专利名称:电力半导体装置的利记博彩app
技术领域:
本发明涉及电力半导体装置,特别是涉及电力用电压驱动式电力MOSFET。
上述电压驱动式的MOSFET(MOS型场效应晶体管)一般用做电机驱动用的开关。例如车载用的ABS泵电机驱动用的开关等,是其代表性的用途。
在上述泵电机驱动用的开关中,一般地说,在多个MOSFET的栅极上,装配有控制栅极电位的控制用IC。于是,构成具备该开关的泵电机驱动电路。另外,还存在有内置控制用IC的IPD(IntelligentPower Device,智能电力器件)、IPM(Intelligent Power Module,智能电力组件)。
以往,在这样的电路构成中,当出于一种什么理由控制用IC被破坏,或发生了故障时,就会变成为MOSFET的栅极电位不固定的状态(悬浮状态),招致不完全的导通(ON)状态。所谓不完全的ON状态,指的是在多个MOSFET之内形成了ON器件和非ON器件的状态。
如果象这样地发生了ON器件和非ON器件,则电流将集中地流向已变成为ON状态的器件,会发生导致该器件遭受热破坏的缺陷。当器件遭受热破坏,变成为短路状态时,结果就变成为全部的电力都加在泵电机上,存在着使电机也被破坏的危险。
此外,这种器件破坏在常温下难于产生,经常是一直到被破坏为止持续不稳定的状态。因此,在车载用等的要求高温可靠性的那些用途中,就非要解决该问题不可。
作为解决方案,可以考虑内置简单电路的IPD、IPM等的采用。
但是,在采用上述IPD、IPM等的情况下,性能价格比将会恶化。
于是,本发明就是鉴于上述课题而发明的,目的是采用在具有电力MOSFET的半导体装置内内置简单电路而不会增加部件个数,无须采用会招致价格上涨的IPD、IPM的办法,提供具有在电力MOSFET的栅极电位已变成为不固定状态的情况下,可以防止电力MOSFET遭受热破坏的电力MOSFET的半导体装置。
为实现上述目的,本发明的半导体装置,其特征是具备在半导体衬底上边形成、具有栅极、源极和漏极的电压驱动式的电力MOSFET;在上述半导体衬底上边形成,可以向其两端供给上述电力MOSFEET的上述漏极和上述源极之间的电压的串联连接的第1电阻和齐纳二极管;在上述半导体衬底上边形成、可以向其两端供给上述电力MOSFEET的上述栅极和上述源极之间的电压的第2电阻;在上述半导体衬底上边形成、可以向其两端供给上述电力MOSFEET的上述栅极和上述源极之间的电压的串联连接的第3电阻和具有栅极、源极和漏极的MOS晶体管,上述第1电阻和齐纳二极管之间的连接点被连接到上述MOS晶体管的栅极上。
图1的电路图示出了本发明实施例的电力半导体装置的构成。
图2模式性的剖面图示出了本发明实施例的电力半导体装置中的电力MOSFET和横向nMOS晶体管的构造。
以下,参看附图对本发明的实施例进行说明。
图1的电路图示出了本发明的实施例的电力半导体装置的构成。
该电力半导体装置,由n沟电力MOSFET(MOS型场效应晶体管)11、有源箝位二极管12、栅极保护用的二极管13、齐纳二极管14、横向n沟MOS晶体管15和电阻R1、R2、R3构成。
漏极端子DT连接到上述MOSFET11的漏极上,在MOSFET11的栅极上和MOSFET11的源极上,分别连接有栅极端子GT和源极端子ST。
在上述漏极端子DT与栅极端子GT之间,连接有有源箝位二极管12。此外,在漏极端子DT与源极端子ST之间串联连接有电阻R1和齐纳二极管14。
此外,在栅极端子DT与源极端子ST之间,连接有电阻R2。再有,在栅极端子GT与源极端子ST之间,还串联地连接有电阻R2和nMOS晶体管15。此外,还连接有栅极保护用的二极管13。此外,nMOS晶体管15的栅极连接到上述电阻R1和齐纳二极管14的连接点上。
另外,上述nMOS晶体管15的阈值电压比7V低。此外,上述有源箝位二极管12的击穿电压VZ=33V~43V。
