专利名称:包括低损耗材料的轴向气隙电气装置的定子线圈装置的利记博彩app
技术领域:
本发明涉及电动旋转机器;特别涉及轴向气隙的电动旋转机器,所述机器包括转子组件和定子组件,所述定子组件包括堆叠式定子线圈装置。
背景技术:
电动机和发电机工业一直在寻找提供具有增加的效率和功率密度的电动旋转机器。如本文中使用的一样,术语“电机”指各种将电能转化为旋转运动或相反的电动机或发电机。这些机器包括那些可选作为电动机、发电机或再生电动机使用的装置。术语“再生电动机”在这里用作指代可作为电动机或作为发电机工作的装置。已知有多种电动机,包括永磁式、绕线磁极式、感应式、可变磁阻式、开关磁阻式以及有刷或无刷式电动机。它们可直接由电力线路、电池或其他替代电源提供的直流或交流电源激励。或者,它们也可由电子驱动线路合成的具有所需波形的电流供电。从任意机械源得到的旋转能可驱动发电机。发电机的输出可直接连接到负载上或使用电源电路调整。给定的机器可选连接在机械源上,所述机械源可在机器运转的不同时期用作源或机械能量容器。因此,该机器可用作再生发动机,如通过使用可进行四象限工作的电源调整线路连接。
旋转机器一般包括通常称为定子的静止部件和通常称为转子的转动部件。转子和定子的相邻面被穿过了连接转子和定子的磁通的小气隙隔开。对于本领域的技术人员可以理解,旋转机器可包括多个机械连接起来的转子和多个定子。事实上,所有旋转机器均可按照惯例分为径向或轴向气隙类型。径向气隙类型中的转子和定子沿径向分隔开,贯穿的磁通量主要指向垂直于转子旋转轴的方向。在轴向气隙装置中,转子和定子沿轴向间隔开且磁通的贯穿方向主要平行于旋转轴。
除了某些专用类型,电动机和发电机通常使用一种或多种软磁材料。“软磁材料”是指很容易且高度地磁化和去磁的材料。每个磁化循环中磁性材料无法避免要损耗的能量称为磁滞损耗或铁耗。磁滞损耗的量值是激励振幅和频率两者的函数。
软磁材料还呈现出高的磁导率和低的磁矫顽力。电动机和发动机还包括由一个或多个永磁体或绕有载流线圈的附加软磁材料提供的磁动势源。“永磁材料”,也称为“硬磁材料”,是指具有高的磁矫顽力并强烈保持其磁性且抗去磁的磁性材料。根据电动机的类型的不同,永磁和软磁材料可安置在转子或定子上。
到目前为止,目前生产的大部分电动机采用各种级别的电子或电动机钢作为软磁材料,电子或电动机钢是铁和一种或多种合金元素特别包括Si、P、C和Al的合金。最常见地,Si是主要的合金元素。虽然一般认为由高级永磁材料构成转子且由高级低损耗软磁材料如非晶金属构成定子的电动机和发动机与其他常规径向气隙电动机和发动机相比有可能提供更高的效率和功率密度,但现在还没有成功制造这种轴向或径向气隙的机器。先前将非晶金属用于常规径向或轴向气隙机器的尝试在商业上基本都失败了。早先的设计主要包括将定子和/或转子用线圈或通常在内外表面间切割出齿的非晶金属迭片替换。非晶金属具有独特的磁性和机械性质,使得它很难或不可能直接替换常规设计的电动机中的普通钢。
现今工艺中的一些应用,包括各种不同领域如高速机床、航空发动机和传动器以及压缩机驱动器,需要可高速(如高rpm)运行的电动机,这些电机的速度许多情况下超过15,000-20,000rpm,一些情况下可达100,000rpm。高速电动机几乎总是制成低磁极数,以免电动机中工作在高频的磁性材料承受过高的铁耗,这将造成低效的电动机设计。这主要是由于现今大多数发动机中使用的软磁材料是硅-铁合金(Si-Fe)。众所周知,以高于约400Hz的频率改变常规基于Si-Fe的材料中的磁场引起的损耗会导致材料发热,时常到达无法使用任何容许的方法使装置冷却的程度。
目前为止,已证明很难有效地提供利用低损耗材料的容易生产的电气装置。先前在常规机器中采用低损耗材料的尝试基本都失败了,原因是早先的设计通常仅仅依赖于用新的软磁材料如非晶金属替换机器磁芯中的常规合金如硅-铁。得到的电机有时提供了增加的效率和较小的损耗,但它们的功率输出都有无法接受的降低,且与处理和形成非晶金属相关的成本显著提高。因而,它们还没有获得商业上的成功或市场的畅销。
例如,美国专利No.4578610公开了一种高效电机,其具有的定子通过简单地盘绕一条非晶金属带构造而成,其中先缠绕非晶带,然后再对非晶带开槽,然后再将合适的定子绕组置于这些槽中。
美国专利No.4187441公开了一种高功率密度机器,其具有螺旋式缠绕的叠片磁芯,这些叠片磁芯由具有安置定子绕组的槽的非晶金属带制成。该专利还公开了采用激光光束在非晶金属带中切制槽的方法。
在高槽数装置中特别显著的一个问题是不能够用绕组填充的槽空间的数量,因为在定子绕组和定子磁芯之间必须布置绝缘。绝缘的厚度是相对固定的,其由电气装置的工作电压确定。因此,能够用于定子线圈绕组的总的槽面积的百分率具有上限值。当采用公知的定子线圈绕组制造常规构造的高极数电气装置时,该值一般小于50%。对可用槽面积的限制又限制了确定可以产生的磁动势的电流密度。结果,电气装置的输出功率和性能也受到限制。
然而,可工作在高频和高速下的电机中出现的另一个问题是转子的发热。转子相对定子转动时,转子磁体在每次转动过程中经受磁导系数的周期变化,这是因为转子磁体交替经过与定子铁芯的齿对齐的位置和位于定子齿间的间隙中心的位置。磁导的这种变化继而引起转子内磁通的变化,依照法拉第定律感应出漩涡电流。这些电流有时很大,足以使转子严重发热。发热继而可能导致不可逆的磁化损耗并降低装置的输出。极端情况下,发热甚至可以严重到降低转子磁体的寿命或毁坏转子磁体。
因而,本技术中需要高效的电气装置,该装置充分利用与低损耗材料相关的特性,因而消除了与常规机器有关的许多弊端。理论上,改进的机器可提供机械能和电能形式间的较高效率的转换。提高由矿物燃料推动的发动机的效率可同时降低空气污染。机器可更小、更轻,且满足更为严格的转矩、功率和速度方面的要求。冷却要求可被降低。对于给定的充电周期,电池电源驱动的电动机工作的时间可更长。对于某些应用,轴向气隙机器因其大小和形状以及特殊的机械特征而更为适合。对于轴向和径向气隙装置都探索了类似的机器特性改善。
发明内容
本发明提供了一种包括转子组件和定子组件的电动机器,所述定子组件包括后铁部分和多个定子齿部分以及堆叠式定子相绕组。相邻的每对齿部分的槽中安置数个堆叠式定子相绕组。优选在每个槽中放置两个这种绕组。该电气装置可具有从低至高的任意数量的磁极和槽。该定子组件被排列和布置以便与定子组件发生磁性相互作用。定子优选包括通常为环形的结构,该环形结构使用由至少一种从由非晶和纳米晶金属以及优化铁基合金构成的集合中选出的低铁耗材料构成的薄片层。然而,其他软磁材料也可以用于构造全部或部分定子组件。低铁耗高级软磁材料的使用使得更宽范围的磁极数目和转换频率成为可能而同时保持了高工作效率、高功率密度以及更宽范围的可能工作速度,因而为设计提供了很大的灵活性,可依照本发明生产和运行的电动机器的实例包括电动机、发电机以及再生电动机,但不局限于这些。一个或多个电气装置可成为复合装置或系统中的部件。这种复合装置的一个实例是包括一个或多个电机的压缩机,其中一个或多个电动机可与风扇整合成一体。该机器优选具有轴向气隙构造,但也可以是径向气隙装置。
本发明还包括构建电动机器的方法,包括(i)提供至少一个包括后铁部分和多个齿部分的定子组件,该定子组件在相邻的每对所述齿部分之间带有槽和数个堆叠式定子相绕组,每个绕组圈绕在一个或多个所述齿部分上;(ii)提供至少一个受支撑以便围绕轴旋转且包括多个磁极的转子组件,转子组件被排列和布置以便与所述至少一个定子组件发生磁性相互作用。优选地,每个槽中有两个堆叠式定子相绕组并且该绕组由相等数目的上部线圈和下部线圈组成。
