二次电池组连接控制方法、电力存储系统和二次电池组的利记博彩app

文档序号:7457316阅读:239来源:国知局
专利名称:二次电池组连接控制方法、电力存储系统和二次电池组的利记博彩app
技术领域
本发明涉及ー种具有多个二次电池组的电カ存储系统。
背景技术
随着环境问题在近年来越来越重要,正在调查研究用于在存储由PV (光伏)发电获得的过剩电力的电カ存储系统中的电动汽车(EV)和混合电动汽车(HEV)中使用的锂离子二次电池的使用。此外,锂离子二次电池还作为对抗由铅蓄电池引起的类型的环境问题的有效对策而受:到关注。这种类型的电カ存储系统包括以下配置其中,并行布置由二次电池组成的多个二次电池组。然而,当并行布置该多个二次电池组时,存在将流动以对二次电池充电的高电流的可能,从而导致事故。由此,通过将每个二次电池组与负载相连接或者通过将每个二次电池组从负载断开来采取措施,以便处理由二次电池组之间的电压差生成的电流以及由于该二次电池组配置中电流的流动而生成的热量(參见专利文献I)。专利文献I中描述的电カ存储系统被提供有并行布置的多个存储元件行,并在存储元件行的电压差处于值的预定范围内的条件下执行将存储元件行连接至负载的操作,从而可以防止由电压差引起的过电流或异常热量。现有技术的文献资料 专利文献
专利文献1:日本待审专利申请公开No. 2009-033936。

发明内容
本发明要解决的问题
然而,在专利文献I中描述的电カ存储系统中,由于存储元件行无法连接至负载,除非存储元件行的电压差处于值的预定范围内,因此用于控制二次电池组之间的电连接的操作被限制,并且因此该系统的灵活操作是不可能的。例如,如果与负载相连接且被引起放电的存储元件行的容量将减少,则将变得难以执行切換至其容量更大的另一存储元件行的操作。本发明的目的是提供一种技术,其提高与在具有并行连接多个二次电池组的配置的电カ存储系统中将二次电池组相连接有关的操作的自由度。解决问题的手段
为了实现上述目的,本发明的二次电池组连接控制方法是ー种用于控制二次电池组电连接以便控制被提供有多个二次电池组的电カ存储系统中的二次电池的输入端子和输出端子的方法,所述方法包括以下步骤
在控制来自要被新连接的第一二次电池组的电流的同时开始放电;以及
关断要被断开的具有比所述第一二次电池组更低的电压的第二二次电池组的充电路径。
本发明的电カ存储系统包括多个二次电池组,所述多个二次电池组中的每ー个都具有二次电池;充电开关装置,其接通和关断去往所述二次电池的充电路径;放电开关装置,其接通和关断来自所述二次电池的放电路径;以及电流限制装置,其在将电流限制至固定值或更低的同时使所述二次电池放电;主机设备,在将与系统的输入/输出端子相连接的二次电池组从第二二次电池组切换至电压比在所述第二二次电池组中更高的第一ニ次电池组时,所述主机设备在以下状态下使所述第二二次电池组的充电开关装置关断充电路径,在所述状态中,所述第一二次电池组的电流限制装置将在限制电流的流动的同时使放电操作开始。本发明的二次电池组包括 二次电池;
充电开关装置,其接通和关断去往所述二次电池的充电路径;
放电开关装置,其接通和关断来自所述二次电池的放电路径;
电流限制装置,其在将电流限制至固定值或更低的同时使所述二次电池放电;以及控制单元,其根据所给出的指令,控制所述充电开关装置、所述放电开关装置和所述电流限制装置。


图1是示出了根据本示例性实施例的电カ存储系统的配置的框图。图2是用于描述在将与负载相连接的二次电池组从电压为低的二次电池组15切换至电压为高的二次电池组15时本示例性实施例中的电カ存储系统的操作的视图。图3是示出了根据本示例性实施例的电カ存储系统的操作的流程图。图4是不出了根据本不例性实施例的电カ存储系统的放电开关17、充电开关18和恒定电流电路21的实际电路的示例的电路图。图5是不出了根据本不例性实施例的电カ存储系统的放电开关17、充电开关18和恒定电流电路21的实际电路的另ー示例的电路图。图6是不出了根据本不例性实施例的电カ存储系统的放电开关17、充电开关18和恒定电流电路21的实际电路的另ー示例的电路图。图7是不出了根据本不例性实施例的电カ存储系统的放电开关17、充电开关18和恒定电流电路21的实际电路的示例的电路图。
