用于无线射频传输的谐振功率转换器及其方法

文档序号:7505242阅读:400来源:国知局
专利名称:用于无线射频传输的谐振功率转换器及其方法
技术领域
本发明涉及射频信号,特别是涉及一种用于射频(RF)信号传输、接收和/或调制的无线射频传输的谐振功率转换器及其方法。
背景技术
我们知道,放大器的所谓“PAE”(功率添加效率)不过是指传送到负载并被产生这种放大所要求的直流输入功率除的输出功率。一般地,对于典型的CDMA(码分多址)手持机,最大传输功率的功率添加效率为33%,比平均低10%。因此,如果一个具有33%的功率添加效率的功率放大器要输出1瓦射频功率,它就需要3瓦直流电源,在此过程中2瓦用于热消耗。这明显未达到电源的最佳使用。
典型的现有技术的射频传输系统使用的方法依次包括以下步骤中的一步或多步(1)将数字数据流独立地调制为同相和正交向量组或幅值和相位向量组;在信号转化过程中的后续点组合向量;(2)数字过滤数据向量;(3)通过数字模拟转换将过滤过的向量转换为模拟形式;(4)利用射频振荡器通过一级或多级调制将数字/模拟输出向上转化为射频信号向量,随后对每级向上转化进行象频干扰抑制滤波;(5)预先放大(或变增益放大)最末级向上转化阶段的输出;(6)用功率放大器放大预先放大的输出信号,其中放大器是典型的A或AB型式。
另外,Dent等人发表的6181199号美国专利,题为“功率反转量子化调制系统和方法”,阐述了一种与上述方法不同的射频传输方法,该方法中信号向量的幅值用于调整C级或D级转换开关功率放大器的幅值,并将信号向量的相位信息作为其一个输入来接收。Sander等人发表的6198347号美国专利,题为“转换式射频放大器的驱动电路”,阐述了一种驱动那种放大器的方法。前述情况的另一例中,转换为模拟射频范围的信号被放大为一个负载。
Agazzi和Norsworthy发表的题为“综合业务数字网传输器”的5353309号美国专利阐述了一种在基带数字电话传输中利用数字Δ∑调制器的方法。Δ∑调制器的输出连接到一个有源模拟低通滤波器,低通滤波器驱动一个有源功率放大器,依次驱动综合业务数字网电话传输线路。然而,前述说明中没有讲授产生足够的功率直接驱动线路而不需要有源功率放大器的方法。同时,虽然上述系统是一个低频基带传输系统而不是射频通频带传输系统,前述说明中也没提供任何将功率转换为射频载波频率的方法。
Pikkarainen等人发表的5701106号美国专利,题为“将数字信号调制为高频模拟信号的方法和调制器”,阐述了一个(I,Q)中的基带数字传送到以中频采样的Δ∑数字-模拟转换器,并转换为模拟形式以在模拟状态下进一步向上转化为射频载波频率。其中没有说明将数字基带信号直接向上转换为射频载波频率的方法,也没说明将直流功率直接转换为射频载波功率的方法。
Butterfield发表的6321075号美国专利,题为“硬件-带有Δ∑数字-模拟转换器的高效收发器”,由于他在(I,Q)中采用Δ∑调制器形成中频,然后转换为模拟状态以在模拟状态下进一步向上转化为射频载波频率,所以该方法与前述5701106号美国专利类似。
请参阅图1a-1c所示,举例说明了上述不同现存技术结构。
Keyzer等人发表的0-7803-6540号电气和电子工程师协会(IEEE)出版社文章,题为“利用带通Δ∑调制器数字产生无线传输射频信号”,及这里引用的参考(“Keyzer”),阐述了一个无线发送器,它结合通频带Δ∑调制器与模式转换功率放大器一起使用。同时请参看“利用Δ∑调制器产生射频脉宽调制微波信号”,由Keyzer等人所著,于2002年5月发表于IEEE杂志0-7802-7239刊。
在全双工分频系统中,比如CDMA中,发送器和接收器是可以同时开启的。发送器开启时,通常产生落在接收波段内的噪音或失真。以IS-95,IS-95a,IS-98或IS-2000的CDMA标准为例,接收波段从发送波段偏移80MHz。用于CDMA手持机发送器的典型功率放大器在接收波段产生大约为-135dBm/Hz的噪声密度。比如,对于北美运行的PCS波段,接收波段的频率比发射载波的频率高80MHz。为防止接收灵敏度的下降,发射器产生的噪声需被抑制到低于接收器产生的最低热噪音的水平。接收器产生的最低热噪音大约是-174dBm/Hz。因此,功率放大器的最低噪音和最低热噪音之间的差别大于40dB。噪声抑制的水平通常通过双工器实现,对此领域具有常识的人都熟悉双工器的结构和功能。双工器具有3个端口,一个接至功率放大器的输出,另一个接至天线,第三个端口接至接收者的输入。
在全双工接收器中使用噪声重整编码器时,一个困难的问题是量化噪音的高水平超出了波段,甚至进一步恶化了接收波段。上述Keyzer参照提到了这个问题,但仍没有(i)认识到使用他们的方法时问题多么严重,或者(ii)提出满足实际系统要求的解决方法。Keyzer使用了以4倍载波频率Fc的频率运行的二级带通Δ∑调制器,但没考虑到这种条件下相邻接收波段的噪声下限值。关于此点有人进行了一个模拟,目的在于测定Keyzer的带通Δ∑调制器产生的量化噪声。对相应标准下要求的最大功率水平和标准手持机可使用的电池技术进行了保守假设。基于以上假设构成了一个模拟模型并确定,没有任何模拟过滤或双工抑制时,天线处的量化噪声数量级为-94dBm/Hz。这意味着,为了把量化噪声的水平降低到低于热噪声水平-174dBm/Hz,需要过滤高于80dB的噪声。而且不仅仅是单一频率需要抑制80dB,而是整个接收波段都需要。对于实例中北美CDMA的PCS波段,带宽覆盖1.93-1.99GHz,为60MHz。如果当前技术发展水平下存在一种整个频率范围内抑制80dB的模拟射频滤波器,则必然会有很高的插入损耗,而且也会相当昂贵。因此,亟待一种更有效更经济的方法抑制接收波段中的噪声。
Keyzer的发明中不曾阐明的另一个难题涉及到带通Δ∑调制器极高的采样率。在PCS频率中,Keyzer的方案要求Δ∑调制器中的算术逻辑电路和寄存器以将近8GHz的频率运行。在电池电源便携式PCS手持机中,在编写本文之时,任何可利用的和当前可想到的半导体技术中,仅仅带通调制器逻辑电路的功率消耗就大得吓人。这样,就需要降低Δ∑调制器中的时标速率。
Keyzer不曾阐明的第三个难题涉及到开关式功率放大器和与之相连的模拟滤波器间的接口。特别地,没有提供任何说明和学说来解释如何建立一个可操作的开关式放大器并有效地将它“驱动”至滤波器。而且,也没有建议或说明任何特定的耦合机构。因此,Keyzer留下了一个重要的技术难题没有解释。
进一步注意到,关于插值滤波器或插值滤波器的特定应用,Keyzer没有做出任何解释或推断。