在该电力半导体装置中,在控制MOSFET11的栅极电位的处于外部的控制用IC遭到破坏,MOSFET的栅极变成为悬浮状态的情况下,只要MOSFET不进行驱动,就可以解决上边所说的问题,就是说可以解决MOSFET被破坏的问题。于是,在本实施例中,在栅极上连接有可变电阻装置。
以下,以驱动车载用ABS泵电机的开关为例说明电路动作。
首先,说明控制MOSFET11的栅极电位的控制用IC被破坏,MOSFET11的栅极变成为悬浮状态的情况。
在上述开关中,在MOSFET11处于ON时,在栅极与源极之间加有14V的电池电压。在MOSFET11处于ON时,就是说,在栅极电位比MOSFET的阈值电压高时,在栅极已变成为悬浮状态的情况下,将变成为下述那样。
在这种情况下,在电阻R1和齐纳二极管14中流有7μA的电流。另外,电阻R1的电阻值大约为1MΩ左右。齐纳二极管14的击穿电压VZ=7V。因此,在电阻R1与齐纳二极管14之间的连接点上,将发生7V的电压。
当把上述连接点的电压供给nMOS晶体管15的栅极时,由于nMOS晶体管15的阈值电压低于7V,故nMOS晶体管15导通。借助于此,电流将在连接到栅极端子GT和源极端子ST之间的电阻R3内流动。电阻R3的电阻值约为20KΩ~100KΩ左右,是低电阻。为此,MOSFET的栅极电位降低,被固定为阈值电压以下。借助于此,在MOSFET11的栅极变成为悬浮状态的情况下,就可以防止以微小的电流使MOSFET11变成为ON。
其次,说明用控制用IC控制MOSFET11的栅极电位,使MOSFET11变成为ON的情况。
在栅极电位高于MOSFET的阈值电压时,电流将在连接到栅极端子GT和源极端子ST之间的电阻R2内流动。电阻R2的电阻值为2MΩ,是低电阻。为此,MOSFET11的栅极电位不降低,被固定为比阈值电压高的电压。借助于此,在控制MOSFET11的栅极电位,使MOSFET变成为ON的情况下,就可以用微小的电流使MOSFET变成为ON。
如以上所述,在本实施例中,采用在具有电力MOSFET的半导体装置中内置简单电路的办法,而无须增加部件个数、无须采用会招致价格上涨的IPD、IPM等,在电力MOSFET的栅极电位变成为不固定状态的情况下,就可以防止电力MOSFET的热破坏。
其次,对本发明的实施例的电力半导体装置中的MOSFET11和横向nMOS晶体管15的构造进行说明。
图2模式性的剖面图示出了上述MOSFET11和n沟晶体管15的构造。在这里,MOSFET11使用沟槽式。
如图2所示,在n+半导体衬底21的一面上边,形成n-外延层22。在该n-外延层22上边,形成p基极层23。
在上述n-外延层22和p基极层23上形成沟槽,在该沟槽内形成栅极绝缘膜24和栅极25。把栅极端子GT连接到栅极25上。例如,上述栅极绝缘膜24使用硅氧化膜,栅极25使用多晶硅。
在上述栅极绝缘膜24附近的p基极层23内,形成n+源极层26,在该n+源极层26上边形成源极电极27。已接地的源极端子ST连接到源极电极27上。例如,上述源极电极27使用Al等的金属材料。以上是MOSFET11的构造。
其次,上述横向n沟MOS晶体管15具有以下那样的构造。
在p基极层23上边形成硅氧化膜(例如SiO2)28。在该硅氧化膜28上边形成n+漏极层29、n+源极层30和p-层31。n+漏极层29、n+源极层30和p-层31使用多晶硅。
此外,在n+漏极层29上形成漏极电极32,电阻R3的一端连接到该漏极电极32上。在n+源极层30上形成源极电极33,源极端子ST连接到该源极电极33上。例如,上述漏极电极32和源极电极33,使用Al等的金属材料。