具体实施例方式接下来參照附图来描述执行本发明的实施例。图1是示出了根据本示例性实施例的电カ存储系统的配置的框图。參照图1,该电カ存储系统具有两个二次电池组15以及对这些二次电池组15进行控制的主机系统14。这两个二次电池组15是相同的。此外,尽管示出了在其中存在两个二次电池组15的示例,但是还可以存在三个或更多个二次电池组。两个二次电池组15是并行布置的,并连接至负载(未示出)。可以在二次电池组15与负载之间提供电カ调节器。二次电池组15具有两个二次电池块11和控制块12。该二次电池块11具有多个二次电池串行连接的配置。控制块12具有两个电池检测器16、控制单元19、绝缘通信单元13、放电开关17、充电开关18、电流检测器20和恒定电流电路21。控制单元19基于从主机系统14给出的指令来控制电池检测器16、充电开关18、放电开关17和恒定电流电路21。两个电池检测器16检测两个二次电池块11的每个二次电池10的两端电压。绝缘通信単元13是用于通过控制単元19与主机系统14通信的通信电路。放电开关17是通过来自控制单元19的控制接通和关断放电路径的开关。充电开关18是通过来自控制单元19的控制接通和关断充电路径的开关。电流检测器20測量二次电池组15的放电电流或充电电流。恒定电流电路21是在通过来自控制单元19的控制将放电电流限制至固定值或更小的同时使二次电池组15放电的电路。主机系统14控制二次电池组15到负载的连接。例如,当主机系统14从容量已下降且电压为低的其他二次电池组15切換至与负载相连接且电压较高的二次电池组15吋,主机系统14在将电流限制至不大于固定值的同时使要新连接的二次电池组15开始放电。此时,接通新二次电池组15中的恒定电流电路21。接下来,主机系统14使要从负载断开的二次电池组15关断充电路径。在要从负载断开的二次电池组15中,充电开关18关断充电路径。此时,与关断电压为低的二次电池组15的充电路径同时,主机系统14还接通电压为高的二次电池组15的放电路径,并且然后,主机系统14关断电压为低的二次电池组15的放电路径。图2是用于描述在将与负载相连接的二次电池组从电压为低的二次电池组15切换至电压为高的二次电池组15时本示例性实施例中的电カ存储系统的操作的视图。图2示出了两个二次电池组15 (低电压组15a和高电压组15b)的放电开关17、充电开关18和恒定电流电路21的部分。当从低电压组15a切换至高电压组15b时,高电压组15b的恒定电流电路21在限制电流的流动的同时首先开始放电。此时,将来自低电压组15a的放电电流(I2)和来自高电压组15b的电流受限的放电电流(I1)进行组合的电流(I3)流向负载。如果低电压组15a和高电压组15b的电压差很大,则来自高电压组15b的放电电流I1流向低电压组15a,作为充电电流14。然而,来自高电压组15b的放电电流I1是在安全区中被控制的,并且比预定值更大的充电电流I4将不会从高电压组15b流向低电压组15a。在该状态下在低电压组15a的充电开关18关断充电路径的同时,高电压组15b的放电开关17接通放电路径。接下来,低电压组15a的放电开关17关断放电路径,并使高电压组15b的恒定电流电路21停止放电。根据如上所述的本示例性实施例,放电从电压为高且在控制电流的同时新连接至负载的二次电池组15开始,并且关断电压为低且要从负载断开的二次电池组15的充电路径,从而甚至当在二次电池组15之间存在电压差时,也可以防止过载电流或异常热量,并且与二次电池组15的连接相关的操作的自由度得以改迸。图3是示出了根据本示例性实施例的电カ存储系统的操作的流程图。尽管图1和图2示出了存在两个二次电池组15的示例,但是图3示出了存在三个或更多个二次电池组15的电池操作的示例。更具体地,当正在放电的二次电池组15的放电电流超过对正在放电的二次电池组15来说允许的最大放电电流时,添加正在放电的ニ次电池组15并执行将每个二次电池组15的放电电流限制至最大放电电流或更小的过程。參照图3,在没有ー个二次电池组15正在放电的状态中,控制单元19使用电池检测器16来測量每个二次电池组15的两端处的电压并将电压报告给主机系统14,并且主机系统14基于所报告的电压来得到每个二次电池组15的容量,并选择电压最大(即,容量最大)的二次电池组15 (步骤101-104)。例如,预先准备示出二次电池组15的电压和容量之间的关系的表,并且通过查阅该表,从两端处的电压可以获得二次电池组的容量。然后,电压最大的二次电池组15的放电开始(步骤105)。控制单元19使用电流检测器20来测量正在执行放电的二次电池组15放电时的电流(步骤106),并报告给主机系统14。主机系统14将所报告的电流的值与二次电池组15的最大放电电流进行比较(步骤107)。