我们可以从Norswor thy等人编著的IEEE出版社1997年版的教科书《Δ∑数据转化器》中找到关于Δ∑数据转化的有关讨论。第9章中(从282页开始)讨论了带通Δ∑调制器这一论题。自20世纪90年代早期,带通Δ∑模拟数字转换器就被用于中频(IF)解调。然而,还没有任何有关将Δ∑模拟数字转换器用于无线传输或射频功率转换的发现。
如前所述,Δ∑调制器基本概念的应用还不曾得出一个站得住脚的对前述问题的解决方法。这样,仍然亟待一种改进的装置和方法,可用于将数字信号转换为射频功率而不必构建一个有源放大器,也不必首先在大大低于射频载波频率的频率下将数字数据信号转换为模拟形式。这种改进的装置和方法自身还应能够提供高水平的电源效率以降低功率消耗及其它,以延长无线手持机电池的使用期限。
有鉴于上述现有的用于无线射频传输的谐振功率转换器及其方法存在的缺陷,本发明人基于从事此类产品设计制造多年丰富的实务经验及专业知识,并配合学理的运用,积极加以研究创新,以期创设一种新型结构的用于无线射频传输的谐振功率转换器及其方法,能够改进一般现有的用于无线射频传输的谐振功率转换器及其方法,使其更具有实用性。经过不断的研究、设计,并经反复试作样品及改进后,终于创设出确具实用价值的本发明。

发明内容
本发明的目的在于,克服现有的用于无线射频传输的谐振功率转换器及其方法存在的缺陷,而提供一种新的用于无线射频传输的谐振功率转换器及其方法,本发明的主要技术内容如下本发明通过提供一种信号和功率转化的改进装置及方法满足了上述需要。
本发明的第一方面,阐述了一种射频信号谐振功率转化的改进装置。该装置大致包括一个脉冲输入源,可用于产生复杂脉冲;一个与脉冲输入源有效耦合的谐振器;一个与谐振器输出有效耦合的传输介质,适用于发送复杂的射频信号;在一个典型实施例中,谐振器的谐振频率与载波频率相同或大体接近,并进一步有效地适用于为其后续发送有效地储存能量(通过选择性增强至少部分产生的复杂脉冲及其它方式)。特别地,一种变形的实例利用一个数字促动谐振功率转换器(DARP),其中包括一个以时标速率Fc/L1接收数字信号并将数字数据编码的噪音重整编码器,其中L1是载波频率Fc的倍数或因数。还提供一个频率等于或大体接近直流电源频率的电源,和一个与谐振器耦合的负载阻抗,用于接收储存在谐振器中的能量。还有一个充电开关与噪声重整编码器、电源、谐振器和时标速率为L2Fc的时钟耦合,其中L2是载波频率Fc的倍数。充电开关适用于(i)从噪声重整编码器接收编码后的数据;(ii)抽取电源的电压或电流样本;(iii)将电源的电压或电流样本传输到谐振器。
本发明的第二方面,阐述了一种进行谐振功率转换的改进方法。该方法主要包括产生复杂脉冲;将脉冲输入到适用于选择性增强至少部分复杂脉冲的谐振器;选择性增强前述部分脉冲;通过传输介质发送选择增强的信号。
本发明的第三方面,阐述了一种改进的用于噪声重整编码器的转移函数,该函数可由两个低通编码器以较低的采样速率运行得出。
本发明的第四方面阐述了一种改进的噪声重整编码装置。在一个实施例中,改进的编码设备包括一个可查表且数据可寻址的存储器。
本发明的第五方面阐述了控制装置功率增益的改进装置和方法。在一个实施例中,功率增益完全在数字状态下控制。另一实施例中,通过数字和模拟组合的方法控制增益。
本发明的第六方面阐述了一种改进的充电开关装置。在一个实施例中,充电开关以一种显著减少耗电量的方式,与噪声重整编码器逻辑电路设置在同一半导体基底上本发明的第七方面阐述了一种改进的谐振器和变压器组合,包括改进的动态阻抗终端。
本发明的第八方面阐述了一种改进的谐振装置,其中谐振器组合为双工器的一部分。
经由上述可知,本发明是关于一种用于超高频射频传输的谐振功率转换器及其方法。在一个典型实施例中,本发明是数字驱动的,并使用了噪声重整编码器、充电开关和高品质因数谐振器的组合,其中高品质因数谐振器与输出负载耦合,通常是天线或传输线。谐振器的电磁场中产生能量,反过来将能量传输到负载,传输过程中几乎没有能量浪费。不需要任何有源功率放大器。设备在理论上可用于任何射频信号应用(无线或其它),包括比如手机、本地或宽区域网络传输、或者甚至无线电基站。
综上所述,本发明特殊结构的用于无线射频传输的谐振功率转换器及其方法,其具有上述诸多的优点及实用价值,并在同类产品及方法中未见有类似的结构设计及方法公开发表或使用而确属创新,其不论在产品结构、方法或功能上皆有较大的改进,在技术上有较大的进步,并产生了好用及实用的效果,且较现有的用于无线射频传输的谐振功率转换器及其方法具有增进的多项功效,从而更加适于实用诚为一新颖、进步、实用的新设计。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。


图1a、1b和1c是一个说明典型现有技术下射频发送器和功率放大系统总结构的原理框图。
图2是根据本发明的一个说明典型转换装置总结构的原理框图。
图2a是图2中一个转换装置典型结构的原理框图。
图3是图2中转换装置一个典型实施例的原理框图。
图4是图2中转换装置另一个典型实施例的原理框图。
图5是示例的噪声频谱的图形表示,(a)输入到图3装置的噪声重整编码器之前(b)输入到图3装置的噪声重整编码器之后。
图6是按照本发明与三级噪声重整编码器有关的噪声转移函数(全双工收发器)的图形表示。
图7是图3装置中当L1=1且L2=4时第一个示例噪声频谱的图形表示,(a)数字直角相位调制器之前,(b)数字直角相位调制器之后,但在谐振器之前,(c)谐振器之后。
图8是图3装置中当L1=2且L2=4时第二个示例噪声范围的图形表示,(a)数字直角相位调制器之前,(b)数字直角相位调制器之后,但在谐振器之前,(c)谐振器之后。
图9是图3装置中当L1=1且L2=8时第三个示例噪声光谱的图形表示,(a)数字正交调制器之前,(b)数字正交调制器之后,但在谐振器之前,(c)谐振器之后。
图10是图2中装置的另一实施例的原理框图,图示说明了谐振器开关侧终端网络的一种示例结构。
图11是图2中装置的另一实施例的原理框图,图示说明了将谐振器与双工器结合使用的一种示例方案。
图12是本发明中一个示例谐振器结构对开关励磁短序列的时域响应的图形表示。
图13是以符码率(抑制图形如前所述)的1536倍的速率过滤的最末级的频谱输出的图形表示。
图14是开关输入中编码器的频谱输出的图形表示。
图15是谐振器的示例频率响应的图形表示。
图16是全测量波段谐振器的示例光谱输出的图形表示。
图17是PCS发送波段谐振器的示例光谱输出的图形表示。
图18是发送到具有80MHz偏移的PCS接收波段的示例漏泄功率的图形表示。
图19是谐振器的时域输出的图形表示。
图20是理想状态下的示例相位响应的图形表示,(i)无Δ∑调制器(ii)有Δ∑调制器。
