专利名称:电驱动系统中减小通用模式干扰电流的方法及相应的电驱动系统的利记博彩app
技术领域:
本发明涉及一种根据权利要求1的上位概念的方法以及根据权利要求6的上位概念的电驱动系统;其中以带有DC供电装置的电驱动系统为基础,如由EP0334112B1公开的那样。
背景技术:
根据现有技术,由DC供电装置供电的脉冲变换器使得感应式电机(如同步电机)能以可变频率和电压运行。由于感应式电机的各个绕组相以及DC供电装置都具有不能忽略的、相对于地电势(地电容)的寄生漏电容,因此由于脉冲变换器的半导体开关的开关过程而产生电容式再充电电流,然后该电流在DC供电装置中作为EMV干扰以通用模式干扰电流的形式产生影响。该干扰电流一方面可以干扰与DC供电装置电连接的其它设备(“导线连接的EMV干扰”)。另一方面还会导致很强的无线电干扰场的反射,然后还可能干扰未与DC供电装置电连接的设备(“无线电EMV干扰”)。因此,通常对容许的通用模式干扰电流预先规定了严格的边界值。
在此,特别严格的边界值适用于这样的设备和系统,其中一方面DC供电装置的空间延伸大、与DC供电装置电连接的导线网络的空间延伸大以及电功率高,另一方面空间比例较窄,即与根据应用具有很高电灵敏度和电磁灵敏度的、可能会被干扰危害的设备之间的可能距离很小。这种边界条件出现在具有电推进驱动设备的船舶中,尤其是在潜水艇中。
大功率感应式电机、尤其是例如在EP0334112B1中指出的船舶驱动电机通常由一个共用的DC供电装置通过多个脉冲变换器供电。为了避免由于相互之间的磁耦合而在绕组相中引起较大的补偿电流,各个脉冲变换器的开关过程要相互同步,也就是说开关过程要几乎同时发生。因此,以基本上相同的开关频率来同步脉冲变换器。但是,由于各个脉冲变换器中的开关过程同时进行,因此基于绕组相的地电容而引起的各个变换器的充电和放电电流脉冲叠加起来,并且会有较大的通用模式干扰电流流入供电装置。
公知有很多方法用于减小由于脉冲变换器供电而产生的通用模式电流以及由此而导致的干扰。这些方法的目标是,增大引起通用模式干扰电流的阻抗,其中根据这一目的在合适位置另外引入合适的感抗。这样,通过DE10059332A1公知,通过例如所有电机连接导线都穿过一个可磁化的耦合铁芯,可以在所有导向一个电机的电机连接导线中转换地耦合出阻抗。但这种耦合铁芯特别是在驱动大功率时具有很大的重量和体积,因此将其安装到驱动设备中可能会在位置狭窄时产生问题。此外,该解决方案还存在令人头疼的资金花费问题。DE10040851A1公开了将电机的带有绕组的部件与外壳隔离开来,并将带有绕组的部件通过电感耦合到地。这种额外需要的电感与绕组相对于地电势的寄生电容串联,并由此同样也增大了对通用模式电流起决定性作用的阻抗。
发明内容
在现有技术的基础上,本发明要解决的技术问题是在不采用额外的、带有感抗的部件的条件下减小通用模式干扰电流,并节省由于采用额外的感抗而带来的对位置需要、重量、安装和连线的成本和费用。
该技术问题的解决由根据权利要求1的上位概念的方法和根据权利要求6的上位概念的电驱动系统出发,通过各特征部分来完成。根据权利要求1的方法的优选实施例在从属权利要求2至5中给出;根据权利要求6的电驱动系统的优选实施例在从属权利要求7至16中给出。
通过本发明的方法和本发明的电驱动系统,由两个脉冲变换器产生的通用模式干扰电流通过绕组相对地电势的寄生电容反向,由此尤其是在DC供电装置中基本上相互抵消了该干扰电流。
通过本发明的解决方案,使对感应式电机的驱动功能起决定作用的脉冲变换器的输出电压,也就是在每个变换器输出接头之间的电压差保持不变。通用模式干扰电流的减小只是通过相应地控制脉冲变换器来进行。不需要诸如额外电感的特殊部件。由此相对于采用额外电感来说,节省了由于位置需要、重量、安装和连线而产生的成本和花费。