电动机器系统包括前述类型的电动机器以及连接和控制该机器的电源电子电路装置。
在本发明的一个方面中提供的新颖的定子线圈缠绕和堆叠技术使定子槽充满率大大提高,定子槽充满率是槽中的定子线圈绕组相对于槽的总体积的百分率的一个衡量尺度。这样,本发明的优选的电气装置提供提高了的性能、功率和效率。
本装置的定子组件优选具有用低损耗高频材料制造的磁芯。更优选地,定子磁芯由非晶金属、纳米晶金属、优化硅-铁合金、晶粒取向铁基材料或非晶粒取向铁基材料制造。在电气装置中引入非晶金属、纳米晶金属、优化硅-铁合金、晶粒取向铁基材料或非晶粒取向铁基材料能够使装置的频率提高到高于400赫兹,而铁损只有相对小的增加,这是与在常规机器中大的增加相比而言的,因此产生了能够提供提高了的功率的高效电气装置。本发明还提供具有高磁极数量的能够提供提高了功率密度和延伸到更高速度的同时维持改善的效率的扭矩速度曲线的高效电气装置。
参考以下本发明优选实施例的详细说明和附图,可更完全地理解本发明且其他优点将显现出来,其中各个视图中相同的标号表示相似的元件,其中图1A和1B分别示出了本发明的定子结构的顶视图和侧视图,显示了带有机加工的定子槽的定子磁芯和后铁;图2示出了本发明的定子结构缠绕有定子绕组时的截面图;图3A和3B分别示出了本发明的转子结构的顶视图和侧视图,显示了转子磁体的位置和磁极;图4示出了本发明的轴向气隙型电气装置的定子和在定子之间的转子的设置;图5示出了采用常规绕组技术缠绕的低槽数定子结构;图6示出了采用常规绕组技术缠绕的高槽数定子结构;图7示出了按照本发明缠绕的定子结构;图8示出了按照本发明缠绕的另一个定子结构;图9示出了按照本发明缠绕的用于四相机器的定子结构;图10示出了按照本发明缠绕的定子结构的上线圈的初级磁通路径;图11示出了按照本发明缠绕的定子结构的上线圈的次级磁通路径;图12示出了按照本发明缠绕的电气装置的下线圈的初级磁通路径;图13示出了按照本发明缠绕的定子结构,包括冷却系统。
具体实施例方式
以下将参照附图更详细地说明本发明的优选实施例。本发明涉及设计和制造具有由低损耗材料制造的缠绕的定子磁芯和采用了堆叠式定子绕组的电气装置,如无刷电机。优选地,定子磁芯包括非晶金属、纳米晶金属、优化硅-铁合金、晶粒取向铁基材料或非晶粒取向铁基材料。
装置总体结构共同转让的美国临时申请No.60/444,271的(“‘271申请”)和美国专利申请No.10/769,094的(“‘094申请”)提供了一种布置成轴向气隙结构但是具有并排绕组结构的转子组件和定子的电气装置,这两个申请均通过引用整体结合在本文中。定子包括后铁部分和多个定子齿部分,优选使用低损耗、高频材料制成。图1示出了根据‘094申请的一个方面的定子组件20的顶视图(图1A)和侧视图(图1B),显示了包括了从后铁23上悬挂下来的定子齿部分25的整体结构。相邻的齿部分之间的槽间隙24用于接纳采用常规的并排设置的绕组缠绕在齿部分25上的定子绕组22,如图2所示。优选地,一个或多个定子由低损耗材料如非晶金属、纳米晶金属、优化铁基合金形成。或者可以采用晶粒取向铁基材料或非晶粒取向铁基材料。后铁和齿部分可形成为示出的整体结构,其中的齿部分25整体从后铁部分23中悬垂下来,或形成为用任何适合的方法固定在一起的独立部件。例如,组成零件可以采用粘合剂、夹钳、焊接或在本领域中已知的其他方法连接起来。多种粘合剂可能是适合的,包括那些由环氧树脂、清漆、厌氧粘合剂、氰基丙烯酸盐粘合剂以及室温硫化(RTV)硅树脂材料等组成的粘合剂。粘合剂理想地具有低的粘性、低的收缩、低的弹性弹性模量、高的剥离强度、高的工作温度性能以及高的绝缘强度。和由前述‘271和‘094申请提供的其它形式的定子结构一样,图1A-1B所示的定子结构在实施本发明中是有用的。还有包括低损耗材料并且与后面所述的堆叠式绕组结构相兼容的其它定子结构。
本发明还提供优选应用于轴向气隙电气装置中的新式定子线圈绕线和堆叠技术。本发明采用堆叠式绕组取代电机绕组中常规采用的并排式设置。其中包括单独的齿和后铁部分的定子的实施例可在部件组装之前或之后缠绕定子绕组。绕组也可以作为单独的组件形成,然后在齿部分25的自由端上滑装到位。定子20及其绕组22可安置在定子架(未显示)中并且封装入合适的有机绝缘材料中。
本发明的电动机器还包括具有多个沿圆周隔开且相对定子组件排列成轴向结构的永磁体的定子组件。本发明的机器可包括一个或多个转子组件和一个或多个定子组件。因而,这里参照电动机器使用的术语“一个定子”和“一个转子”意为范围从1个至多达3个或更多的多个转子和定子。
在本发明的一方面中,提供了一种建造和缠绕定子组件的方法,例如图1-2所示的定子组件和本文中所述的其它定子组件。通过将低损耗高频带形材料螺旋缠绕成环形圈首先形成金属芯。该环形圈为大致直的圆柱壳形状,沿轴向观察时具有内直径和外直径。从内直径“d”轴向延伸至外直径“D”且围绕在上述形成的全环形圈周围的环形末端表面区域22定义了表面区域。金属芯具有定义了环形圈高度“H”的轴向延伸。绕线后,金属芯经加工以提供外宽度为“w”且大体为轴向指向的槽24。槽24的深度沿轴向在环形圈的高度内仅延伸了部分,由此限定了具有槽高“T”的齿和槽。这些槽降低了金属芯的总末端表面积。去掉槽后剩下的环形区域部分为总面积(TA),对于其中的低损耗高频材料为非晶金属的实施例也称为非晶金属区域(AMA)。因为槽24从内直径完全延伸至外直径,环形圈的开槽部分中的定子芯的圆周在内直径和外直径处不是连续的。从槽空间中去除材料产生了多个齿25。齿和槽的数目是相同的。留在槽深度下的沿圆周连续的材料可作为后铁部分23,该后铁部分为齿部分25中的磁通提供隔板。在优选实施例中,为了可成形性和机械完整性,齿的最窄部分不小于0.1英寸(2.5毫米)。槽24用导电定子绕组22按照为给定的电气装置预先设计的缠绕方案缠绕。
定子线圈缠绕和堆叠技术特别地,本发明的一个方面提供了定子线圈缠绕和堆叠技术,其增加了电气装置的定子绕组线圈充满率。虽然可以应用于径向气隙装置,但是本发明的堆叠式线圈结构在采用模块线圈制造轴向气隙机器的定子中易于实施。模块线圈可以滑装在沿轴向没有做成锥形的齿部分上。在优选实施例中,本发明的技术应用于具有槽每相每磁极比率为0.5的高磁极数轴向气隙电气装置,其中每个定子齿通常只有一个分散的线圈。但是,本发明的方法也可以应用于采用具有SPP值大于0.5的缠绕方案的轴向气隙电气装置。
图5中示出了用于三相轴向气隙机器的常规绕组结构,该图显示了一种低槽数装置,而在图6中是一种高槽数装置。围绕定子圆周相继设置在齿上按照顺序A-B-C-A-B-C缠绕了定子相绕组,其中的字母表示三个电相位。每个定子槽因此含有两个相位的绕组。图5所示的绕组方案中单个定子绕组线圈,例如线圈24a和24b,装配在每个定子齿上,并且线圈通常延伸在定子齿的轴向长度的大部分上。如图5和6所示,定子线圈24a和24b在定子槽中是处于并排设置。相邻的定子齿40a和40b的定子线圈24a和24b通常各分别占在留出用于充分的绝缘之后可以利用的槽宽的大约1/2和基本上整个槽深。但是实际中可用的空间由于插入或者缠绕线圈实际需要的空隙而被进一步减小。图5示出了围绕定子周向进行的材料顺序,如下1.第一定子齿40a;2.绝缘42;3.第一线圈绕组24a(圈绕着第一定子齿40a);4.绝缘42;5.第二线圈绕组24b(圈绕着第二定子齿40b);6.绝缘42;和7.第二定子齿40b。