图21是说明本发明中示例开关/谐振器电路中模拟器(由CadenceDesign Systems,SPICE program生产)的时域响应差别的图形表示,(i)实际产品-优质砷化镓金属-半导体场效应晶体管式(ii)理想开关。
具体实施例方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本发明提出的用于无线射频传输的谐振功率转换器及其方法其具体实施方式
、结构、方法、步骤、特征及其功效,详细说明如后。
参照附图,本文附图中相同序号指相同的部件。
方便起见,这里用到的词汇“transmit”、“transmission”和“transmitting”均可适当地理解为发送信号和接收信号的行为。
这里用到的词汇“memory”和“storage device”是指包括任何储存数据或信息的方式,包括而不仅限于读写存储器(比如静态随机存取存储器,同步动态存储器,动态存储器,同步动态存储器,扩展数据输出动态存储器,双倍速率同步动态存储器)、只读存储器(比如可编程只读存储器,可擦可编程只读存储器,电子可擦可编程只读存储器,未程序的紫外光可清除可程序只读存储器)、磁泡存储器、光存储器、嵌入式快闪存储器等。
应当认识到,虽然以下讨论主要按照无线射频手持机(比如移动电话)进行,本发明绝不仅限于任何特定的无线方式、空气界面,或结构,或者无线应用物质。本发明同样可成功应用于其它各种非无线系统,限制条件与这里所讲的一致。
请参阅图2和图2a所示,描述了一种本发明谐振功率转换器的示例通用形式。如图2所示,本发明的设备200大致可认为是一个脉冲输入源202,其输出与谐振器204的输入耦合,谐振器的输出与一个负载或发送形式206(比如无线天线、发送线等)耦合。本发明中谐振器特殊的特性将在随后更具体地说明。图2(事实上,及其它所有本发明中讲到的实施例)结构中的一个突出优点是无论什么情况下都不需要放大器。甚至,谐振器204可有效地用作超高效率的电源。这样不仅避免了现有技术方案中因具有功率放大器而引起的成本和复杂性等,而且显著地提高了效率,因而对射频设备的功率消耗和其他方面产生了很大的影响。
图2a描述了基于图2通用模型的示例数字促动谐振功率(DARP)设备220。设备220包括一个噪音重整编码器222和一个充电开关224,作为图2中脉冲数据源202的一部分。
现在请参阅图3所示,是一个示例结构300(基于以上讨论的图2的结构),假设数字数据将会在通频带调制,然后以无线频率传输到一个负载阻抗,比如天线或传输线。数字数据与一个或多个噪音重整编码器302耦合,编码器302频谱重整量化噪声并将噪声赶出我们感兴趣的波段。噪声重整编码器302的输出通常只有一个或几个比特位宽,编码器的输出字率通常是无线电频率Fc的倍数或因数L1。编码器302的输出与至少一个充电开关304耦合。这种充电开关会包括任意种不同结构,如下面将具体讨论的,对电子领域具有常识的人都非常熟悉。充电开关304的目的在于抽取一个直流电源电压VDC(或其它低频电源)的样本并很快地(比如瞬时)在射频载波频率Fc的正相抑或在Fc的反相180度后向谐振器306的内电容充电。谐振器的电容充一会儿电后,电流开始流经谐振器的电感,谐振器开始以Fc振荡。本例中所讲的谐振器306假设是一个高因数谐振器,能够在谐振器306的输出有效提高负载阻抗ZL 309,如在谐振器的输入所见。负载阻抗ZL 309可以是天线、传输线路或其它类似的形式,虽然其它形式的阻抗也可以被代替。充电开关304继续在Fc的正相或反相驱动谐振器。噪声重整编码器302的输出样本{ik,qk}确定了每个抽样瞬间充电开关样本的值。
噪声重整编码器302也可以用作两个低通编码器(图3)、用作一个单带通编码器40(图4),或用在其它等效结构中。应用中对于特别关注功率损耗的情况和时钟频率接近“可用的”半导体技术上限(这里,“可用的”是指技术发展状况限制而可用的,或由其它因素限制的,比如目标成本、集成电路操作电压、模具尺寸等)的情况,低时钟频率时把噪声重整编码器用作两个低通编码器,以及反之在高时钟频率时用作带通编码器,具有突出的优点。
执行噪声重整编码,比如在知道数字数据有限状态前脱机的情况下,本发明的噪声重整编码器还可以用作查表函数。比如,为了方便起见可以将结果保存在一个数据可寻址存储器或存储设备中。还有很多其它选择。对信号处理技术具备常识的人员很容易认识到并理解这些配制和选择,因此这里不再赘述。
这里将详细说明图3和图4中的实例。从一个数字处理器310开始(可能包括一个数据信号处理器、精简指令集计算机处理器、复杂指令集计算机处理器、特定用途集成电路和其它具有充足容量的类似组件),一个数字数据流被分成两个正交的信号向量一个同相向量(I)和一个正交向量(Q),符码率为Fb。数字数据可以是任何一种已知的调制形式,包括而不仅限于键控调制(比如/4四相移相键控,频移键控,连续频移键控,高斯最小相移键控等),调幅(比如正交幅相调制等)等。对于“1”状态,二进制数据被视为1,对于“0”状态视为-1,虽然我们会看到这些标识都是任意的。数字嵌入滤波器312在符码上进行信道滤波,并可得到已知符号滤波器的任意一种形式,比如产生零码间干扰的凸余弦滤波器组。对于许多特定数据传输标准,比如IS-2000,符码滤波均有详细规定。在任意情况下,符码滤波可在全滤波过程中由数字嵌入滤波器312实施。滤波器312还可以将取样率增加(Fc/L1)/Fb,其中Fc是传输时所希望的射频信号的载波频率。在一个典型实施例中,L1=1,这仅仅说明低通噪声重整编码器302以与载波频率Fc相同的取样速率运行。为降低编码器逻辑302的功率损耗,我们希望降低编码器(12)的取样速率,因此,会在感兴趣波段更大的量化噪声损失处选择L1=2或更大的数值。事实上,整个的插值比率(Fc/L1)/Fb仍然会是一个很大的数值。以IS-2000标准为例,如果符码率Fb为1.23MHz,载波频率Fc为1.88GHz并且L1=1,那么整体的插值比率大约为1529.945。显而易见,也可以选择其它频率,得出其它插值比率。一般而言,载波率和符码率之间的插值比率不一定是整数,并且基带符码时钟从一个与载波时钟有关的完全独立(不相适应)源产生。意识到在本文编制时可以存在不同的兼容技术用于实施分数取样率转化,包括而不仅限于,分数-N合成锁相循环。与本发明范围和结构相适应,也可以使用一种用于分级抽取和插入的全数字技术。读者可以结合此处说明参考其它文献,比如由Hentschel等人发表的“软件无线电的采样率转化”,见2000年8月的IEEE通信杂志第142到150页。根据以上说明,对此技术具有常识的人员可以将其它关于同步异步时钟的有名技术运用到本发明中。