本发明的解决方案及其实施方式同样适合于具有通过单相变换器的单相供电的感应式电机,以及通过多相变换器的多相(如三相)绕组系统和供电的电机。
由此,当由每两个由一个共用DC供电装置供电的脉冲变换器所产生的通用模式干扰电流在相对方向上具有接近于同样的时间变化过程和振幅时,就能很好地消除干扰电流。如果感应式电机具有多个分别由单相变换器为各相馈电的绕组相,并且假定各个绕组相的寄生绕组电容相等,则可以这样消除干扰电流,即通过控制装置这样来控制每两个脉冲变换器,使得该每两个脉冲变换器的输出电压的瞬时值至少接近于相等。如果感应式电机具有多个分别由多项脉冲变换器供电的绕组系统,则可以这样消除干扰电流,即由每两个变换器供电的绕组系统在感应式电机中设置为电错开至少接近180°,并且通过控制装置控制该每两个脉冲变换器,使得该每两个脉冲变换器的输出电压的瞬时值相反。
如果控制的瞬时值不同并由此两个脉冲变换器的开关时刻和输出电压也不同,就象例如在基波相位不同时在感应式电机的不同绕组相中发生的那样,则所产生的通用模式干扰电流还有剩余。因此特别有利的是,优选根据这样的标准来组合脉冲变换器对,也就是将脉冲变换器对设置为例如对应于输出电压的彼此相对的基波相位相等或接近。在感应式电机具有很多绕组相时(如在潜艇的螺旋推进器驱动中采用的),就会出现这些特性。
对根据本发明的解决方案而实施的、通过脉冲变换器对电机绕组进行单相供电的驱动系统的测量表明,通过根据本发明的驱动实施例,特别是根据本发明控制脉冲变换器的实施例,可以使通用模式干扰电流减小的倍数超过10,也就是减小的数量超过20dB。
关于控制脉冲的产生,对实现本发明的解决方案没有限制,从而对脉冲变换器的控制或者说调制在优选方式下既能用在线工作的调制方法(例如正弦三角调制、空间矢量调制等等)又能用离线工作的调制方法(如离线计算的脉冲模式)进行。
特别简单、直观和有利的本发明的实施方式是在正弦三角调制的含义下借助三角辅助函数来进行调制,其中每两个脉冲变换器中的一个变换器的三角辅助函数与该两个脉冲变换器中另一个变换器的三角辅助函数相反。采用这种调制特别有利,因为在特别有利的实施方式中可以借助可编程硬件、尤其是LCA来完成;或者如果不可能或不希望这样做,则在优选方式下也能用模拟和/或数字技术的普通硬件实现。
为每两个脉冲变换器设置一个共用的控制装置,可以保证较好地同步每两个由同一个DC供电装置供电的脉冲变换器的控制脉冲。
如果由于构造或其它原因不能使两个由同一个DC供电装置供电的脉冲变换器从一个共用的控制装置获得它们的控制脉冲,则根据本发明的另一优选实施例,为每两个脉冲变换器设置多个、尤其是两个设备技术和/或功能上分离的、并以合适方式在信号技术上相互关联的、尤其是相互同步的控制装置。
在本发明电驱动系统的优选实施方式中,所述DC供电装置和/或属于该DC供电装置的传导电流和电压的电导体和/或属于该DC供电装置的DC电压源具有很大的空间延展和/或分布,并因此使得可以在通用模式干扰电流很小的同时为空间上远离的驱动部件供电。
根据本发明的电驱动系统可以按照特别优选的方式用于电船用网络、尤其是船舶(特别是潜艇)的电DC船用网络,因为在这种船用网络中对通用模式干扰电流存在特别高的要求。
本发明的电驱动系统可以用一个或多个电感应式电机实现,这些电感应式电机实施为具有电激励或永久磁激励的同步电机或实施为异步电机。