在图6的结构中看到相同的顺序。在两个图中,上述模式围绕定子圆周重复进行。堆叠式线圈结构可以缠绕到径向气隙装置的定子上,该装置由对准地堆叠起来的冲压叠片按照常规方式形成,例如通过针式绕组。
定子槽中没有被绕组占据的几何区域通常用灌封物、清漆、绝缘物等等类似物占据并且认为是废弃区域。总区域和废弃区域之间的差称为有用区域。对于具有54各4毫米宽和SPP比率位0.5的电气装置而言,当采用常规定子线圈和堆叠技术和机器被优化用于最高实际功率密度(即每单位体积的功率,通常用单位W/cm3表示)时,分配给导电绕组的有用空间的百分比的变化大约为35%±10%。这些百分比值是在假设不变的基础频率和应用于每个定子齿上的不变的安培匝数的情况下给出的。采用相同的计算和相同的假设,得到约为50%±10%的不同百分比,用于优化每单位质量的有源材料的扭矩。
槽充满率可以达到约为按照常规槽缠绕/充填方案缠绕的低磁极数电气装置的可用体积的65%。在电气装置中引入低损耗材料允许设计具有SPP=0.5的高磁极数、高槽数和高频率电气装置。但是,绝缘层42的最小厚度由电气装置的工作电压确定,因此是相对固定的。
采用槽绝缘,例如图5-6所示,是电动机器技术中的惯常的做法。当定子绕组通常用绝缘线制造时,附加的绝缘如牛皮纸或者绝缘聚合物膜通常设置在定子槽的底部和侧面,用于防止绕组由于与定子接触产生磨损或刻痕,尤其是在缠绕或放置定子绕组线圈时。相间的绝缘也是常规的。在损坏的部位的绝缘故障可以导致出现热点或者绕组过热和烧毁。在极端情况下,故障可以产生电击或者火灾危险。
在实际中,高频机器常常在高电压下工作,由此要求更厚的绝缘。高电压,特别是在高频下,常常导致电晕效应,它是在强电场存在下绝缘材料的灾难性的击穿,其被认为是离子化了其组分原子,造成绝缘体变成具有高导电性因此对于高频装置需要附加的绝缘,即使进一步限制了可用于绕组的槽宽。采用常规的线圈设置和技术,例如在图6中所示的,多达46%的槽区域是不可利用的。
高槽数轴向气隙电气装置的定子绕组线圈充满率可以通过采用本发明的定子线圈缠绕和堆叠技术得到大大的提高。在图7中示出的本发明的实施例中,对于具有54个槽宽为4毫米的槽的4000rpm电气装置,其定子槽充满率超过59%。如果在相同几何槽体积中采用常规充填方案,则槽充满率只有46%。具有59%以上的增大的槽充满率的电气装置可以展现出高达28%的性能增长,这在工业上是有利的。在可能的槽充填中的增加提供了更多的导体区域,其可以用于减小绕组电阻和因此减小欧姆损失。另外,较大的区域允许增加有效电流密度而不会像在其它情况下需要改变电机的结构。更高的电流反过来允许给定的设计能够在增加的机器功率和扭矩下工作。
按照本发明构造的电动机器采用堆叠式绕组。“堆叠式绕组”是指一种绕组构造,其中多个定子相绕组从齿根并延伸到齿面附近的某个高度按照分层的顺序设置。相间的绝缘优选设置在相邻的绕组线圈之间。绕组圈绕一个或多个定子齿部分。如这里采用的,用语“齿根”是指在齿槽的底部在齿与后铁抵接处的位置。虽然在本发明中每个槽中可以采用三个或更多堆叠式绕组,但是仅用两个堆叠式绕组一般就可以获得堆叠式线圈的好处。
例如,图7示出了一种三相轴向气隙机器的定子20的优选结构。如图7中所见,定子槽被垂直地划分,如图所示,而不是如图5-6的常规设置中那样水平地划分。定子的每个槽中有两个绕组,一个上线圈50和一个下线圈52。每个线圈占据大致整个可用槽宽但是只占据大约一半的可用槽深。如这里相对于定子线圈绕组结构采用的,用语“上”和“下”是指定子绕组分别在齿根处和在大约槽的中间高度并且延伸到后铁的齿远端的自由端附近开始的位置。各个线圈50和52围绕相邻的定子齿40和44缠绕并且相互上下堆叠,如进一步在图7只示出的那样。三相系统中的每相包含多个上线圈50和下线圈52。定子线圈按照交替的顺序的上/下模式堆叠起来在图7所示的实施例中,绕组设置的模式是(A下-B上)(C下-B上)(C下-A上)(B下-A上)(B下-C上)(A下-C上)(A下-B上)(A下-B上)…,其中字母A、B和C代表三个电相位,代表性的术语(A下-B上)表示一个槽具有一个连接到A相的下线圈和一个连接到B相的上线圈。图7中的箭头代表在连接每个齿的各侧上的匝的端匝中的电流流动方向。其它顺序也是可能的。例如,图8示出的结构具有顺序(A下-C上)(A下-A上)(B下-A上)(B下-B上)(C下-B上)(C下-C上)(A下-C上)…。箭头也表示端匝中的电流流动方向。绝缘层或绝缘材料按照两个不同的定向布置在定子线圈和定子齿之间。绝缘层42常规定向覆盖槽的侧壁和底部,而相间的绝缘层48定向为垂直于常规定向,因此大致平行于槽的底部。这种结构可以使定子线圈绕组具有更高的槽充满率。作为实施本发明的技术的结果,通过定子槽充满率的增加,装置设计者可以实现增加的功率或者增加的效率。多种近似的定子结构的对于具有不是三相的多相装置也是有用的。例如,用于四相装置的一种可能的顺序示于图9中,其表示为(A下-D上)(A下-A上)(B下-A上)(B下-B上)(C下-B上)(C下-C上)(D下-C上)(D下-D上)(A下-D上)…,端匝电流流动如箭头所示。
本结构提供的绝缘体积的部分减小是由简单的几何上的考虑产生的。对图6所示现有技术的装置中的绝缘的布置和图7中所示的本发明的机器进行比较,两者的结构在槽壁和底部上都需要大致相同的绝缘,但是在相邻的相绕组中间是不同的绝缘。在图6结构中,中间绝缘是垂直的并且具有大约由T·(D-d)·s给出的体积,其中“s”是公称绝缘厚度。在另一方面,图7中看见的水平中间绝缘具有的体积大约为w·(D-d)·s。由于齿高T在优选的设计中一般是槽宽w的两倍或更多倍,通过本发明的结构使相间的绝缘的体积减半。
但是,在改善由本发明的堆叠式线圈结构提供的槽的利用中,制造上的考虑起到了附加的并且通常是更重要的作用。在通常用于电机构造中的槽绝缘的牛皮纸为6mil(0.15毫米)厚。但是,常常大到30mil(0.75毫米)的附加的横向空间需要提供足够的空隙用于图6中的装置使用的并排线圈的缠绕操作。该量大大地影响了实际的可用区域,特别是对于高槽数设计中典型的窄槽情况。虽然附加的空隙只是在实际的相缠绕期间需要,但是它通常之后是不能够恢复的。通过对比,这种额外的容量对于缠绕本发明的堆叠式线圈是不需要的。而且在下线圈缠绕之后,通常与绝缘相关的任何剩余空间可以在缠绕上线圈之前通过挤压被大致上消除。
通常,优选使用便宜的高导电性导线如铜线或铝线,但也可以采用各种材料和形状,包括其他金属和合金以及超导体材料。导线的截面可以是任意形状,但圆形和方形导线是最常见的。在某些高频应用中,扭铰线或绞合线(Litz wire)可能较为有利。优选的缠绕方案中每个齿25需要一个线圈。每个线圈通常包括多图导线。然而,技术中已知的任何绕组配置都可以应用。这些绕组可围绕齿的位置形成,或者它们可以单独作为组件准备好并滑装到齿末端上。
定子组件20以及定子绕组可安置在定子架(未显示)中。定子组件优选用的合适的有机绝缘材料例如不在定子磁材料中感应额外应力的材料封装在定子架内。虽然定子架优选为非磁性的,但对定子架材料的导电性没有限制。可影响定子架材料的选择的因素包括要求的机械强度和热性质。任何可恰当地支撑定子组件的材料均可用作定子架。在特定的实施例中,定子架用铝制成。
