的信号强度是由电感电容的工艺偏差所导致的,与滤波器的直流偏移无关,从而保证了 LC工艺补偿校准的准确度。另外,电感电容为射频前端系统中低噪声放大器内的电感电容,基准频率Vkf的输入端在低噪声放大器的共源共栅cascode管中间位置处,不但可以保证LC自动校准的准确性,而且也不会影响到低噪声放大器本身的性能。


图I是根据本发明第一实施方式的电感电容自动校准方法适用的芯片结构示意图;图2是根据本发明第一实施方式的电感电容自动校准方法流程图;图3是根据本发明第一实施方式中基准频率的输入电路示意图;图4是根据本发明第一实施方式中增加单元电容对应的幅度频率响应示意图;图5是根据本发明第二实施方式的电感电容自动校准电路结构示意图。
具体实施例方式本发明的第一实施方式涉及一种电感电容自动校准方法。本实施方式应用于射频前端模块电感电容(LC)工艺偏差的高精度自动补偿校准,尤其适用于零中频架构系统。本实施方式的芯片内部包含输入匹配网络(input matching network,简称“IMN”),低噪声放大器(LNA),混频器(Mixer),,跨阻放大器(TIA),滤波器(filter),模数转换器(ADC),基准频率产生电路锁相环PLL和LO驱动器(L0 buffer)。通过锁相环PLL产生的基准频率Vkf与LO驱动器产生的本振信号Vuj进行混频后,产生直流(DC)分量(I通路有效,Q通路为O)。通过ADC进行模数转换,然后进入算法模块进行处理,检测ADC输出的直流 偏移的信号强度的最大值所对应的LNA中LC的电容阵列,并以此对LC的电容阵列进行校准,如图I所示。也就是说,在本实施方式中,通过混频器将所述基准频率Vkf与本振信号Vw进行混频,将混频后的信号通过跨阻放大器和滤波器后得到直流偏移,直流偏移的信号强度即为滤波器输出的直流偏移经模数转换器转换后,得到的直流偏移的数字量。值得一提的是,本实施方式中需要预先对所述滤波器的直流偏移进行校准。通过预先对滤波器的直流偏移进行校准,可保证检测到的直流偏移的信号强度是由电感电容的工艺偏差所导致的,与滤波器的直流偏移无关,从而保证了 LC工艺补偿校准的准确度。由于芯片中的MN、LNA、混频器、跨阻放大器(TIA)、滤波器、ADC及其相互间的连接关系与现有芯片雷同,在此不再赘述。下面对算法模块实现的电感电容自动校准进行具体说明。电感电容自动校准的流程如图2所示,在步骤201中,打开LO驱动器。接着,进入步骤202,检测LNA中LC的电容阵列为初始值时所对应的直流偏移的信号强度X。具体地说,将被校准的LC在射频前端模块LNA中,基准频率Vkf的输入端在所述低噪声放大器的共源共栅cascode管中间位置处,如图3所示。LO驱动器被打开后,LO驱动器产生的本振信号Vm将与PLL产生的基准频率Vkf进行混频,产生DC分量,混频关系式如下Vef = Aef · cos (ω LOt)
权利要求
1.一种电感电容自动校准方法,其特征在于,包含以下步骤 检测电感电容中的电容阵列为不同取值时,相对应的直流偏移的信号强度,直至检测出所述直流偏移的信号强度的最大值;其中,所述直流偏移为基准频率Vkf与本振信号Vuj混频后产生的直流偏移; 根据所述信号强度的最大值所对应的电容阵列取值,对所述电感电容中的电容阵列进行校准。
2.根据权利要求I所述的电感电容自动校准方法,其特征在于,所述检测电感电容中的电容阵列为不同取值时,相对应的直流偏移的信号强度,直至检测出所述直流偏移的信号强度的最大值的步骤中,包含以下子步骤 检测所述电容阵列为初始值时所对应的直流偏移的信号强度X ; 增加所述电容阵列的取值,检测所述电容阵列的取值增加后对应的直流偏移的信号强度Y; 将所述X与所述Y进行比较,如果X小于或等于Y,则将所述X赋值为所述Y,继续增加所述电容阵列的取值,并检测电容阵列的取值增加后对应的直流偏移的信号强度Y ;如果X大于Y,则将上一次检测到的信号强度作为所述直流偏移的信号强度的最大值。
3.根据权利要求2所述的电感电容自动校准方法,其特征在于,在增加所述电容阵列的取值后,延迟预定时长后再检测所述电容阵列的取值增加后对应的直流偏移的信号强度Y。
4.根据权利要求I所述的电感电容自动校准方法,其特征在于,所述电感电容中的电容阵列进行校准的步骤中,包含以下子步骤 将所述电感电容中的电容阵列,设置为所述信号强度的最大值所对应的电容阵列的取值。