下面,借助图1至图4的实施例详细描述本发明以及根据从属权利要求的特征的本发明的其它优选实施方式;借助图5和图6示出本发明所基于的问题。为了更好地理解本发明的解决方案,在附图中采用简化图。作为适当的调制或控制方法的例子,示出在正弦三角调制的含义下借助三角辅助函数形成控制信号。在附图中采用的简化还涉及对形成通用模式电流起决定作用的相对于地电势的寄生电容,该电容简化的以集中的电容电路元件的形式、也就是以电容器的形式示出。在附图中示出的实施例和所属的解释只是为了解释本发明,并不仅限于此。图中示出图1示出由共用DC供电装置通过两个单相脉冲变换器为感应式电机的两个绕组相供电的电路的简化图;图2参考图1示出该脉冲变换器输出电压的变化过程的时序图,其中根据本发明的解决方案这样控制两个变换器,使得由两个变换器通过绕组相相对于地电势的寄生电容产生的通用模式干扰电流相互抵消;图3示出由共用DC供电装置通过两个三相脉冲变换器为感应式电机的两个三相绕组系统供电的电路的简化图;
图4参考图3示出该脉冲变换器输出电压的变化过程的时序图,其中根据本发明的解决方案这样控制两个变换器,使得由两个变换器通过绕组系统相对于地电势的寄生电容产生的通用模式干扰电流相互抵消;图5示出由DC供电装置通过一个单相脉冲变换器为感应式电机的一个绕组相供电的电路的简化图;图6参考图5示出该脉冲变换器输出电压的变化过程的时序图,该输出电压对通过绕组相相对于地电势的寄生电容产生通用模式干扰电流具有决定作用。
具体实施例方式
首先借助图5和图6解释本发明所基于的问题。图5的原理图示出感应式电机3的绕组相31,该绕组相由DC供电装置4通过脉冲变换器1供电。供电装置4包括DC电压源40、具有正电势UDC+的传导电流和电压的导体41以及具有负电势UDC-的导体42,通过这两个导体将电能传导至脉冲变换器1。
图5中的单相脉冲变换器1具有两个半桥W1a和W1b,其分别包含两个开关S1a,S1a’和S1b,S1b’。借助合适的操控装置51这样控制开关S1a,S1a’和S1b,S1b’,使得在脉冲变换器1的输出接头1a和1b上产生期望的电压U1,由此也在与该输出接头连接的感应式电机3的绕组相31中产生期望的电压U1。脉冲变换器输出电压U1作为两个半桥W1a和W1b的输出电位U1a和U1b的差电压出现。绕组相31相对于地电势的寄生电容通过电容器Cp31简化。电容器Cp4以简化方式表示DC供电装置4相对于地电势的寄生电容。电压Uc31表示在绕组相31的寄生电容Cp31上相对于地电势的电压降。
在图6中示出图5所示的电路中起决定作用的脉冲变换器输出电压的时间变化过程。开关S1a,S1a’和S1b,S1b’的控制在公知正弦三角调制的三角辅助函数UΔ1的帮助下以示例方式进行。其中,以公知方式在操控装置51中将三角辅助函数UΔ1与确定脉冲变换器调制的控制电压Ust1和-Ust1进行比较,以从中确定开关S1a,S1a’和S1b,S1b’的开关时刻。
如从图5和图6中还借助电压Uc31在寄生电容Cp31上的时间变化过程推导出的,电压Uc31周期性地根据输出电势U1a和U1b变化。这样,整个绕组相31例如在时间段ta中处于DC供电装置的负电势UDC-下,而在时间段tb中处于DC供电装置的正电势UDC+下。与此相关联的是周期性的、根据电压Uc31的时间变化而以相应的充电和再充电电流Icm1对地电容Cp31再充电。尽管如此,在每次由脉冲变换器1引起Uc31的电压变化时都有干扰电流Icm1流过Cp31,其电流回路经过地和寄生电容Cp4返回DC供电装置4,并在DC供电装置那里作用为通用模式干扰电流。