为通过降低倍增速率和复杂性降低成本和功率损耗,图3中的数字嵌入滤波器312事实上可以越过两级或多级插入用于分散插值比率(Fc/L1)/Fb。多比率数字滤波器的设计在此技术中非常有名,并且这种技术运用到Δ∑转换器也非常有名,可以在其它文献中找到,比如前面提到的Norsworthy等人编著的IEEE出版社1997年出版的教科书《Δ∑数据转换器》,结合此说明可以参考此书。比如,考虑一个IS-2000的符码率滤波器,将全部插入滤波器分为三个主要部分。让在输入码上运行的第一个滤波器具有以下约束一个FIR结构;以8倍的符码率运行;通频带的截止频率为符码率的0.48;通频带波动小于1dB;衰减带的截止频率为符码率的0.6。衰减带的衰减至少为60dB。使用有名的Remez交换算法,这些限制将会得出一个至少具有160个抽头的FIR滤波器。插入滤波的第二级会是一个过取样倍率为24的正弦立方滤波器,以8倍符码率产生至少被抑制70dB的图像。插入滤波的第三级仅为零序保持,过取样倍率等于8,以8*24=192倍符码率产生至少被抑制50dB的图像。这样,如果我们将所有三个过滤级的过取样倍率都乘起来,就得到8*24*8=1536,就有效地达到了全过取样倍率(Fc/L1)/Fb。可以在插入的一级或多级中结合使用分级符码率转换器,以便实现基带符号速率与载波速率同步。应当意识到,虽然这个典型实施例说明了一种实现插入滤波器312的有效方法,对本领域中具有常识的人员肯定还可以找到其它替代方法,比如但不仅限于,用IIR滤波器代替FIR滤波器,在插入滤波器中分成更多或更少的级,选择不同相关的插值比率,为L1选择更大的值以降低插值比率等。
插入器312的输出与噪声重整编码器302的输入相耦合。图3所示实例中这些编码器都是独立的同步和正交的低通编码器,并由数字正交调制器316有效地向上转化并组合,得到一个带通信号。另外,正交调制器316之后连接带通编码器的结构可由正交调制器316之前连接两个低通编码器302代替,如图4所示结构。在另一实施例中,低通编码器的设计中,插入器312的信号能量保存在基带中。图5描述了(a)编码前的频谱(b)编码器302输出中的频谱。图5中的灰色阴影部分510示意了在编码过程中产生的量化噪声。编码器产生了量化噪音,但有效地将量化噪音驱逐出了波带,使得大部分噪声不在Fb/2与(Fc/L1)/2之间,尤其在0到Fb/2之间的重要波带产生一个相对高的信号与噪声的比值。
如前所述,量化噪声(由典型的噪声重整编码器以与载波频率相近的采样运行时产生)在全双工收发器相邻的接收段中可能会达到很高的水平。如果噪声清除得不够,这样将会导致接收器的严重退化。这里描述的一种方法是在需抑制量化噪声选定的频率处将编码器的转换函数设定一个或多个零。一个二级低通Δ∑调制器的最简单形式的噪声转移函数(NTF)如下H(z)=1-2z-1+z-2这样在z=1或0Hz时得出两个0。通过以下噪声转移函数(NTF)可以把这些0从0Hz转移到其它频率H(z)=1-2cos(2πfz/fs)z-1+z-2例如,假设希望0在±80MHz,编码器的采样率为1.88GHz。噪声转移函数(NTF)变为H(z)=1-1.928938z-1+z-2这里受托人所作的模拟说明,与在0Hz具有两个0值的标准二级低通调制器相比,80MHz±Fb/2的量化噪声被另外抑制了36dB。然而,折衷的方法是在逻辑电路中结合使用乘法器以实现这个系数,而不是简单地乘于2。噪声转移函数(NTF)在0Hz处不再具有无限抑制,在符号波段边界±Fb/2处具有有限抑制。虽然如此,在特定的可以接受这些特征或需要出现这种特征的应用中,它还是非常有用的。
作为另一个实施例,一个三级编码器的设计为,在0Hz处只设一个0,而在±80MHz处的0与上述相同。为保持编码器稳定,除0外还在噪声转换函数(NTF)中设了极值。虽然这初看起来违反直觉,但应看到噪声整定滤波器能够有效地包含在量化反馈环中。稳定的高级Δ∑调制器设计中的综合处理方法在本技术领域中相当有名,可以在比如本文曾引用的IEEE出版社1997年版Norsworthy等人编著的教科书《Δ∑数据转换器》中第4、5章找到。
在三级噪声重整编码器的实例中,再次假设采样率为1.88GHz,在±80MHz和0Hz处具有0值,噪声转移函数(NTF)由下式给出H(z)=(1-1.928938z-1+z-2)(1-z-1)(1-1.427625z-1+z-2)(1-0.625422z-1)]]>该编码器的噪声转移函数(NTF)由图6图示说明。模拟说明,与在0Hz具有两个0值的标准二级低通调制器相比,80MHz±Fb/2处的量化噪声被另外抑制了26dB。与将0值从0Hz转移80MHz得二级调制器相比,这种情况下的抑制大约低了10dB。然而,因为在0Hz处具有0值,三级调制器在符号波段边界±Fb/2处具有突出的抑制优势。然而,折衷的办法是在逻辑电路中至少采用一个乘法器以实现至少一个系数。模拟已经说明由于舍入错误的存在,控制极位置的系数对编码器的稳定性和性能并不是特别敏感,在z平面中实施极值定位时可以找到简单选择,得到可能在实施中引用的短系数字长,比如简单的移位加法方案。在许多情况下仔细选择系数乘法器所要求的额外的逻辑电路是相对次要的。读者可参照上述Norsworthy等人编著的教科书第10章,其中讲述了数字Δ∑调制器的实施技巧。
按照上面提到的Norsworthy等人编著的教科书第四章,其中讲到稳定的波段外增益的建议最大值为1.5左右或略大,而示例中的三级调制器的波段外增益为1.57,这意味着一比特位量化是相对稳定的。此例仅仅是众多能设计出的这种噪声重整编码器中之一,还能够设计不同的替代方案,包括但不限于取样率、极值和零值位置、编码器的级。
类似地,使用低通到带通转换z→z2的带通Δ∑编码器可以用两个低通Δ∑调制器(一个同步,一个正交)代替,如果愿意,以上示例设计可直接转换,并用作图4中带通噪声重整编码器406的一个实施例。在前面提到的Norsworthy等人编著的教科书第9章可以找到关于带通Δ∑调制器的综合处理方法。
噪声重整编码器302可以用1比特位或多比特位(n比特位)量化。理想状态下,编码器302在频谱中应不存在假音,并且经常有必要振动编码器。在前面提到的Norsworthy等人编著的教科书第3章可以找到关于振动Δ∑调制器的综合处理方法,其中(130-131页)提出了一种振动多位噪声重整编码器的稳定性标准试验。一种我们希望的特性是编码器具有全振动量化,保证量化噪声是白色的。这里用到的名词“全振动量化器”是指全振动生成的一个量化间隔。比如,对于三维编码量化器,如果输出水平为{1,0,-1},那么相应的阈值为{-0.5,0.5},因此振动间隔也是{-0.5,0.5},振动发生器在外限之间产生伪随机数。该振动在算术上加到编码器的内部量化器上。虽然我们经常希望能全振动量化,但这限制了编码器的可用动态范围并降低了其稳定性。事实上对于所有已知的噪声重整编码器,全振动量化器要求多位量化。