定子上线圈和下线圈的电感线圈的理想电感“L”计算为L=N2·P (1)其中L=线圈自感,N=每个线圈的匝数,P=磁线路的磁导。
磁导“P”定义为P=μo·μr·A/1 (2)其中μr=磁线路的相对磁导率,μo=空气的磁导率,A=磁线路的截面;l=磁线路的路径长度。
除了用于计算最简单的线圈几何形状以外,等式(2)用于精确计算是非常困难的。当N可以对于本发明的上线圈和下线圈两者都保持相同时装置设计者必须对A、l和μr作出近似值,这些近似值对于开式磁线路、尤其是对于具有复杂几何形状的线路不是唯一确定的。
本发明的每个定子线圈绕组都具有相关的依据几何形状的电感。特别地,对等式(2)的定性的考虑表明在边缘通量图形中的差异使得上线圈和下线圈的电感不同。
对于上线圈,有效线圈磁通面积A包括用于齿长度的定子芯面积。行进到后铁时,线圈磁通面积是后铁横截面面积,然后到了具有其各自芯面积的第二齿,最后是气隙的近似得出的面积。线路的长度l近似为芯长度,即从齿到齿在两个方向上通过后铁跨越的距离、相邻的齿的长度和然后为通过空气的磁通的近似长度的合计,如图10中所示。还有其它磁通路径,如图11中所示,它们通过定子芯行进而离开的越来越远,但是它们对电感的计算的影响很小。气隙中的μr值可以近似为自由空间中的值,即1.0。任何实际的软磁材料都具有至少103,并且常常是更高很多,从而磁导由气隙支配。因此实际的计算可以只考虑通过空气的磁路径。结果,等式(2)用于上线圈时由以下等式近似L=μo·N2·A/1 (3)对于下线圈,气隙的有效面积增大了因子f,其显著大于1.0。这是由于总磁通的一部分的倾向于越过槽宽的原因,如图12中所示。由于类似的原因,气隙的有效长度被减小了小于1.0的因子g。结果等式(2)用于下线圈时由以下等式近似L=μo·N2·(A·f)/(1·g)(4)结果,下线圈一般具有比上线圈高得多的电感。
在输送交流电的电路中的电感产生电抗,电抗与电阻组合产生阻抗。对于任何具有并列缠绕的线圈的电气装置,如果在线圈之间具有阻抗差,电流将在一个相中“循环地”流动。这些“循环电流”对装置的性能非常有害。它们不做有用功并且减损装置的输出功率,同时增加机器的欧姆损失。
在一个方面,本发明提供一种对循环电流的问题的解决方案,其中上线圈和下线圈的相对匝数N被修改。对线圈希望的N值可以通过将上线圈和下线圈的电感设置成相等由数学方式确定。但是,改变每线圈的匝数既改变了上线圈和下线图的相对电阻也改变了每个上线圈或下线圈的反EMF(电动势)常数。因为总的阻抗是所关心的,因此电阻差也引起潜在的循环电流。电阻差可以通过采用不同的导线尺寸来补偿。反EMF常数的差也可以是循环电流的一个原因,但是它不能够通过改变导线尺寸来修正。
与此不同,在本发明的一个优选实施例中,循环电流的问题是通过将每个上线圈串联布线到对应的下线圈来解决的。在一对一匹配的基础上,下线圈与上线圈的这种串联缠绕大大的减小或者消除了不希望有的循环电流。由于串联连接一般本身能够满足要求,因此上述调节导线尺寸和匝数的方法可以辅助性地使用。
低损耗定子材料本电动机器的优选实施例中的非晶、纳米晶、或优化铁基合金、或晶粒取向铁基或非晶粒取向铁基材料的使用使得机器的转换频率可提高至高于400赫兹,而铁损与可见于常规机器中无法接受的巨大增加相比仅有相对较小的增加。在定子芯中采用低损耗材料相应地使得可提供增加的功率密度以及提高的效率的高频率、高极数的电气装置的发展成为可能。此外,定子铁损的降低同样使得电机可在远高于常规基本速度的速度下运行,而不需要降低扭矩和功率的额定值,这在常规设计的机器中因热限制时常是必需的。优选地,定子组件包括由至少一种从由非晶和纳米晶金属或优化铁基合金构成的集合中选出的材料构成的叠片层。
非晶金属非晶金属存在于适合在本电机中使用的多种不同的化合物中。金属玻璃通常形成于必需的化合物的合金熔体,这些化合物从熔体快速淬火,例如以至少约106℃/秒的速率冷却。它们没有呈现出长程原子级且X射线衍射图仅显示散射光晕,与那些在无机氧化物玻璃中观察到的类似。一些具有合适的磁性性质的化合物已由Chen等人在美国专利号No.RE32,925中列出。非晶金属通常以宽20cm或更多的延展长度的薄带(例如厚度最多约50μm)的形式提供。一种对不定长度的金属玻璃带的形成有用的工艺已由Narasimhan的美国专利号No.4,142,571中公开。适合于用于本发明的典型非晶金属材料是由Mctglas公司、Conway、SC以不定长度且宽度可达20cm而厚度可达20-25μm的条带的形式出售的METGLAS2605SA1(见http://www.metglas.com/products/page5_1_2_4.htm)。其他具有必要性质的非晶材料也可以使用。
非晶金属具有一些在生产和使用磁性设备时必须考虑的特性。与大多数软磁材料不同,非晶金属(也作金属玻璃)坚硬且易碎,特别是在通常用来优化它们的软磁性质的热处理之后。因此,许多通常用来处理用于电机的常规软磁材料的机械操作很难或无法在非晶金属上实施。将这样生产的材料冲压、打孔或切割通常引起不可接受的工具磨损且事实上在易碎、热处理过的材料上不可能实施。时常用于常规钢材的传统打孔和焊接通常也被排除。
此外,非晶金属呈现出比常规Si-Fe合金低的饱和磁通密度(或感应)。较低的磁通密度通常造成依照常规方法设计的电机的功率密度较低。非晶金属同样具有比Si-Fe合金低的热传导率。因为热传导率决定了热量从热的地方经过材料传导到冷的地方的容易程度,较低的热传导率值需要谨慎的电机设计以确保由磁性材料中的芯损耗、绕组中的欧姆损耗、摩擦、风阻以及其他损耗源引起的多余热量被充分去除。没有充分的去除多余热量继而造成电机的温度不可接受地升高。过高的温度容易造成电气绝缘或其他电机部件过早失灵。一些情况下,过热可造成电击危险或触发灾难性火灾或其他健康和安全方面的严重危险。非晶金属还呈现出比某些常规材料高的磁致伸缩系数。具有较低的磁致伸缩系数的材料在磁场的影响下经受较小的尺寸变化,这又可降低机器发出的可闻噪音,并使得材料更容易受机器制造或运行时感应的压力造成的其磁性性质退化的影响。
虽然有这些难题,本发明的一方面提供了一种成功地结合了高级软磁材料并允许电机工作在高频激励例如大于约400Hz的转换频率下的电机。同样提供了电机制造的构造技术。由于构造和采用高级材料特别是非晶金属的原因,本发明成功地提供了一种工作在高频(定义为大于约400Hz的转换频率)下且高磁极数的电机。非晶金属在高频下呈现出低得多的磁滞损耗,这使得芯损耗也低得多。与硅-铁合金相比,非晶金属的电导率低得多且通常比一般使用的厚度通常为200μm或更多的硅-铁合金薄。这些特性使得涡旋电流铁芯损耗更低。本发明成功地提供了一种电机,该电机受益于这些特征中的一种或多种特征,因而有效地工作在高频下,使用一种允许非晶金属的有利品质如低芯损耗得以利用的构造,同时避免了先前使用高级材料的尝试中面临的难题。
纳米晶金属纳米晶材料是平均晶粒大小约为100纳米或更小的多晶材料。与常规质地粗糙的金属相比,纳米晶金属的性质主要包括增强的强度和硬度、增强的扩散率、更好的柔软性和韧性、降低的密度、降低的模量、更高的电阻、更高的比热、更高的热延展系数、更低的热传导率以及优良的磁性性质。纳米晶金属还具有通常稍高于铁基非晶金属的饱和电感。