现在借助图1和图2来解释根据本发明的在通过单相脉冲变换器为感应式电机各相供电的电驱动系统的例子中减小通用模式干扰电流。图1以简化图示出具有两个绕组相31、32的电感应式电机3,这两个绕组相分别通过一个单相脉冲变换器1、2由共用的DC供电装置4供电。两个脉冲变换器1、2都用相同的控制进行驱动,并在其输出接头1a,1b和2a,2b上产生至少接近于相同的输出电压U1和U2。
如图1所示,脉冲变换器1和2分别具有相同的原理电路,其对应于图5中的脉冲变换器1的原理电路。对应于图5的脉冲变换器1,在此,每个脉冲变换器1、2分别具有两个半桥W1a,W1b和W2a,W2b,其分别包含两个开关(S1a,S1a’和S1b,S1b’以及S2a,S2a’和S2b,S2b’)。为了避免在各个通过相应的脉冲变换器1、2供电的绕组相31、32之间出现大的平衡电流,用基本上相同的开关频率同步脉冲变换器1、2,从而脉冲变换器1、2中的开关过程几乎同时进行。脉冲变换器2的电路和功能的其它说明可参考图5的脉冲变换器1的说明;附图标记与对应的功能和含义匹配。
正如已说明过的,脉冲变换器1由于其开关操作以及与此相关联的输出电势U1a、U1b的改变而在由该脉冲变换器1供电的绕组相31的地电容Cp31上产生电压降Uc31,并由此在DC供电装置4中产生通用模式干扰电流Icm1。相应地,脉冲变换器2由于其开关操作和与此相关联的输出电势U2a、U2b的改变而在由该脉冲变换器1供电的绕组相32的地电容Cp32上产生电压降Uc32,并由此在DC供电装置4中产生通用模式干扰电流Icm2。因此,在DC供电装置4中会有一个公共模式干扰电流和Icmg起作用,其等于两个脉冲变换器1和2的通用模式干扰电流Icm1和Icm2之和Icmg=Icm1+Icm2。
在感应式电机3具有对称结构时,绕组相31、32的寄生绕组电容Cp31、Cp32也至少接近于相等,从而在电压Uc31和Uc32相等时两个通用模式干扰电流Icm1和Icm2也相等。
根据本发明,为了减小在DC供电装置4中起作用的公共模式干扰电流和Icmg,通过操控装置51、52控制两个脉冲变换器1、2,使得在两个脉冲变换器1、2的输出端1a、1b和2a、2b将对于形成通用模式电流Icm1、Icm2起决定作用的电压U1a、U1b和U2a、U2b至少接近于同时地施加到感应式电机3的绕组相31、32上,从而使绕组相31、32的寄生电容Cp31、Cp32上的电压电势Uc31、Uc33相互间相对于地电势方向相反,并因此使得通用模式干扰电流Icm1和Icm2相互抵消。为此,两个操控装置51、52以适当的方式用信号技术相互关联,尤其是相互同步。
如果空间、功能或设备技术条件允许,则可以不采用相互同步的操控装置51、52而设置一个共用的控制装置5。
图2借助时序图示出脉冲变换器输出电势U1a、U1b和U2a、U2b、以及由此产生的脉冲变换器输出电压U1、U2以及寄生电容Cp31、Cp32上的电压Uc31、Uc32的变化过程的例子。通过与变换器2的半桥W2b相反地控制变换器1的半桥W1a以及与变换器2的半桥W2a相反地控制变换器1的半桥W1b,可以使输出电势U1a与输出电势U2b相反地变化,并且输出电势U1b与电势U2a相反地变化。因此,在时间段ta内整个绕组相31都处于DC供电装置4的负电势UDC-下,也就是Uc31=UDC-=U1a=U1b。相反,整个绕组相32在时间段ta内处于DC供电装置4的正电势UDC+下,也就是Uc32=UDC+=U2a=U2b。在时间段tb内整个绕组相31处于DC供电装置4的正电势UDC+下,也就是Uc31=UDC+=U1a=U1b。而整个绕组相32在时间间隔tb内处于DC供电装置4的负电势UDC-下,也就是Uc32=UDC-=U2a=U2b。由此,寄生电容Cp31和Cp32上的电压变化也是相反的,如图2借助电压Uc31和Uc32的时间变化过程所示,以及借助在所有时刻都为零的两个电压Uc31+Uc32的和所示。