·如果所报告的电流值大于最大放电电流,则主机系统14选择电压次最大的二次电池组15 (步骤108),并使放电开始(步骤109)。主机系统14再次将正在放电的二次电池组15的电流的值与最大放电电流进行比较(步骤110),并且,如果电流的值大于最大放电电流,则主机系统14返回至步骤108,并使具有次最高电压的二次电池组15也放电。在步骤107中,如果电流值等于或小于最大放电电流,则主机系统14在測量放电时的电压(步骤111)的同时,使二次电池组15放电直到电压值减小至所规定的电压为止(步骤112)。所规定的电压是确定在容量减小的什么水平时切换二次电池组的值,并且,可以自由地设置该值。当正在放电的二次电池组15的电压减小直到所规定的电压时,主机系统14选择电压最大(即,容量最大)的二次电池组15,并开始切换要开始放电的二次电池组15的过程(步骤 113-114)。主机系统14使电压最大的二次电池组15 (以下称为“新电池组”)开始通过恒定电流电路21放电(步骤115)。接下来,主机系统14关断正在放电且已放电至该点的二次电池组15 (以下称为“旧电池组”)的充电开关18 (步骤116)。主机系统14还使新电池组的放电开关17接通并开始正常放电(步骤117),并使通过恒定电流电路21的放电停止(步骤118)。然后,主机系统14返回至步骤105,并继续该过程。如果在步骤110中电流的值降至最大放电电流或以下,则主机系统14在使多个ニ次电池组15并行放电的同时执行步骤111之后的过程。图4是不出了根据本不例性实施例的电カ存储系统的放电开关17、充电开关18和恒定电流电路21的实际电路的示例的电路图。參照图4,放电开关17和充电开关18由MOS晶体管组成,并且恒定电流电路21由双极性电流镜像电路组成。该电路配置允许通过电流镜像电路将放电电流限制至不大于固定值。图5是示出了根据本示例性实施例的电カ存储器的放电开关17、充电开关18和恒定电流电路21的实际电路的另一不例的电路图。參照图5,充电开关18由MOS晶体管组成,放电开关17由继电器电路组成,并且恒定电流电路21由双极性电流镜像电路组成。该电路配置允许通过电流镜像电路将放电电流限制至不大于固定值。图6是不出了根据本不例性实施例的电カ存储系统的放电开关17、充电开关18和恒定电流电路21的实际电路的另一不例的电路图。參照图6,放电开关17和充电开关18由双极性晶体管组成,并且恒定电流电路21由双极性电流镜像电路组成。该电路配置允许通过电流镜像电路将放电电流限制至不大于固定值。图7是不出了根据本不例性实施例的电カ存储系统的放电开关17、充电开关18和恒定电流电路21的实际电路的示例的电路图。參照图7,放电开关17和充电开关18由MOS晶体管组成,并且恒定电流电路21由作为高耐受元件的IGBT (绝缘栅双极晶体管)组成。甚至当使用高电压二次电池组吋,该电路配置也实现根据本示例性实施例的二次电池组的切換。如上所述,通过利用恒定电流电路限制切換时的电流,本示例性实施例实现了ニ次电池组的安全切換,并允许交替使用两个二次电池组或者按顺序使用三个或更多个二次电池组。本示例性实施例还实现了高容量、高输出且便宜的二次电池(例如,用在例如EV 中的锂离子二次电池)的安全切换和使用。接下来描述由本示例性实施例实现的实际工作示例。作为示例,将假定本示例性实施例的两个二次电池组15的容量的差别是30%,并且ー个二次电池10的电压是4. 2 V,并且此时另一二次电池10是3. 7 V。还将假定串行连接地使用100个二次电池10。在这种情况下,容量的差别为30%时的二次电池10的电压差是(4. 2 V - 3. 7 V) =0. 5V。ー百个二次电池10串行连接,并且因此,二次电池组15的电压差是0.5 V X 100 = 50 V。当二次电池组15的所规定的电阻值是40 mQ时,在二次电池组15之间流动的电流是1250 A0另ー方面,如果假定利用30-Ah容量对二次电池组15进行充电时的最大电流为90A 3C,那么必须将在切换时在二次电池组15之间流动的充电电流限制至90 A或更小。由此,恒定电流电路21应当被配置为将电流限制至例如80 A或更小。可替换地,考虑以下情况其中,通过并行连接二次电池组15来实现30-Ah二次电池组15的IOO-KWh电カ存储系统。将400-V — 600-V系统假定为典型电压。如果将平均电压假定为370 V,则电カ存储系统的容量将为100 KWh/370 V = 270 Ah。