纳米晶金属可通过多种工艺形成。一种优选的方法包括首先使用上文中说明的工艺将必需的化合物浇铸成不定长度的金属玻璃条带,并将该条带制成所需的构造如圆形。随后,起初的非晶材料经热处理形成纳米晶微结构。此微结构的特点是存在平均大小小于约100nm,优选小于50nm,更为优选小于10-20nm的高密度晶粒。晶粒优选占据铁基合金体积的至少50%。这些优选的材料具有低的铁芯损耗和低的磁致伸缩。后一性质还使得材料更不容易受包括该部件的装置的制造和/或运行产生的压力引起的磁性性质退化的影响。在特定合金中产生纳米晶结构所需的热处理必须在比设计成在其中保持大体完全玻璃态微结构的热处理所需的温度高或保持更长的时间。纳米晶金属优选为铁基材料。然而,纳米晶金属同样可基于或包括其他铁磁材料,例如钴或镍。适合于用于制造本发明的磁性元件的代表性纳米晶合金是已知的,例如Yoshizawa在美国专利No.4,881,989中以及Suzuki在美国专利No.5,935,347中列出的合金。这些材料可从Hitachi Metal、Vacuumschmelze GMBH & Co.以及AlpsElectric获得。具有低损耗性质的典型纳米晶金属是Hitachi FinemetFT-3M。另一种具有低损耗性质的典型纳米晶金属是VacuumschmelzeVitroperm 500Z。
优化的铁基合金本机器也可用优化的低损耗铁基晶体合金材料建造。这种材料优选为带形,厚度小于125μm,比常规用在电机中的钢材要薄得多,这些钢材厚度为200μm或更多,有时达到400μm或更多。晶粒取向和非晶粒取向的材料均可使用。如这里使用的一样,取向材料是一种成分微晶晶粒的主晶轴不是随机取向,而是主要沿一个或多个优选择优方向相关的材料。由于前述微结构,取向条带材料对沿着不同方向的磁激励反应不同,而非取向材料各向同性地反应,即是说,对沿着条带平面内的任意方向有大致相同的反应。晶粒取向材料优选在本电机中将其易于磁化的方向与磁通量的主方向大致重合地放置。
如这里使用的那样,常规硅-铁材料指硅重量成分约为3.5%或更少。硅的3.5%重量百分比的限制是工业上因更高硅成分的硅-铁合金的不良金属加工材料性质而施加的。常规硅-铁合金级别工作在频率高于约400Hz的磁场下引起的铁芯损耗远高于低损耗材料的铁芯损耗。例如,一些情况下常规硅-铁的损耗可达到那些在工作在本机器的频率和磁通水平下的机器中遇到的频率和通量水平下的合适非晶金属的10倍。因而,很多实施例中工作在高频下的常规材料会发热至常规机器无法通过任何可接受的方法冷却的程度。然而,一些级别的硅-铁合金(这里称为优化的硅-铁)可直接应用于制造高频机器。
在本发明的应用中有用的优化铁基合金包括含有重量大于3.5%、优选大于4%的硅的硅-铁合金级别。用于建造依照本发明的机器的非晶粒取向铁基材料主要由硅重量含量范围约为4%至7.5%的铁硅合金构成。这些优选合金比常规硅-铁合金含有更多的硅。铁-硅-铝合金例如Sendust同样有用。
更为优选的非取向优化合金的成分主要由含有重量为6.5±1%的硅的铁构成。最为优选的是,含有约6.5%的硅的合金呈现出接近零值的饱和磁致伸缩,使得它们更不容易受由含有该材料的装置在建造或工作时遇到的压力引起的有害磁性性质退化的影响。
优化的目的是为了得到具有改良的磁性性质的合金,改良的磁性性质包括降低的磁致伸缩,特别是更低的芯损耗。这些有利性质可在某些以适当制造方法制造的含有增加的硅成分的合金中获得。一些情况下,这些优化的硅-铁合金级别根据与非晶金属类似的铁芯损耗和磁饱和区分。然而,含有多余约4%原子含量的硅的合金因其短程有序产生的脆性而不容易通过常规方法生产。特别地,用于制造常规硅-铁的常规卷绕工艺通常无法制造优化硅-铁。然而,其他已知的工艺可用于生产优化硅-铁。
例如日本东京的JFE钢铁公司(见http://www.jfe-steel.co.jp/en/products/electrical/supercore/index.htm.)以50和100μm厚的磁性条带提供一种合适形式的铁-6.5硅合金。由Das等人在美国专利No.4,865,657中以及Tsuya等人在美国专利No.4,265,682中公开的快速固化处理得到的铁-6.5%硅也可以使用。快速固化处理也已知用于制备Sendust以及相关铁-硅-铝合金。
优选软磁材料的损耗特性对本发明优选材料中的损耗改善的一个主要贡献在于显著减小了磁滞损耗。如技术中已知,磁滞损耗源于所有软磁材料的磁化过程中的受阻畴壁运动。这些损耗通常在常规使用的磁性材料如常规晶粒取向硅-铁合金和非取向电机和电力钢材中比在本机器中优选采用的改良材料中高。高损耗又可增加铁芯的过热。
更具体地,已经发现软磁材料的芯损耗一般可用以下修正的Steinmetz等式表示L=a·f·Bb+c·fd·Be(5)其中L为损耗,单位为W/kg,f为频率,单位为kHz,B为峰值磁通密度,单位为特斯拉,
而a、b、c和d以及e均为任何特定的软磁材料的经验损耗系数。
上述每个损耗系数a、b、c、d和e一般可从给定的软磁材料的制造商那里获得。特别优选用于本定子结构的是由低于“L”的铁芯损耗表征的低铁芯损耗磁性材料,其中L由等式(5)的形式给出,其中L=12·f·B1.5U+30·f2.3·B2.3。
转子结构在本发明的另一个方面中,提供了轴向气隙无刷永磁电气装置,其中转子结构靠近定子本体安置在公共轴上。图3A和3B分别示出了适合用于本机器的轴向转子30的顶视图和侧视图。图3A示出了具有围绕转子设置的交替的磁极的多个磁体32。这些磁体具有交替的磁极且以大致相等的间隔沿圆周可靠地安置在转子周围。转子磁体的不同参数如大小、位置、角度、歪斜、形状以及类似参数经选择以获得所需的性能。图3B示出了图3A中A线截取的转子侧视图。
或者,永磁体转子组件可采用任何可将磁体固定以便靠近定子齿的表面转动的形式。例如,转子磁体32可设置在转子架内或安装在定子架上。转子组件可包括任意数目的转子磁体32。在一些实施例中,转子磁体延伸贯穿转子的厚度,而在其他实施例中,它们不这样。
磁体可间隔开来,使得交替的磁体间只有很小或没有圆周间隙。磁体间的间隔优选经选择以达到最佳值,这也使得扭矩变动的出现最小。最佳间隔可由首先将定子的低损耗金属面积除以定子槽的数目以得到每个单独的金属芯齿的面积来得到。磁体间的最佳间隔则是使得每个磁体的总面积等于芯齿的面积的175±20%。
图4示出了具有两个定子的电气装置的一个实施例的侧视图,该两个定子按照轴向类型的设置定位在一个单独转子的各侧并且沿着与该单独转子的公共中心轴设置,该一个转子用于两个定子20。在一个特定实施例中,具有位于单个转子各侧的非晶金属定子的电气装置被发现呈现出高功率密度。这种结构有利地降低了转子上的轴向推力,因为转子和各定子之间的吸引力上反向的并且基本上被抵消。
虽然定子磁体描述为永磁体,但本机器的备选实施例可以采用其它类型的磁材料或电磁体。例如感应式机器可以采用叠片式软磁材料,而切换式磁阻机器可以具有实心转子。
转子材料任何类型的永磁体均可用于本电机中。稀土过渡金属合金磁体如钐-钴磁体、其他钴-稀土磁体或稀土-过渡金属-非金属磁体例如NdFeB磁体尤其适合。或者,转子磁体结构包括任意其他烧结的、塑料粘结的或陶瓷永磁材料。磁体优选具有高的最大BH能量积、高的矫顽力和高的饱和磁化强度,以及线性二象限常态退磁曲线。更为优选使用取向和烧结的稀土-过渡金属合金磁体,这是因为它们较高的能量积提高了磁通量,因而提高了扭矩,同时使得昂贵的永磁材料的体积可以减到最小。