在变换器半桥W1a、W2b和W1b、W2a中的转换过程同时进行以及电容Cp31和Cp32相同大小的前提下,流过地电势的公共模式电流Icm1和Icm2虽然大小相等,但方向相反,也就是Icm1=-Icm2。由此,在和中两个电流Icm1和Icm2相互抵消,也就是说在DC供电装置4中不再有变换器1、2的开关过程所引起的公共模式干扰电流Icmg。
对电感应式电机3的性能来说特别有意义的是,通过本发明的解决方案,两个脉冲变换器1、2的绕组相31、32上的变换器输出电压U1、U2不会改变,并且具有相同的时间变化,从而驱动功能不会发生改变。
如结合图5和图6时所解释的,脉冲变换器1、2的控制例如可以在公知正弦三角调制的含义下借助三角辅助函数UΔ来进行。如图2所示,与变换器2的半桥W2b相反地控制变换器1的半桥W1a以及与变换器2的半桥W2a相反地控制变换器1的半桥W1b可以这样来完成,在操控装置51中采用三角辅助函数UΔ1=UΔ,在操控装置52中采用与此相反的三角辅助函数UΔ2=-UΔ。在图1的实施例原理图中,借助示意表示的反向器59从三角辅助函数UΔ中产生三角辅助函数UΔ2=-UΔ。确定变换器控制的控制电压Ust对两个脉冲变换器1、2来说优选是相等的,Ust1=Ust2=Ust,从而脉冲变换器的输出电压U1、U2的瞬时值至少接近于相等。
借助图3和图4示出了在其中感应式电机的两个三相绕组系统由一个共用的DC供电装置通过两个三相脉冲变换器供电的电驱动系统例子中根据本发明减小公共模式干扰电流。
图3以简化图示出电感应式电机3的绕组系统33、34,这些绕组系统由一个共用的DC供电装置分别通过一个三相脉冲变换器1、2供电。三个相分别标以字母a、b、c。DC供电装置4又包括DC供电源40和传导电流电压的导体41、42,如在图1和图5的解释中描述的。Cp4表示DC供电装置对地电势的寄生电容。脉冲变换器1和2分别具有三个各包含两个开关(S1a,S1a’;S1b,S1b’;S1c,S1c’和S2a,S2a’;S2b,S2b’;S2c,S2c’)的半桥W1a、W1b、W1c和W2a、W2b、W2c。在变换器1和2的输出接头1a、1b、1c和2a、2b、2c与感应式电机3的两个绕组系统33和34连接。绕组相相对于地电势的寄生电容以简化方式按照绕组系统33、34相对于地电势的寄生电容Cp33、Cp34的形式示出。在寄生电容Cp33上的电压降用符号Uc33表示;电容Cp34上的电压用符号Uc34表示。
根据本发明,感应式电机3的两个绕组系统33、34相互之间电错开180°。在电机绕组的绕线方向相同时,这可以通过绕组相33a、33b、33c和34a、34b、34c的绕组始端以及绕组末端的合适互连来实现。为说明起见,在图3中绕线方向相同时的绕组始端和通常一样用一个点·表示。
控制脉冲变换器所需的控制装置用符号5以及51、52表示。为了清楚表明本发明的解决方案,在此在实施例中应用一种采用了公知正弦三角调制含义下的三角辅助函数的控制方法。
脉冲变换器1由于其开关操作以及与此相关的输出电势U1a、U1b、U1c的变化而在由该脉冲变换器1供电的绕组系统33的地电容Cp33上产生电压降Uc33,并由此产生通用模式干扰电流Icm1。相应地,脉冲变换器2由于其开关操作以及与此相关的输出电势U2a、U2b、U2c的变化而在由该脉冲变换器2供电的绕组相34的地电容Cp34上产生电压降Uc34,并由此产生通用模式干扰电流Icm2。因此在DC供电装置4中存在一个公共模式干扰电流和Icmg,其来自两个脉冲变换器1和2的通用模式干扰电流之和Icmg=Icm1+Icm2。在感应式电机3的结构对称时,绕组系统33、34的寄生电容Cp33和Cp34也至少接近于相等,从而在电压Uc33和Uc34相等时两个通用模式干扰电流Iem1和Icm2也大小相等。