如果编码器302使用三维量化{1,0,-1},并且编码是一级的,量化器在{-0.5,0.5}上全振动,那么输入信号的稳定输入范围也是{-0.5,0.5}。这个令人惊喜的结果具有深远的实践意义。特别地,本例中编码器输出的最大脉冲密度是0.5。如果振动范围有限,而不能覆盖整个量化间隔,那么输入的动范围就会增加。然而,理想的频道声调和尖峰可能在量化噪声频谱中显示出。
在前述以CDMA(码分多址)为基础的例子中,说明了如何设计二级或三级编码器以满足特定的系统要求。对TDMA(时分多址)系统(包括例子数字通)或其它波段外噪声要求较低的系统,可能使用一级编码器。在诸如TDMA的系统中,接收器和发送器不同时开启,重要的发送波段外的量化噪声抑制并不接近临界值。事实上,可以使用一个更普通的Δ∑调制器。我们知道的最简单的Δ∑调制器是一级调制器。为避免波段外量化噪声增加太快,考虑编码器302可能使用最低级是有充足原因的。自从20世纪80年代早期发明了二级和更高级调制器后,一级Δ∑调制器在历史上就避免使用了。在几乎所有已知商业应用中,由于一级调制器自身产生高水平的假声,使得它们在许多实际系统设计中根本上不能使用,所以避免使用一级Δ∑编码器。一级编码器仅在9dB/octave时就导致量化噪声增加,然而二级编码器的噪声在15dB/octave时增加,三级编码器的噪声在21dB/octave时增加。无源谐振器(图10.11)必须削弱波段外的量化噪声,并理想化地应具有低级特性以便将插入损耗尽可能低。例如,一个单截面带通谐振器在谐振频率的每一侧都会衰减6dB/octave。满足量化噪声升高9dB/octave而谐振器衰减6dB也会导致量化噪声净增加3dB/octave。如果过取样倍率为2048,那么在3dB/octave时大约净增加11octave,这样将会引起过多的波段外噪音而不能满足末端系统的频谱要求。因此,在示例取样并保持插入器318(图3)中引入了衰减波段外量化噪声的其它方法,在直流及4Fc的倍数处引入了频谱零值,有效地缓和了谐振器自身衰减不足的问题,以显著的效率削去了波段外的能量。
再次参阅图3所示,噪声重整编码器302的输出与取样/保持插入器318耦合,结果的插值比率为L1和L2。取样并保持插入器318的目的在于协调噪声重整编码器的样本输出率和数字正交调制器316的调制频率。
以下几个例子用来帮助说明图3中数字促动谐振功率转换器设备300的运行和性能。
例1返回来参阅图3中的实施例,我们选择L1=1且L2=4。我们也在驱动同步和正交调制器的cos()和s in()幅角内设定相位偏移θ=0。数据样本{ik}是来自同步编码器302a的第k个样本,相似地,数据样本{qk}是来自正交编码器302b的第k个样本。使用一个频率为4Fc的时钟脉冲,它比载波频率Fc高4倍,在下一个第k个样本到来之前,来自编码器的样本被插入器318连续4次有效地采样并保持。同步和正交调制器320是有效的算术乘法器。每个乘法器都有两个输入和一个输出。同步调制器320a接收来自插入器318a的同步样本,也接收一个周期序列{1,0,-1,0},该序列是三角运算cos(2πn/4)的结果,每个载波周期载波频率Fc的同步向量具有4个样本。相似地,正交调制器320b接收来自插入器318b的正交样本,也接收一个周期序列{0,1,0,-1},该序列是三角运算sin(2πn/4)的结果,每个载波周期载波频率Fc的正交向量具有4个样本。这些计算结果在同步调制器320a的输出上产生{ik,0,-ik,0},在正交调制器320b的输出上产生{0,qk,0,-qk}。因此,每个频率为Fc的同步编码样本{ik}被转换成一个4Fc的4维信息包{ik,0,-ik,0},每个频率为Fc的正交编码样本{qk}被转换成一个4Fc的4维信息包{0,qk,0,-qk}。然后组合器324在每个载波周期或Fc周期产生数据序列{ik,qk,-ik,-qk}。如果噪声重整编码器(14)被限定为二进制量化,那么每个载波周期就有四个可能的数据序列{1,1,-1,-1},{1,-1,-1,1},{-1,-1,1,1},{-1,1,1,-1}。这些数据序列中地每一个都代表四个可能的信号布局点中的一个。对于通频带数据传输尤其是信号的移相键控的通用处理方法,读者可参阅文章“数据交换原则”,由Gitlin等人著,Plenum出版社1992年版第五章,从第325页开始。
例2同前面例1,我们选择L1=1且L2=4。然而这次我们在驱动同步和正交调制器的cos()和sin()幅角内设定相位偏移θ=π/4。请注意在一些情况下将相位偏移设为θ=π/4时非常重要的。尤其是,CDMA标准IS-95,IS-95a,IS-98和IS-2000要求将π/4偏移四相移相键控作为一个调制模式。在数据调制领域具有常识的人员都知道,使用π/4偏移四相移相键控而不用零偏移,对降低峰值对平均值的比很有益处,否则被作为振幅因数。返回到前面所讲的运算,数据样本{ik}是来自同步编码器302a的第k个样本,相似地,数据样本{qk}是来自正交编码器302b的第k个样本。使用一个频率为4Fc的时钟脉冲,它比载波频率Fc高4倍,在下一个第k个样本到来之前,来自编码器的样本被插入器318连续4次有效地采样并保持。所讲的实施例中,同步和正交调制器320a和320b是有效的算术乘法器。每个乘法器都有两个输入和一个输出。同步调制器320a接收来自插入器318a的同步样本,也接收一个周期序列{1,-1,-1,1},该序列是三角运算cos(2πn/4+π/4)的结果,是载波频率Fc的同步向量。相似地,正交调制器320b接收来自插入器318b的正交样本,也接收一个周期序列{1,1,-1,-1},该序列是三角运算sin(2πn/4+π/4)的结果,是载波频率Fc的正交向量。(请注意我们暂时去掉了cos()和sin()幅角的符号,忽略了π/4偏移的一个结果-乘数 )。这些计算结果在同步调制器的输出上产生{ik,-i k,-ik,ik},在正交调制器的输出上产生{qk,qk,-qk,-qk}。因此,每个频率为Fc的同步编码样本{ik}被转换成一个4Fc的4维信息包{ik,-ik,-ik,ik},每个频率为Fc的正交编码样本{qk}被转换成一个4Fc的4维信息包{qk,qk,-qk,-qk}。然后组合器324产生{(ik+qk),(-ik+qk),(-ik-qk),(ik-qk)}。