转子装置优选包括盘或轴向类型的转子组件,该盘或轴向类型转子组件包括沿圆周隔开的高能积永磁体,如稀土-过渡金属(如SmCo)或稀土-过渡金属-非金属磁体(如NdFeB和NdFeCoB),每个磁体含有限定了北极和南极的相反末端。如图3A和3B中最佳地看到,转子30及其磁体32受支撑以便围绕电机轴转动,例如在一根轴34或其他任何适合的设置上,使得可沿着临近一个或多个定子组件的预定路线接近磁体的磁极。通常该轴由用于旋转机器的任意适合类型的轴承支撑。转子上的磁体区域具有外直径和内直径。在优选实施例中,对于轴向气隙类型转子,磁体32的外直径和内直径与定子组件20的基本相同。如果磁体32的外直径大于定子齿部分21的外直径,则转子的外部部分对性能无大的贡献。如果转子的外直径小于定子齿部分21的外直径,结果是电气装置性能的降低。在任一情况下,机器中存在的一些硬磁或软磁材料增加了成本和重量,但没有提升性能。一些情况下,附加的材料甚至会降低性能。
槽每相每磁极比率电动机器的槽每相每磁极(SPP)值由将定子槽的数目除以定子绕组中的相数目和DC磁极的数目确定(SPP=槽/相/磁极)。在本说明中,磁极指不随时间变化的磁场,这里也称为DC场,该场与变化的磁场即大小和方向均随时间和位置变化的磁场相互作用。在优选实施例中,安装在定子上的永磁体提供DC磁场,因而提供了一定数目的不随时间变化磁极,这里称为DC磁极。在其他实施例中,DC电磁铁可提供转子DC场。定子绕组的电磁铁提供变化的磁场。槽指本机器定子的交替齿之间的间隔。本发明的技术可应用于任意SPP值的电气装置。有利地是,本机器的设计为最佳SPP比率的选取提供了相当的灵活性。
常规机器通常设计成具有1至3的SPP比率以获得满意的功能性和噪音水平,且因更好的绕组分布而提供更平滑的输出。然而,已寻求较低如0.5的SPP值的设计以减小末端线匝效应。末端线匝是定子线圈中连接槽间的绕组的导线部分。虽然这些连接当然是必需的,末端线匝对机器的扭矩和功率输出没有贡献。在这种意义上说,它们是不需要的,原因是它们增加了所需的导线的量且增加了机器的欧姆损耗而不提供益处。因此,电机设计者的一项目标是使末端线匝最少并提供噪音和嵌齿可控的电机。另一方面,本电机的优选实现允许降低的SPP比例,同时具有下文将详细说明的理想的低噪音、嵌齿和电源电子电路波纹。这种有利之处通过在高磁极和槽数目下运行而获得。这些选择在先前的机器中不可变,原因是所需的转换频率的增加在不使用高级的低损耗定子材料时是不可接受的。
对于一些应用,建立具有小数SPP值的电机是有利的,原因是这种电机可采用围绕单定子齿安置的预形成线圈。在本机器的不同实施例中,SPP比率为整比率,如0.25、0.33或0.5。例如图9的四相实施例具有SPP=0.33。SPP值为1.0甚至大于1.0也是可能的。SPP值优选在约0.25至4.0的范围。然而,本机器更优选的实施例有利地设计成SPP比率为1或更小,甚至更有利地为0.5或更小。将多个槽用导线连接成共有的磁性部分因而提供值大于0.5的SPP是可能的。这是定子槽的数目大于转子磁极数目的结果,导致了分布式的绕组。小于或等于0.5的SPP值表明没有分布式绕组。工业中的习惯是在定子中包括分布式绕组。通常,先前技术中设计成带有分布式绕组的机器每磁极有许多槽,造成工作频率较低。因此,在SPP值为0.5或更少且工作在低频的常规机器中,磁极数目同样会较低且存在较高的难以控制的嵌齿。另一方面,本机器中高级磁性材料的使用使得转换频率可提高,因而可维持低SPP值,同时仍使得嵌齿最小且不降低机器的速度。然而,虽然本发明的方法可应用于具有低于0.5(如0.25)SPP值的电气装置,这种配置有时因实际考虑因素而稍不理想,这些因素包括更高转换频率下所需的增加的机器阻抗、来自转子磁体的稍升高的泄漏磁通量以及容纳更小且为数众多的转子磁体所需的机械支持。低SPP值对于电气装置的其他重要参数也常常不利。
另一方面,升高SPP值显著地增加了机器的磁极间距。例如,多个定子槽可用导线连接成公共的磁性部分,这对应于大于0.5的槽每相每磁极(SPP)值。
虽然本机器可设计成或作为单相装置或具有任意数目的相且每个定子上具有相应数目的绕组的多相装置使用,依照工业惯例优选带有三相绕组的三相机器,这是因为它提供了硬磁和软磁材料的高效利用,同时具有良好的功率密度。SPP比例为0.5的实施例特别适合于三相应用。例如,在三相机器中,SPP=0.5时,转子磁极的数目为定子槽数目的三分之二,而槽的数目为相数目的倍数。虽然机器通常依照工业习惯连接成三相Y形配置,也可以采用三角形配置。在本发明提供的优选实施例中,堆叠式线圈定子绕组结构尤其可应用于SPP值最优等于0.5的电气装置。
采用低损耗材料的高磁极数、高频率设计本结构和方法可应用于磁极数目自低到高不等的电气装置。然而,本堆叠式超绕组结构的有利之处尤其在一些实施例中实现了,在这些实施例中定子中低损耗材料的使用使得工作在高频的高磁极数电气装置的设计成为可能。在特定实施例中,本发明提供了高磁极数的轴向气隙电气装置,该机器可工作在高频,即高于约400Hz的转换频率。一些情况下,装置可工作在从约500Hz到3kHz或更高的转换频率下。设计者通常避免了高磁极数的高速电机设计,这是因为常规定子芯材料例如硅-铁无法工作在高磁极数相应所需的高频率下。特别地,已知采用硅-铁的装置由于材料内变化的磁通量产生的铁芯损耗而在显著高于约400Hz的频率时无法进行转换。高于该极限时,铁芯损耗使得材料发热至装置无法通过任何可接受的方法冷却的程度。在某些情况下,硅-铁材料的发热甚至严重到机器无论如何也无法冷却,并导致自毁。然而,已经确定合适的非晶、纳米晶和优化铁基材料的低损耗特性允许有比常规硅-铁材料高得多得转换速率。虽然在优选实施例中,非晶金属合金例如METGLAS2065SAl合金的选择去除了高频运行的发热引起的系统局限,绕组结构和整体电机结构同样得以改善以更好地利用非晶材料的有利性质。
使用更高激励频率的能力使得本机器可设计为具有更宽广的可能的磁极数范围。本装置中的磁极的数目是基于允许的机器尺寸(物理约束)和预期性能范围的变量。如果允许的激励频率限制许可,磁极的数目可提高至磁通量泄漏增加至不期望的值,或性能开始降低。
因为定子槽必须与转子磁体一致,还存在由定子构造施加在转子磁极数目上的机械限制。机械和电磁约束共同限制了定子中可制造的槽的数目。这些影响又部分地是机器结构尺寸的函数。对于给定的提供了恰当的铜和软磁材料平衡的结构,可设定一些界限以确定槽数目的上限。平衡的调节可用作制造性能良好的轴向气隙机器的参数。本发明提供了磁极数最佳为具有可比物理尺寸的现有工业机器通常具有的磁极数目的约4倍或5倍的电机。
作为一个例子,对于典型具有6个至8个磁极且工作在约800至3600rpm速度下的电机,转换频率约为100至400Hz。转换频率(CF,单位为Hz)为旋转速度乘以磁极对数,其中磁极对为磁极数除以2,旋转速度的单位是转/每秒(CF=rpm/60x磁极/2)。工业中还可获得带有16个或更多磁极但速度小于1000rpm即仍对应于小于400Hz频率的装置。或者,也可获得具有相对较低磁极数目(如小于6个磁极)而速度可达30000rpm的电机,其转换频率仍小于约400Hz。在代表性的实施例中,本发明提供了具有有96磁极、1000Hz下为1250rpm电机;54磁极、1080Hz下为3600rpm的电机;4磁极、1000Hz下为30000rpm的电机;以及2磁极、1000Hz下为60000rpm的电机。本发明的高频机器可工作在高于已知用常规材料和设计制造的轴向气隙电机约4至5倍的频率下。当工作在相同频率范围内时,该提供的机器通常比工业中典型的电机效率更高,因而提供了更好的速度选择。本配置对于具有非常宽的频率、功率和额定扭矩范围的电机构造尤为适合,某种意义上结合了高能量效率、高功率密度、组装的便捷以及昂贵的软磁和硬磁材料的有效使用。