根据本发明,两个脉冲变换器1、2由操控装置51、52或通过控制装置5这样控制,使得在它们的输出端1a、1b、1c和2a、2b、2c上将对产生通用模式电流Icm1、Icm2起决定作用的电势U1a、U1b、U1c和U2a、U2b、U2c至少接近于同时地加载到绕组系统33、34上,从而绕组系统33、34相对于地电势的寄生电容Cp33、Cp34上的电压电势Uc33、Uc34方向相反,并因此抵消了通用模式干扰电流Icm1和Icm2。
这在所示实施例中是这样来实现的,通过与变换器2的半桥W2a、W2b、和W2c相反地控制变换器1的半桥W1a、W1b和W1c来相反地改变输出电势U1a、U2a和U1b、U2b以及U1c、U2c。
就此,图4借助时序图示出变换器输出电势U1a、U1b、U1c和U2a、U2b、U2c以及寄生电容Cp33、Cp34上的电压Uc33、Uc34的变化过程的例子。通过与变换器2的半桥W2a、W2b和W2c相反地控制变换器1的半桥W1a、W1b和W1c,寄生电容Cp33、Cp34上的电压Uc33、Uc34也相反地变化,如在图4中借助时间变化示出的那样。在变换器半桥W1a、W2a和W1b、W2b以及W1c、W2c的转换过程同时进行以及电容Cp33、Cp34的大小相等的前提下,流过地电势的通用模式电流Icm1和Icm2也大小相等,但方向相反,也就是说Icm1=-Icm2。由此在该和中,两个电流Icm1和Icm2相互抵消,也就是说在DC供电装置4中不再有脉冲变换器1、2的开关过程引起的公共模式干扰电流Icmg。如果观察两个电压的和Uc33+Uc34可以得到相同的结论;该和在所有时刻都为0。
在图3和图4中示出的实施例中,又以示例方式借住公知正弦三角调制含义下的三角辅助函数来形成用于控制脉冲变换器的开关时刻。对于脉冲变换器1,以公知方式在操控装置51中将三角辅助函数UΔ1=UΔ与确定变换器调制地控制电压Ust1a=Usta、Ust1b=Ustb和Ust1c=Ustc进行比较,以从中获得开关S1a、S1a’,S1b、S1b’和S1c、S1c’的开关时刻。根据相同的原理在操控装置52中获得脉冲变换器2的开关时刻。但为了使开关状态与变换器1相比成相反变化,在操控装置52中,开关S1a、S1a’,S1b、S1b’和S1c、S1c’的开关时刻根据图4由反向信号形成UΔ2=-UΔ1=-UΔ;Ust2a=-Ust1a=-Usta;Ust2b=-Ust1b=-Ustb和Ust2c=-Ust1c=-Ustc。所述反向信号例如可以借助图3中示意表示的反相器56、57、58、59来形成。
在图4中示出变换器输出接头1a、1b和2a、2b之间的电压U1ba和U2ba来代表所产生的变换器输出电压。如图4所示,对电机的性能起决定作用的变换器输出电压由于反向控制也变成相互反向。为了使两个变换器1、2通过绕组系统33、34在电机中产生优选相同的磁通量基波相位,如已提到的,需要两个绕组系统33、34相互电错开180°。
由此,通过在包括由多相脉冲变换器供电的多相绕组系统的驱动系统中采用本发明的解决方案,不会改变驱动的功能。