假定30 Ah容量的二次电池组15,那么电力存储系统可以由270 Ah/30 Ah = 8行来实现。如果电カ存储系统由二次电池组15以这种方式并行配置,则可以分别断开和交換二次电池组15,并且可以增加二次电池组15的数目。此外,可以通过使计算机执行已在记录介质上记录的软件程序来实现本示例性实施例中的主机系统14及其操作以及控制単元19及其操作。尽管已经參照示例性实施例描述了本发明,但是本发明不限于该示例性实施例。在将对本领域普通技术人员来说清楚的本发明的范围内,权利要求中限定的本发明的配置和细节对各种修改来说是开放的。本申请要求保护基于日本专利申请No. 2010-173463的优先权的权益,该日本专利申请是在2010年8月2日提交的,并以引用的方式并入了这些申请的全部公开。
权利要求
1.一种二次电池组连接控制方法,其用于控制被提供有多个二次电池组的电力存储系统中的二次电池组系统的输入端子和输出端子的连接,所述方法包括以下步骤 在控制来自要新连接的第一二次电池组的电流的同时开始放电;以及 关断要被断开且电压比在所述第一二次电池组中更低的第二二次电池组的充电路径。
2.根据权利要求1所述的二次电池组连接控制方法,其中 在关断所述第二二次电池组的充电路径的同时,接通所述第一二次电池组的放电路径;以及 关断所述第二二次电池组的放电路径。
3.一种电力存储系统,包括 多个二次电池组,所述多个二次电池组中的每一个具有二次电池;充电开关装置,其接通和关断去往所述二次电池的充电路径;放电开关装置,其接通和关断来自所述二次电池的放电路径;以及电流限制装置,其在将电流限制至固定值或更低的同时,使所述二次电池放电; 主机设备,在从与系统的输入/输出端子相连接的二次电池组切换至电压比在所述第二二次电池组中更高的第一二次电池组时,所述主机设备在以下状态下使所述第二二次电池组的充电开关装置关断充电路径,在所述状态中,所述第一二次电池组的电流限制装置将在限制电流的流动的同时使放电操作开始。
4.根据权利要求3所述的电力存储系统,其中,与使所述第二二次电池组的充电开关装置关断充电路径的同时,所述主机设备使所述第一二次电池组的放电开关装置接通放电路径,并且接下来,所述主机设备使所述第二二次电池组的放电装置关断放电路径,并使所述第一二次电池组的所述电流限制装置停止放电。
5.一种二次电池组,包括 二次电池; 充电开关装置,其接通和关断去往所述二次电池的充电路径; 放电开关装置,其接通和关断来自所述二次电池的放电路径; 电流限制装置,其在将电流限制至固定值或更低的同时,使所述二次电池放电;以及 控制单元,其根据所给出的指令,控制所述充电开关装置、所述放电开关装置和所述电流限制装置。
6.根据权利要求5所述的二次电池组,其中,所述电流限制装置是通过所述放电开关装置与放电路径并行连接的恒定电流电路。
7.根据权利要求6所述的二次电池组,其中,所述恒定电流电路是由双极性晶体管实现的电流镜像电路。
8.根据权利要求6所述的二次电池组,其中,所述恒定电流电路由IGBT电路组成。
9.根据权利要求5至8中任一项所述的二次电池组,其中,所述充电开关装置和所述放电开关装置二者均由MOS晶体管组成并且串行连接在一起。
10.根据权利要求5至8中任一项所述的二次电池组,其中,所述充电开关装置和所述放电开关装置二者均由双极性晶体管组成并且并行连接在一起。
11.根据权利要求5至8中任一项所述的二次电池组,其中,所述放电开关装置由继电器电路组成。
全文摘要
提供了一种具有多个二次电池组以及主机设备的电力存储系统。所述二次电池组中的每一个具有二次电池;充电开关装置,其接通和关断去往所述二次电池的充电路径;放电开关装置,其接通和关断来自所述二次电池的放电路径;以及电流限制装置,其在将电流限制至固定值或固定值以下的同时使所述二次电池放电。在将与系统I/O相连接的二次电池组从第二二次电池组切换到具有比所述第二二次电池组更高的电压的第一二次电池组时,主机设备使所述第二二次电池组中的充电开关装置关断充电路径,与此同时使所述第一二次电池组中的电流限制装置在限制电流的同时放电。
文档编号H02J7/00GK103026579SQ201180037989
公开日2013年4月3日 申请日期2011年5月30日 优先权日2010年8月2日
发明者铃木伸 申请人:Nec 能源元器件株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1