热性质和效率限制了各种电动机器包括那些使用常规硅-铁合金和使用改进的低损耗软磁材料的电动机器中可获得的装置输出效率的特性之一是能量转化为无用发热的损耗。此无用发热有多种来源,但主要来自于欧姆损耗、外壳和绕组中的邻近效应损耗、磁体和其他转子部件中的涡旋电流引起的转子损耗以及源于定子芯的芯损耗。常规机器的“连续功率极限”通常由机器可连续工作但仍散发足够的无用热量以防止温度无法接受地升高时的最大速度决定。该连续功率极限是电流的函数。
在可最优地应用于本发明的实际应用中的高频、高磁极数电气装置中,因为非晶、纳米晶以及优化铁基金属合金的损耗比常规硅-铁的损耗低,因而产生了较少的无用热量。设计者可通过提高频率、速度和功率并正确地平衡和“折衷”低芯损耗与欧姆损耗的比例以利用这些材料的低损耗特性。总的来说,对于与常规机器相同的功率,可最优地应用于本发明的实际应用中的高频、高磁极数电气装置呈现出较低的损耗,于是有更高的扭矩和速度,因而可获得较常规机器更高的连续功率极限。
本发明的一个方面的实际应用中优选的机器的一项优点是使装置的效率最大而同时保持成本效能的能力。习惯上,装置效率定义为有用功率输出除以功率输入。可最优地应用于本发明的高频、高磁极数电气装置同时具有高的磁极数且工作在更高的转换频率下,使得具有低芯损耗和高功率密度的装置效率更高。它们超过了400Hz的工业标准高频极限,此前即使存在实际应用,也几乎没有高于此极限的。
可应用于本发明的优选高频、高磁极数电气装置的性能和提高的效率并不简单是将常规硅-铁用非晶金属代换的固有特点。已提出了多种采用非晶金属的设计,但它们遇到了性能失效(包括过热和较低的输出功率)的问题。该失效被认为主要是源于仅仅采用为常规材料(硅重量成分为3.5%或更少的硅-铁)设计并适合于常规材料的方式应用新材料(例如非晶金属)和生产方法。早期的性能失效,加上意识到的将非晶金属加工成电机的成本,使得工业上放弃了研发努力。
本优选的电气装置通过利用了非晶、纳米晶、优化硅-铁合金、晶粒取向铁基或非晶粒取向铁基材料的有利性质的旋转电动机器的设计克服了先前技术的性能失效。还提供了与各种改进材料的物理和机械特性相容的构造方法。这些设计和方法提供了具有各种有利性质中的一些或全部性质的机器,这些有利性质包括在高磁极数目下以高效率以及高功率密度工作在高于400Hz的转换频率下。虽然其他常规方法有时可提供最多具有四种性质中的一种或两种的电机,这里在实施例中提供了同时呈现出一些或优选全部四种性质的高频率、高磁极数的电气装置。虽然包括由‘094申请中提供的那些机器在内的机器能够通过采用低损耗定子材料降低磁损耗,但是本机器提供了另一种可降低损耗的和提高效率的机制,也即是通过采用一种改进的堆叠式线圈绕组结构。
由于效率的提高,可最优地应用于本发明中的高频、高磁极数电气装置可获得更宽的连续速度范围。常规电机存在局限,它们在高速度范围(低功率)下提供低扭矩,或在低速度范围下提供高扭矩。可最优地应用于本发明中的高频、高磁极数电气装置成功地提供了在高速度范围下具有高扭矩的电气装置。
电气装置的冷却冷却定子线圈绕组可能在任何电气装置设计中都是一个难题。虽然按照这里的原理构造的机器一般都提供了比现有技术的装置有显著改善的效率,然而它们还可以从针对某些非常苛刻的要求而改善的冷却中获得进一步的好处。在许多实际机器中,消散绕组中的欧姆热量是对稳定状态的加强输出的主要限制。常规机器通常利用通过电机轴上的旋转风机循环的空气而采用对流冷却,但是在这种设置中的热传递只能发生在绕组和其它部件的外表面上。
按照本发明的定子相线圈的交替堆叠允许利用设置在定子槽内的冷却手段。在一些实施例中可以提供足够的空间用于这种手段,而不会引起装置性能的严重降低。例如,热传导装置或者材料可以设置在以下或者全部定子槽中的相邻相绕组之间的通道中。可以采用任何合适的导热介质,非唯一地包括在美国专利No.6259347中公开的被动装置,该文献通过引用整体结合在本文中。也可以利用其它导热材料、热管或者类似物。利用某种外部机构循环的提供液体或者气体冷却流体的有源系统也是合适的。图13示出了本发明的一个实施例,其包括位于堆叠式定子线圈绕组之间的电绝缘冷却通道54代替层形式的绝缘48例如纸或聚合物薄膜。在备选实施例中,冷却通道54和一层或多层绝缘48都设置。在另一些实施例中,冷却通道仅仅是没有壁的敞开式通道,需要采用具有足够绝缘强度的液体或者其它冷却剂,以抗击穿。采用冷却手段,包括循环冷却剂或者导热介质,大大地改善了从绕组内消除热量的功效。
布线和绕线设计的灵活性本机器某些实施例的另一个优点是采用不同的布线配置的灵活性。传统的定子设计限制了绕线设计的选择,原因是上述集中使用值为1.0至3.0的SPP比率,它需要将绕组分布在多个槽上。当对于分布式绕组有多于两个或三个绕线选择的时候变得困难。本发明提供了利用SPP=0.5的设计的能力,其中,每个定子芯(包括齿)通常只有一个分立的线圈。然而,本发明并不排斥其他SPP=0.5的布置。复数线圈可容易地改动并重新连接以提供给定应用要求的任意电压,同时维持上线圈和下线圈的串联成对设置。因此,假定SPP比率如本发明的装置中一样接近0.5,则定子绕组配置将有很大的灵活性。例如,制造商可单独为每个定子绕线,或者制造商可在同一定子内提供单独的定子绕组。此能力是SPP等于0.5的系统的一项优点。虽然有时存在采用SPP=0.5的工业系统,但它们不是很普遍且仅在很少的应用中获得成功。本发明成功地提供了允许此绕线灵活性的SPP等于0.5的系统。
因此,给定的硬件配置可简单地通过改变定子线圈或它们的互连而提供很宽范围的解决方案。通常,线圈是电磁线路中最容易改动的部件。显著的实惠和简化提供给了需要更少的标准设计的制造商、可维持更简单的存货的分销商和可改动给定的机器以适应变化的使用需求的用户。
机器系统和电源电子电路控制依照又一方面,提供了一种包括了上述类型的轴向气隙电机以及连接和控制机器的电源电子电路装置的电动机器系统。该系统可作为电动机或发电机或它们的结合工作。电动机必须直接或通过DC电源的换向供给以AC电源。虽然机械换向已长久地用在电刷类型的机器中,大功率半导体装置的可用性使得用于许多现代永磁电机的无刷电子换向装置的设计成为可能。在发电模式下,机器(除非采用机械换向)固有产生交流电。大部分机器说明同步工作,这表示交流输入或输出功率的频率与转动频率和磁极数目成正比。因而直接连接到电力线路上的同步电机工作在特定的速度,而变化可以通过改变磁极数目实现,电网有例如电力工业常使用的50或60Hz线路或通常在船舶和航空系统中使用的400Hz线路。对于同步发电,原动力的旋转频率必须受控制以提供稳定的频率。一些情况下,原动力固有产生的旋转频率过高或过低,使得对于已知的机器设计,磁极数目在实际界限内的电机无法适应。在这种情况下,旋转的机器不能直接连接至机械轴,因此通常必须采用变速箱,尽管此附属物增加了复杂性和效率上的损失。例如,风轮机转动如此之慢,以致在常规电机中将需要过高的磁极数目。另一方面,为了以要求的机械效率正常运行,典型的燃气涡轮机转动如此至快,以致磁极数目很低时产生的频率仍不可接受地高。电动和发电应用的备选方案是主动电源转换。包括了带有上述类型的堆叠式绕组的定子组件的本电动机器的实施例有利地与主动电源转换一起使用,特别是在与宽范围和/或不同的电源需求有关的应用中。