如已提到的,两个操控装置51、52必须相互同步,由此在所涉及的半桥(在单相变换器时是W1a、W2b和W1b、W2a,在三相变换器时是W1a、W2a和W1b、W2b以及W1c、W2c)中可以给出相同的开关时刻。在示例方式描述公知正弦三角调制含义下三角辅助函数UΔ的应用时,通过三角辅助函数本身UΔ实现。
但为了控制半桥(在单相变换器时是W1a、W2b和W1b、W2a,在三相变换器时是W1a、W2a和W1b、W2b以及W1c、W2c),可以采用其它在线或离线调制方法。在该情况下以其它合适方式实现同步。
控制装置(5)或操控装置(51,52)的信号技术功能优选在至少-个可编程硬件部件(尤其是LCA)中实现,和/或借助软件在具有至少一个数字处理器的数字信号处理装置中实现,和/或实施为模拟和/或数字技术的传统硬件。
如果感应式电机3由一个共用供电装置4通过多于两个脉冲变换器1、2供电,则用本发明的方法运行每两个脉冲变换器,从而相应的、由每两个脉冲变换器产生的通用模式干扰电流相互抵消。
如果两个脉冲变换器1、2的控制电压Ust1、Ust2的瞬时值出现差异,如三相电动机的基波相位不同时所可能出现的那样,所产生的通用模式干扰电流还有剩余。如果一对脉冲变换器1、2分别产生相等或接近于相等(且反向)的输出电压以及由此绕组相31、32或多项绕组系统33、34由相同(且反向)的基波相位供电,则可以特别有利地采用本发明的解决方案。
这种尤其是构造为转子方面是永久磁铁激励的同步电动机的感应式电机由于其绕组相的单独供电或通过采用多个多相绕组系统可以达到很高的驱动性能,这种驱动性能特别是船舶、尤其是潜艇的推进驱动所需要的。
权利要求
1.一种用于减小电驱动系统中的通用模式干扰电流的方法,该电驱动系统包括至少两个由一个共用DC供电装置(4)供电的脉冲变换器(1,2),用于为具有至少两个绕组相(31,32)或至少两个绕组系统(33,34)的感应式电机(3)供电,其特征在于,通过控制装置(5)这样控制至少每两个脉冲变换器(1,2),使得在两个脉冲变换器(1、2)的输出端(1a、1b、1c或2a、2b、2c)将对于形成通用模式电流(Icm1、Icm2)起决定作用的电压(U1a、U1b、U1c或U2a、U2b、U2c)至少接近于同时地施加到感应式电机(3)的带有寄生电容(Cp31、Cp32)的绕组相(31、32)上或带有寄生电容(Cp33、Cp34)的绕组系统(33、34)上,从而使绕组相(31、32)的寄生电容Cp31、Cp32上或绕组系统(33、34)的寄生电容(Cp33、Cp34)上的电压电势(Uc31、Uc32或Uc33、Uc34)相互间相对于地电势方向相反。
2.根据权利要求1所述的用于运行具有多个在单相供电含义下分别由一个单相脉冲变换器(1或2)供电的绕组相(31,32)的感应式电机(3)的方法,其特征在于,通过所述控制装置(5)这样控制每两个脉冲变换器(1,2),使得该每两个脉冲变换器(1,2)的输出电压(U1,U2)的瞬时值至少接近于相等。
3.根据权利要求1所述的用于运行具有多个分别由一个多相脉冲变换器(1或2)供电的多相绕组系统(33,34)的感应式电机(3)的方法,其特征在于,所述由每两个变换器(1,2)供电的绕组系统(33或34)在感应式电机(3)中设置为电错开至少接近180°,并且通过控制装置(5)控制该每两个脉冲变换器(1,2),使得该每两个脉冲变换器(1,2)的输出电压(U1ba,U1cb,U1ac或U2ba,U2cb,U2ac)的瞬时值相反。
4.根据上述权利要求之一所述的方法,其特征在于,所述对每两个脉冲变换器(1,2)的控制借助于在线和/或离线工作的调制方法或脉冲模式进行。