此外,在p-层31上边形成栅极绝缘膜(例如SiO2)34,在该栅极绝缘膜34上边形成栅极电极35。上述电阻R1和齐纳二极管14的连接点连接到栅极电极35上。例如,上述栅极电极35使用Al等的金属材料。此外,漏极端子DT连接到n+半导体衬底上。
至于其它的连接,与图1所示的电路图是一样的。
如上所述,在本实施例中,用配置在氧化膜上边的多晶硅形成用来切换电力MOSFET11的栅极和源极间的电阻值的横向nMOS晶体管15的半导体层(有源层)。
由此不需要器件分离等技术,电路被简化。
另外,即便是不固定用多晶硅形成的nMOS晶体管15的p-区的电位,该nMOS晶体管15所进行的动作也可以在实验上进行确认。
在本发明中,其特征是具备可变电阻电路,该电路用来在加到电力晶体管的栅极上的电压低于阈值电压时就减小栅极与源极间的电阻值,而在所加电压比阈值电压还高时,就增大栅极与源极间的电阻值。
借助于此,在电压驱动式的电力晶体管的栅极电位变成为不能任意地固定时,例如,在控制栅极电位的IC变得不能工作时,或栅极开路时,就可以构成防止电力晶体管破坏的保护电路。
此外,采用用多晶硅形成切换可变电阻电路电阻值的开关用横向nMOS晶体管的办法,可以简化电路。
此外,在本发明中,在使用电压驱动式电力晶体管的驱动电路应用中,在电力晶体管的栅极电位已陷入到悬浮状态时,就可以防止因过电流流入器件而发生的热破坏。
如上所述,倘采用本发明,采用在具有电力MOSFET的半导体装置内内置简单电路而不会增加部件个数,无须采用会招致价格上涨的IPD、IPM的办法,就可以提供具有在电力MOSFET的栅极电位已变成为不固定状态的时候,可以防止电力MOSFET遭受热破坏的电力MOSFET的半导体装置。
权利要求
1.一种电力半导体装置,其特征是具备在半导体衬底上边形成、具有栅极、源极和漏极的电压驱动式的电力MOSFET;在上述半导体衬底上边形成,可以向其两端供给上述电力MOSFEET的上述漏极和上述源极之间的电压的串联连接的第1电阻和齐纳二极管;在上述半导体衬底上边形成、可以向其两端供给上述电力MOSFEET的上述栅极和上述源极之间的电压的第2电阻;在上述半导体衬底上边形成、可以向其两端供给上述电力MOSFEET的上述栅极和上述源极之间的电压的串联连接的第3电阻和具有栅极、源极和漏极的MOS晶体管,上述第1电阻和齐纳二极管之间的连接点被连接到上述MOS晶体管的栅极上。
2.权利要求1所述的电力半导体装置,其特征是上述第3电阻的电阻值比上述第2电阻的电阻值小。
3.权利要求1所述的电力半导体装置,其特征是还具备栅极保护用二极管,用来向其两端供给上述电力MOSFET的上述栅极与上述源极之间的电压。
4.权利要求1所述的电力半导体装置,其特征是上述电力MOSFET是把上述漏极和上述源极排列在对于上述半导体衬底垂直的方向上的纵向晶体管,上述MOS晶体管是把上述漏极和上述源极排列在对于上述半导体衬底的水平方向上的横向晶体管。
5.权利要求4所述的电力半导体装置,其特征是上述MOS晶体管的有源层用多晶硅形成。
6.权利要求5所述的电力半导体装置,其特征是上述多晶硅在绝缘膜的表面上边形成。
7.权利要求6所述的电力半导体装置,其特征是上述绝缘膜是硅氧化膜。
全文摘要
提供在电力MOSFET的栅极电位变成为不固定状态的情况下,可以防止电力MOSFET热破坏的电力半导体装置。具有电力MOSFET11;在电力MSFET11的漏极与源极之间串联连接的电阻R1和齐纳二极管14;连接在电力MOSFET11的栅极与源极之间的电阻R2;串联连接在电力MOSFET11的栅极与源极之间的电阻R3和MOS晶体管15,电阻R1和齐纳二极管14之间的连接点连接到MOS晶体管15的栅极上。
文档编号H03K17/082GK1315746SQ0111187
公开日2001年10月3日 申请日期2001年3月22日 优先权日2000年3月24日
发明者米田辰雄 申请人:株式会社东芝