如本文所使用,术语“电源电子电路”理解为表示适合于将作为直流电(DC)或具有特定频率和波形的交流电(AC)供给的电力转换为DC或AC的电力输出的电子电路,输出和输入在电压、频率和波形上至少有一方面不同。这种转换由电源电子电路转换线路完成。对于除了使用普通的保持频率的变压器对AC电源进行简单的电压变换,以及将AC进行简单的桥式整流以提供DC之外的转换,现代的电源转换通常采用非线性半导体器件和其他提供主动控制的相关元件。
如上文更详细地讨论的那样,依照本发明构建的机器可在比常规装置宽的多的转动速度范围内作为电动机或发电机工作。许多情况下,此前电动机和发电机应用中均需要的变速箱可以去除。然而,得到的有利之处通常同样要求使用电源电子电路,与常规机器中采用的电路相比,该电源电子电路可工作在的更宽电子频率范围的。
对于电动机器系统的电动应用,机器被连接至电源,例如电力线路、电化学电池、燃料电池、太阳能电池或其他任何适合的电能源。任何必要类型的机械负载可连接在机器轴上。在发电模式下,机器轴机械地连接在原动力上且系统连接在电负载上,该负载可包括任何形式的电器或电能储存器。该机械系统也可作为再生式电动系统使用,例如作为连接在车辆驱动轮上的系统,交替为车辆提供机械推动力和将车辆的动能重新转换为电能储存在电池中以实现制动。
在本轴向气隙机械系统中有用的电源电子电路装置通常必须包括具有足够动态范围的主动控制,以适应机械和电子负载的预期变化,同时保持良好的机电运行、调整和控制。该装置必须在前述每次旋转过程中变化的磁导引起的相位阻抗的范围内良好工作。任何形式的电源转换布局均可使用,包括采用升压、补偿和回扫转换器以及脉冲宽度调制的开关稳压器。电压和电流的相位优选均可独立控制,且电源电子电路的控制可在有或没有直接的轴位置传感时工作。此外,优选提供四象限控制,使得机器可顺时针或逆时针旋转且可按照电动或发电模式运行。优选同时包括电流环和速度环控制电路,其中扭矩模式和速度模式控制均可采用。为了运行的稳定,电源电子电路装置必须优选具有预期转换频率的约10倍的控制环频率范围。对于本系统,旋转机器运行达到约2kHz的转换频率则需要至少约20kHz的控制环频率范围。电动运转方式中使用的控制器通常采用IGBT半导体开关元件。这些器件呈现出随频率升高的开关损耗,因而通常优选工作在最高约1000Hz的转换频率下。电机系统因而优选有利地设计成转换频率在从约600至1000Hz的范围,使得较便宜的IGBT可以使用,同时保留了因低损耗材料的使用而得以实现的更高的工作频率带来的有利之处(如提高的功率密度)。对于发电应用,合适的整流桥甚至允许在更高的转换频率下运行。
以上以相当完整的细节对本发明作出了说明,应当理解不需要严格遵循这些细节,而本领域的技术人员可想到各种变化和改进。例如,虽然本文大体说明了轴向气隙电机,但也可依照本文公开的原理设计其他类型的电机,例如径向气隙电机或线性机器。此外,电机可包括除永磁机器以外的多种类型的电机,例如感应机器、同步机器、同步磁阻机器、开关磁阻机器以及dc电磁机器。此外,其他类型的转子和/或定子绕线方案也在本发明的范围以内。这些改进也相应被认为包括在本发明的范围内,如附加的权利要求所限定的。
权利要求
1.多相轴向气隙电动机器,包括(a)至少一个定子组件,其包括后铁部分和多个齿部分,所述定子组件具有位于每相邻的一对所述齿部分之间的槽和多个堆叠式定子相绕组,每个绕组环绕一个或多个所述齿部分;和(b)至少一个转子组件,其受支撑以围绕轴旋转且包括多个磁极,所述转子组件被布置和安放以便与所述至少一个定子组件发生磁性相互作用。
2.根据权利要求1的机器,其特征在于,所述绕组包括相等数量的上线圈和下线圈,所述上线圈中的每个与所述下线圈的其中一个串联连接,在每个所述槽中都设有所述堆叠式定子相绕组的其中两个。
3.根据权利要求1的机器,其特征在于,所述定子组件包括低铁芯损耗磁性材料,其包括由至少一种从由非晶金属、纳米晶金属以及优化铁基合金构成的集合中选出的材料构成的薄片层。
4.根据权利要求1的机器,其特征在于,当在峰值电感水平“Bmax”以激励频率“f”工作时,所述低铁芯损耗磁性材料由小于“L”的铁芯损耗表征,其中,L由公式L=12·f·B1.5+30·f2.3B2.3给出,铁芯损耗、激励频率和峰值电感水平分别用瓦特/每千克、千赫兹和特斯拉计量。
5.根据权利要求1的机器,其特征在于,所述转子组件包括多个转子永磁体,所述转子永磁体以交替极性安放并围绕所述转子以大致相等的间隔沿圆周可靠地定位。
6.根据权利要求5的机器,其特征在于,所述磁体为SmCo或FeNdB磁体。
7.根据权利要求1的机器,其特征在于,所述槽每相每磁极比率的范围为约0.25至1。
8.根据权利要求7的机器,其特征在于,所述槽每相每磁极比率为0.50。
9.根据权利要求1的机器,其特征在于,其具有至少16个磁极。
10.根据权利要求1的机器,其特征在于,其适合于以自大约500Hz至3kHz范围的转换频率运行。
11.根据权利要求1的机器,其特征在于,其包括两个定子组件和安放其间的转子组件。
12.根据权利要求1的机器,其特征在于,其还包括设置在所述槽内的冷却机构。
13.根据权利要求1的机器,其特征在于,所述机器是轴向气隙装置。
14.构造电动机器的方法,包括(a)提供至少一个包括后铁部分和多个齿部分的定子组件,所述定子组件具有位于每对相邻的所述齿部分间的槽和多个堆叠式定子相绕组,每个绕组环绕一个或多个所述齿部分;和(b)提供至少一个受支撑以围绕轴旋转且包括多个磁极的转子组件,所述转子组件被布置和安放成与所述至少一个定子组件发生磁性相互作用。
15.根据权利要求14的方法,其特征在于,在每个所述槽中都设有两个堆叠式相绕组,所述绕组包括相等数量的上线圈和下线圈,每个所述上线圈与所述下线圈的其中一个串联连接。
16.根据权利要求14的方法,其特征在于,所述定子组件包括低铁芯损耗磁性材料,其包括由至少一种从由非晶金属、纳米晶金属以及优化铁基合金构成的集合中选出的材料构成的薄片层。
17.根据权利要求14的方法,其特征在于,所述定子组件形成为单一结构,所述单一结构由包括以下步骤的过程形成(a)螺旋地缠绕低铁芯损耗磁性材料的所述叠片层的环形圈,所述环形圈具有内直径、外直径以及环形圈高度;以及(b)切割多个基本沿着径向方向从所述内直径延伸至所述外直径的槽,且槽的深度小于所述环形圈高度。
18.根据权利要求1的机器,其特征在于,还包括连接和控制所述机器并可操作地连接在其上的电源电子电路装置。
全文摘要
一种转动的电动机器包括定子组件,该定子组件包括堆叠式定子线圈绕组。该机器优选为多相轴向气隙装置。提高了的槽充满率由叠式定子线圈结构产生。装置性能由此得到提高。电气装置的定子组件具有由低损耗高频材料制造的磁芯。高磁极数使得电气装置能够以高效率、高功率密度和提高的性能特性在高转换频率下工作。该装置中采用的低损耗材料包括非晶金属、纳米晶金属、优化硅铁合金、晶粒取向铁基材料或非晶粒取向铁基材料。
文档编号H02K21/24GK1969440SQ200480039173
公开日2007年5月23日 申请日期2004年11月3日 优先权日2003年11月3日
发明者A·D·希尔策尔 申请人:莱特工程公司