如果噪声重整编码器302被限定为二进制量化,那么每个载波周期就有四个可能的数据序列{2,0,-2,0},{0,2,0,-2},{-2,0,2,0},0,-2,0,2}。这些数据序列中地每一个都代表四个可能的信号布局点中的一个。这样就有效地导致每隔一个样本插入点的值为零,允许谐振器和开关在取样点间停顿,减少了开关和谐振器接口处码间干扰的可能性。
图7图示说明了例1和例2的频谱关系。
例3如前面例2,L1=1,L2=4且θ=π/4。但在噪声重整编码器302中使用三进制量化。因此,每个载波周期就有九个可能的数据序列,布局图中就会包括一个按照以下I-Q坐标系的九个符号点的矩阵(1,0),(1,1),(0,1),(-1,1),(-1,0),(-1,-1),(0,-1),(1,-1),和(0,0)。按照坐标图中的九个符号点,九个可能的数列就成为{1,-1,-1,1},{2,0,-2,0},{1,1,-1,-1},{0,2,0,-2},{-1,1,1,-1},{-2,0,2,0},{-1,-1,1,1},{0,-2,0,2},{0,0,0,0}。
例4在这种情况下,L2=2,但各个参数与例2相同,也就是说,L1=4且θ=π/4。这就有效地把编码器302的取样率降低了2到Fc/2,并且使取样/保持插入比为L1L2=8,于是取样/保持插入器318的输出率如前一样是4Fc。因此在数字正交调制器316的每8个时钟周期,噪声重整编码器302产生一个新的数据样本{ik}或{qk}。这些运算结果在I调制器输出的一行中产生两次{ik,-ik,-ik,ik},在Q调制器320b输出的一行中产生两次{qk,qk,-qk,-qk}。于是,每个频率为Fc/2的I编码样本{ik}在I调制器320a的输出中被转化为频率4Fc的八相位信息包{ik,-ik,-ik,ik,ik,-ik,-ik,ik}。每个频率为Fc/2的Q编码样本{qk}在Q调制器32 0b的输出中被转化为频率4Fc的八相位信息包{qk,qk,-qk,-qk,qk,qk,-qk,-qk}。然后组合器324在一行中产生两次{(ik+qk),(-ik+qk),(-ik-qk),(ik-qk)}。如果噪声重整编码器被限定为二进制量化,在每个载波周期内就会有{2,0,-2,0,2,0,-2,0},{0,2,0,-2,0,2,0,-2},{-2,0,2,0,-2,0,2,0},{0,-2,0,2,0,-2,0,2}四个可能的数列。
图8图示说明了本例的频谱关系。
例5我们可以看到运用本发明时可以在噪声重整编码器内使用任何多相位的信息包或任何量化水平。例如,如果我们希望每个载波周期有八(8)个唯一的相位状态,我们可以设定L1=1且L2=8,将量化水平的数值设为二进制,将数字正交调制器316和充电开关设定在8Fc运行。图9图示说明了本例的频谱关系。
取样/保持插入器318的作用使sinc(x)函数显示在频谱上,如图7(a)所示,在Fc的倍数处为零。如图7(b)所示,正交调制器的作用有效地将以Fc为中心的通频带的频谱上移。其它两个示例见图8和图9。图8中L1=2且L2=4,而图9中L1=1且L2=8。
虽然讲了几个可能的例子,但在发明范围内其它参数的这种组合也是可能的。因此,显而易见,本发明绝不仅限于上述例子。给出本说明中提出的例子,在本技术领域中具有常识的人员可以很简单地推导出其它插值比率、信息包长度、取样率、布局图等组合的例子。
进一步可以发现,与本文同期的合作而未定的10/382326号专利申请“谐振功率转化的编码设备及方法”,以同样题目于2002年3月4日申请美国临时专利60/361813的优先利益,本文在这里曾引用过,该文中详细介绍的脉动方案及设备,可以和本发明一起使用。这种脉动方法及设备理论上可运用于任意级的任意类型的编码器(也就是说,通过“n级”的一个),包括这里所讲到的,可以使用任何大于1的十进制系数,包括比如2、4、8,或者甚至无功的2。
正交调制器320的输出与组合器324的输出正交相加,并传输到相应的开关304。虽然也可以使用其它工艺类型(比如0.18微米或0.1微米),但这里采用了本领域中有名的0.35微米类型的砷化镓金属-半导体场效应晶体管开关。这里砷化镓半导体晶体件的实测晶体管相关的设备模型也被用作仿真基础。当速度、功率、效率要求的组合使它们成为一种吸引人的选择时,我们通常选用砷化镓金属-半导体场效应晶体管或高电子迁移率晶体管开关。然而,所讲实施例中的开关304可用众多可用技术中的任何一个,本发明并不限于使用砷化镓开关技术。例如,可以使用满足速度、功率、效率要求的辅助氧化金属半导体(CMOS)开关作为特殊应用,从成本角度来讲也是我们希望的。
本发明也绝不仅限于使用场效晶体管设备类型。比如,本发明某些应用中偏极开关足以代替场效晶体管。相应地,图3中的开关304是简单理想开关模型的代表。
虽然本领域中具有常识的人员都知道,砷化镓金属-半导体场效应晶体管因其自身内在的电子高活动性和其它突出的物理特性形成了高效高速高功率的开关,但也应认识到,如果提高技术外限,这种情况下需要电流型逻辑电路满足速度要求,辅助氧化金属半导体(CMOS)中GHz级逻辑速度非常消耗功率。我们意识到,虽然砷化镓金属-半导体场效应晶体管逻辑具有比辅助氧化金属半导体(CMOS)低得多的功率延迟结果,尤其是在此技术极限的极致之处,但在本发明所处时期,砷化镓技术通常并不会作为数字处理逻辑(比如图3中的典型处理器310)的永久选择。另外,由于功率损耗因数CV2F非常高,以GHz的速度水平开关高速时钟非常耗电。迄今为止,这些论题陷入了困难的窘局而没有明确答案。
因此,通过上述开关解决方法,本发明的益处进一步得到了补充;也就是说进一步降低了功率消耗和成本。一个解决功率和成本效率的方法包括将编码器302和充电开关304集成在一张单片的砷化镓晶片上。对本领域具有常识的人都知道,砷化镓和其它III-V复合半导体都非常适合以射频速度运行的射频功率放大器和开关。相似地,其它半导体技术也适用,比如锗化硅(SiGe)和磷化铟(InP),及其它随时间推移而产生的也能够提供射频逻辑和功率整体化优点的其它物质。然而,当在低速CMOS逻辑和高速砷化镓编码逻辑302和开关304之间可以使用并联-串联、串联-并联界面组合时,图3或图4中的低速逻辑电路也可方便地用于CMOS。
因此,本发明补充了不同结构的任意类型,包括特别地使用砷化镓和CMOS的“混合模性”(也就是说,图3中设备的一部分用砷化镓,而另一部分用CMOS)。例如,在一个实施例中,包括噪声重整编码器302、取样/保持插入器318、数字正交调制器316和充电开关304在内的射频组件都安置在一个或多个砷化镓设备上,而数据处理器310和一级插入器312都安置在通过并-串和串-并接口与砷化镓设备耦合的独立的CMOS设备中。其它对设备300中不同组件使用砷化镓和CMOS的结构可与本发明一致使用。