5.根据权利要求I至4中任一项所述的电感电容自动校准方法,其特征在于,通过以下方式产生所述直流偏移 通过混频器将所述基准频率Vkf与本振信号Vm进行混频; 将混频后的信号通过跨阻放大器和滤波器后得到所述直流偏移; 所述直流偏移的信号强度为所述滤波器输出的直流偏移经模数转换器转换后,得到的直流偏移的数字量。
6.根据权利要求5所述的电感电容自动校准方法,其特征在于,还包含以下步骤 预先对所述滤波器的直流偏移进行校准。
7.根据权利要求I至4中任一项所述的电感电容自动校准方法,其特征在于, 所述电感电容为射频前端系统中低噪声放大器内的电感电容。
8.根据权利要求7所述的电感电容自动校准方法,其特征在于,所述基准频率Vkf的输入 端在所述低噪声放大器的共源共栅cascode管中间位置处。
9.一种电感电容自动校准电路,其特征在于,包含 信号强度检测模块,用于检测电感电容中的电容阵列为不同取值时,相对应的直流偏移的信号强度,直至检测出所述直流偏移的信号强度的最大值;其中,所述直流偏移为基准频率Vkf与本振信号Vw混频后产生的直流偏移; 校准模块,该校准模块与所述信号强度检测模块相连接,用于根据所述信号强度检测模块检测出的信号强度的最大值所对应的电容阵列取值,对所述电感电容中的电容阵列进行校准。
10.根据权利要求9所述的电感电容自动校准电路,其特征在于,所述信号强度检测模块包含以下子模块检测子模块、电容阵列改变子模块和比较子模块; 所述检测子模块用于检测所述电容阵列为初始值时所对应的直流偏移的信号强度X ;所述电容阵列改变子模块用于增加所述电容阵列的取值,并指示所述检测子模块检测所述电容阵列的取值增加后对应的直流偏移的信号强度Y ; 所述比较子模块用于将所述X与所述Y进行比较,在X小于或等于Y时,将所述X赋值为所述Y,并触发所述电容阵列改变子模块继续增加所述电容阵列的取值,指示所述检测子模块检测所述电容阵列的取值增加后对应的直流偏移的信号强度Y ;在X大于Y时,将上一次检测到的信号强度作为所述直流偏移的信号强度的最大值。
11.根据权利要求9所述的电感电容自动校准电路,其特征在于,所述校准模块在对所述电感电容中的电容阵列进行校准时,将所述电感电容中的电容阵列,设置为所述信号强度的最大值所对应的电容阵列的取值。
12.根据权利要求9所述的电感电容自动校准电路,其特征在于,所述信号强度检测模块包含混频器、跨阻放大器、滤波器和模数转换器; 所述混频器用于将所述基准频率Vkf与本振信号Vm进行混频; 所述跨阻放大器与所述混频器相连接,用于将所述混频器输出的信号进行跨阻放大;所述滤波器与所述跨阻放大器相连接,用于将所述跨阻放大器输出的信号进行滤波;所述模数转换器与所述滤波器相连接,用于将所述滤波器输出的信号进行模数转换;所述直流偏移的信号强度为所述滤波器输出的直流偏移经模数转换器转换后,得到的直流偏移的数字量; 其中,所述滤波器为预先经过直流偏移校准的滤波器。
13.根据权利要求9至12中任一项所述的电感电容自动校准电路,其特征在于, 所述电感电容为射频前端系统中低噪声放大器内的电感电容。
14.根据权利要求13所述的电感电容自动校准电路,其特征在于,所述基准频率Vkf的输入端在所述低噪声放大器的共源共栅cascode管中间位置处。
全文摘要
本发明涉及通信领域,公开了一种电感电容自动校准方法及电路。本发明中,检测电感电容中的电容阵列为不同取值时,相应的直流偏移的信号强度,直至找到直流偏移的信号强度的最大值,并根据该最大值所对应的电容阵列取值,对LC中的电容阵列进行校准。由于LC的偏差是通过调整电容阵列的取值检测得到,因此能有效提高芯片工作的性能和成品率,满足芯片大规模量产需要,可以高精度快速自动LC工艺补偿校准。而且,不需要采用片外SAW滤波器,有效控制了成本。
文档编号H03F1/26GK102916659SQ20111022303
公开日2013年2月6日 申请日期2011年8月4日 优先权日2011年8月4日
发明者李海松, 崔福良, 周闵新 申请人:联芯科技有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1