开关304可设在任意个标准结构中,比如图4所示推-拉结构。在图3中,开关304通过不平衡变压器308与谐振器306耦合,有效地构成插动-单端转换器。变压器308和/或谐振器306有许多不同用法,包括而不仅限于磁力耦合变压器、耦合微带变压器或带线变压器、同轴陶瓷谐振器或螺旋式谐振器。变压器308也可与谐振器306的部分或全部需要的特性结合使用。
变压器308和谐振器306的中心谐振频率均设定在Fc。假设谐振器具有相对高的空载Q因数,以使其能量存储能力非常高而在过程中浪费功率非常少。例如,如果Fc等于1.88GHz,想要的发送器带宽为100MHz,那么负载的Q就是1880/100=18。如果谐振器的效率损耗为5%,那么空载Q就是18/0.05=360。图7(c)、8(c)和9(c)描述了产生的谐振器的频谱输入和输出。谐振器有效地从噪声重整编码器302移除了波段外量化噪声,达到了可接收的水平。
在另一实施例中,变压器308和谐振器306与一个螺旋式谐振器结合使用。螺旋式谐振器在本领域中广为人知,有关信息可在比如《无线电工程师参考数据》第5版,版权为Howard W.Sams & Co.(ITT),22-30页中22-28页找到。开关304和螺旋式谐振器306间的耦合可以是探针耦合、环耦合或孔耦合。一种特别有用的耦合方式是环耦合,因为比较容易得到同相和反相极,虽然我们会看到其它方法在本发明中也可以成功运用。
图4说明,开关/变压器/谐振器接口相应部件的等效电路图。开关可被配置成为谐振器的等效电容CT差动充电。在零状态期间谐振器的等效电容CT被谐振器的电感LT换向(改变极性)。此耦合被看作匝数比为N的变压器。对于输入耦合,变压器被看作具有两个反相一次线圈和一个二次线圈,匝数比为Ni。对于输出耦合,变压器被看作具有一个一次线圈和一个二次线圈,匝数比为No。有效匝数比Nk将阻抗转变为匝数比的平方,以便开关能够在其关闭时为CT提供要求数量的电荷。
在谐振器306之后,元件的任意组合,包括而不限于,一个低通滤波器、一个发送/接收(T/R)开关,或一个双工机,可以随意地用在天线连接组309之前或用作309的一部分。例如,图11举例说明了变压器308和谐振器306与双工机1102以一种高效的方式结合使用,该方式通过减少在给定应用中需要提供的功能性单个元件的个数,实质上地节省了成本,提高了效率。
就谐振器和变压器带宽而言,以例说明,IS-95、IS-95a、IS-98和IS-2000包括从1.85-1.91GHz覆盖60MHz的北美PCS发送波段。如果变压器308和谐振器306具有固定音调,因为以下几个原因我们希望它们的频率响应宽于60MHz(1)保持波段边界处的插入损耗最小;以及(2)避免相位移和反射系数在重要的频率波段处变动太大。在允许使用波带更窄的谐振器的情况下或谐振器能够在写入模式自动调整的应用中,这些问题会在一定程度上被减轻,从噪声重整编码器产生波段外的量化噪声会被拒绝得更多,提供更清晰更联贯的输出,开关向重要波段传输能量的效率更高,浪费在不一致励磁中的能量更少。然而,更窄的谐振器带宽需要更大的空载Q以避免插入损耗变得太大,这一点局部地抵消了添加效率的好处。
来自开关304的数据在载波频率Fc每隔180°向变压器308和/或谐振器306充正电(波峰时)或负电(波谷时)。时域图表(图12)图解说明了这个概念。这种作用通过在错误时刻及时向谐振器充电保证了能量不会浪费,但这种很高效的作用仅仅出现在幅值和相变化非常慢的时期内,或出现在编码器具有高脉冲密度时。较快的调相变化或较低的脉冲密度会导致谐振器更频繁的反相或放电。
在一些应用中,可以通过在数字数据路径的任意处简单地改变数字增益,以一种单纯的数字形式控制幅值和功率水平。这个过程可以在插入器312之前在数字处理器310内以最低抽样率完成。另一个选择是,这个过程可以在插入滤波器312中或之后完成。对于CDMA IS-95或CDMA 2000,手机的输出功率水平应至少能在大于80dB的范围内变动。
在数字功率水平方案中增加模拟功率控制作为额外的自由度至少有两个突出的优点。依赖于编码器302的特性,没有足够的动态范围使输出功率以单纯完全数字形式进行变动,并且仍达到了系统标准要求的波段外能量抑制,尤其是在CDMA中。第二,通过在较低功率水平时允许直流偏磁变动或下降图3所示系统的效率大大提高,还提供了足够的偏磁使得开关保持在一个有效范围内运行。直流-直流转换器在本领域中广为人知并普遍应用,所以此处不再赘述。
除直流偏磁控制外,还可以使用开关的一个数控可变区域写入模式来提供另外的功率控制。有人或许会把这认为是模拟数字结合运行的半数字机制。假设开关作为电流限制设备而不是电压设备运行,由于开关电流与设备区域成正比,它们就不必象在高功率水平时那么大。在较低的功率水平,需要更小的电流,因此需要较小的设备区域。
因此,用这里所讲的数字谐振功率转换器,功率增益控制可以是纯数字或数字模拟组合的,这取决于应用中需要的折衷方法。
我们希望在开关304a和304b都开启期间,尤其是在数字正交调制器316输出一长串0期间,能够提供一种写入模式动态阻抗终端。在这种情况下,可以有效地开启一个单独的终端开关1002(图10),激活终端阻抗网络1004,其中包括一个直流块电容器组成的虚部以及一个某种电阻组成的实部,该电阻阻值大约等于探入变压器308的阻抗驱动点。这种终端网络的优点在于,它能阻止不想要的负载阻抗309的反射干扰从充电开关304看到的期望的谐振器的理想线性时变特性。
虽然本发明以上所讲使用的是直角或笛卡尔I-Q坐标系,但对数字交换系统领域具有常识的人很容易明白,这些概念用极坐标代替直角坐标来表达,比如在图3或图4设备的信号处理路径中某些点,I和Q向量可以转换为幅值和相位的极坐标。并且,大家知道在现有技术中噪声重整编码可以幅值向量和相位向量进行,而不仅是以I和Q向量。应该意识到开关304可由量化噪声重整相位信息驱动,E级放大器设计领域中的“包络重新构架”技术可运用于调制包含幅值或包络的直流电源。该包络的信号带宽大约等于这里讲到的符码率插入滤波器设定的符码带宽,所以包络信息的变化率比相位信息更慢。因此,基于本发明的综合说明、与E级放大器设计和包络重新构架技术有关的现有技术,我们很容易得出一个特别的可选择的实施例,并且该实施例比本说明中基于直角坐标系的例子具有更多优点。因为这种极坐标技术在本领域中为人所知,所以它们就可被作为本发明上述的一个基础可选择实施例,在这里没有必要再深入介绍。
这里图13-20提供了本发明不同方面的另外的MATLAB模拟输出。
图13图示说明了以1536倍符码率插入滤波时的最终阶段的频谱输出。
图14图示说明了开关304的输入中编码器302的声谱输出。本发明说明中前述的第三级调制器被用作产生输出的基础。
图15图示说明了例中谐振器306的频率响应。
图16图示说明了全可测波段上谐振器306的频谱输出。
图17图示说明了PCS发送波段上谐振器306的频谱输出。
图18图示说明了具有80MHz偏移的漏入PCS接收波段的发送功率。
图19图示说明了例中谐振器306的时域输出。
图20图示说明了理想情况下不带Δ∑调制器和不带Δ∑调制器时的相位响应。
图21图示说明了,受托人用实际产品-优质砷化镓金属-半导体场效应晶体管模型(用晶体件制成)进行的开关/谐振器电路的Cadence(软件过程改进和能力确定)模拟与理想开关模拟相比得出的时域中的差别。本发明中开关/谐振器界面之前在数字处理块的MATLAB模拟中预处理过的实际CDMA波形和开关的输入激励被输入到Cadence中进行模拟和分析。
应当认识到,虽然本发明的某些方面按照方法的特定次序步骤,或按照适于体现本发明方法论的设备中的元件次序进行了说明,但这些说明仅仅是更为广泛的发明中的一些实例,可以根据特定应用的要求进行修改。在某种环境下,某些步骤/元件可能是不必要的或随意的。另外,可以在已述实施例中增加某些步骤/元件或功能,或者可以颠倒两个或多个步骤或元件的次序。所有这些变动均属于本发明中说明或声明的范围之内。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的方法及技术内容作出些许的更动或修饰为等同变化的等效实施例,但是凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。
权利要求
1.一种谐振功率转换器,其特征在于其包括一个可用于产生复杂脉冲的脉冲输入源;一个谐振器,与前述脉冲输入源有效耦合并具有与载波频率相同或大体上相近的谐振频率;以及一个与前述谐振器输出有效耦合并适用于传输复杂射频信号的传输介质;其中前述谐振器进一步适用于选择性地增强至少部分上述产生的复杂脉冲,以实现前述整流器的最佳效率。
2.一个数字驱动的谐振功率(DARP)转换器,其特征在于其包括一个以时标速率Fc/L1接收数字数据并将前述数字数据编码的噪声重整编码器,其中L1是载波频率Fc的倍数;一个电源,其频率与直流相同或大体接近;一个具有与前述载波频率Fc相同或大体接近的谐振频率的谐振器;一个与前述谐振器耦合的负载阻抗,用于接收保存在前述谐振器中的能量;以及一个充电开关,该充电开关与前述噪声重整编码器、前述电源、前述谐振器及一个时标速率为L2Fc的时钟耦合,其中L2是前述载波频率Fc的倍数,前述充电开关适用于从噪声重整编码器接收编码了的数据;抽取前述电源的电流或电压样本;以及将前述电源的电压或电流样本传输到前述谐振器。
3.一种谐振功率转换器,其特征在于其包括一个可用于产生复杂脉冲的脉冲输入源;一个谐振器,与前述脉冲输入源有效耦合并具有谐振频率;噪声重整编码设备,与前述谐振器有效耦合,并能设置成至少在一个频率抑制量化噪声;以及一个与前述谐振器输出有效耦合并适用于传输复杂射频信号的传输介质;
4.根据权利要求3所述的谐振功率转换器,其特征在于其中其中所述的噪声重整编码设备是一级的。
5.一种在射频交换系统中处理复杂数据的方法,其特征在于其包括以下步骤过滤前述数据;以及将前述数据编码,以便将前述编码过程中产生的量化噪声主要散播在感兴趣的波段外至少一个调频波段之外。
6.根据权利要求5所述的在射频交换系统中处理复杂数据的方法,其特征在于该方法进一步包括在前述滤波和编码之前将前述数据分解为一级分量和二级分量。
7.根据权利要求6所述的在射频交换系统中处理复杂数据的方法,其特征在于前述分解为一级和二级分量的做法包括分解为I和Q分量。
8.根据权利要求6所述的在射频交换系统中处理复杂数据的方法,其特征在于进一步包括直角相位调制编码了的一级和二级分量,形成一级和二级调制信号;以及组合前述信号。
9.根据权利要求5所述的在射频交换系统中处理复杂数据的方法,其特征在于进一步包括在编码前直角相位调制前述过滤后的数据。
10.根据权利要求9所述的在射频交换系统中处理复杂数据的方法,其特征在于进一步包括在前述过滤和调制之前将前述数据分解为一级分量和二级分量,然后在编码前组合前述直角相位调制过并过滤过的信号。
11.一种射频设备中有用的数字整流器结构,其特征在于其包括至少一个适用于数据处理的一级分量;以及至少一个适用于射频信号产生的二级分量;其中一级过程中处理至少一个所述一级分量,不同的是二级过程中处理至少一个所述二级分量。
12.根据权利要求11所述的射频设备中有用的数字整流器结构,其特征在于其中前述一级处理中包括互补型金属氧化物半导体(CMOS),前述二级处理过程中包括一个III-V族化合物半导体过程。
13.根据权利要求11所述的射频设备中有用的数字整流器结构,其特征在于至少一个前述一次分量包括一个数字处理器,至少一个前述二次分量包括至少一个调制器和噪声重整编码器。
14.根据权利要求13所述的射频设备中有用的数字整流器结构,其特征在于至少一个所述一级分量设置在互补型金属氧化物半导体(CMOS)上,至少一个所述二级分量设置在砷化镓设备上。
15.任何一个前述权利要求中所述射频设备中有用的数字整流器结构,其特征在于进一步包括在前述至少一个一级分量和二级分量之间存在串-并和并-串逻辑。
16.一种对射频电路非常有用的谐振结构,其特征在于其包括一个接收输入信号的一级谐振器;一个与所述一级谐振器输出有效耦合的二级谐振器,接受来自所述一级谐振器的输出信号,并向接收器产生二级输出;以及一个设置在前述一级和二级谐振器之间的负载阻抗,适用于促进发送和/或接收射频信号。
17.根据权利要求16所述的谐振结构,其特征在于其进一步包括一个与适用于产生所述输入信号的所述一级谐振器的输入耦合的变压器。
全文摘要
本发明是关于一种用于超高频射频传输的谐振功率转换器及其方法。在一个典型实施例中,本发明是数字驱动的,并使用了噪声重整编码器、充电开关和高品质因数谐振器的组合,其中高品质因数谐振器与输出负载耦合,通常是天线或传输线。谐振器的电磁场中产生能量,反过来将能量传输到负载,传输过程中几乎没有能量浪费。不需要任何有源功率放大器。设备在理论上可用于任何射频信号应用(无线或其它),包括比如手机、本地或宽区域网络传输、或者甚至无线电基站。
文档编号H03C1/00GK1640084SQ03805190
公开日2005年7月13日 申请日期2003年3月4日 优先权日2002年3月4日
发明者S·R·诺兹沃斯, R·W·诺兹沃斯 申请人:St微电子公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1