5.根据上述权利要求之一所述的方法,其特征在于,所述对每两个脉冲变换器(1,2)的控制借助三角辅助函数通过调制方法实现,其中,该每两个脉冲变换器中的一个变换器(1)的三角辅助函数(UΔ1)与该两个脉冲变换器中另一个变换器(2)的三角辅助函数(UΔ2)相反。
6.一种具有至少两个由一个共用DC供电装置(4)供电的脉冲变换器(1,2)的电驱动系统,该脉冲变换器用于为具有至少两个绕组相(31,32)或至少两个绕组系统(33,34)的感应式电机(3)供电,所述电驱动系统尤其是用于实施根据权利要求1至5中任一项所述的方法,其特征在于,至少每两个脉冲变换器(1,2)分别具有依赖于控制装置(5)的开关依赖性,使得在两个脉冲变换器(1、2)的输出端(1a、1b、1c或2a、2b、2c)将对于形成通用模式电流(Icm1、Icm2)起决定作用的电压(U1a、U1b、U1c或U2a、U2b、U2c)至少接近于同时地施加到感应式电机(3)的带有寄生电容(Cp31、Cp32)的绕组相(31、32)上或带有寄生电容(Cp33、Cp34)的绕组系统(33、34)上,从而使绕组相(31、32)的寄生电容Cp31、Cp32上或绕组系统(33、34)的寄生电容(Cp33、Cp34)上的电压电势(Uc31、Uc32或Uc33、Uc34)相互间相对于地电势方向相反。
7.根据权利要求6所述的电驱动系统,其中,至少一个感应式电机(3)具有多个在单相供电含义下分别由一个单相脉冲变换器(1或2)供电的绕组相(31,32),其特征在于,每两个脉冲变换器(1,2)通过所述控制装置(5)具有这样的开关依赖性,使得该每两个脉冲变换器(1,2)的输出电压(U1,U2)的瞬时值至少接近于相等。
8.根据权利要求6所述的电驱动系统,其中,至少一个感应式电机(3)具有多个分别由一个多相脉冲变换器(1或2)供电的多相绕组系统(33,34),其特征在于,由每两个变换器(1,2)供电的绕组系统(33或34)在感应式电机(3)中设置为电错开至少接近180°,并且通过控制装置(5)控制该每两个脉冲变换器(1,2),使得该每两个脉冲变换器(1,2)的输出电压(U1ba,U1cb,U1ac或U2ba,U2cb,U2ac)的瞬时值相反。
9.根据权利要求6至8中任一项所述的电驱动系统(19),其特征在于,分别为每两个脉冲变换器(1,2)设置一个共用的控制装置(5)。
10.根据权利要求6至8中任一项所述的电驱动系统,其特征在于,分别为每两个脉冲变换器(1,2)设置多个、尤其是两个设备技术上和/或功能上分离的、并以合适方式在信号技术上相互关联的、尤其是相互同步的操控装置(51,52)。
11.根据权利要求6至10中任一项所述的电驱动系统,其特征在于,所述控制装置(5)或操控装置(51,52)的信号技术功能在至少一个可编程硬件部件、尤其是LCA中实现,和/或借助软件在具有至少一个数字处理器的数字信号处理装置中实现,和/或实施为模拟和/或数字技术的传统硬件。
12.根据权利要求6至11中任一项所述的电驱动系统,其特征在于,所述一个或多个感应式电机(3)构造为具有电或永久磁激励的同步电动机。
13.根据权利要求6至11中任一项所述的电驱动系统,其特征在于,所述一个或多个感应式电机(3)构造为异步电动机。
14.根据权利要求6至13中任一项所述的电驱动系统,其特征在于,所述一个或多个感应式电机(3)是船舶、尤其是潜艇的推进驱动装置。
15.根据权利要求6至14中任一项所述的电驱动系统,其特征在于,所述DC供电装置(4)和/或属于该DC供电装置(4)的传导电流和电压的电导体(41,42)和/或属于该DC供电装置(4)的DC电压源(40)具有大的空间延展和/或分布,
16.一种根据权利要求6至15中任一项所述的电驱动系统在电船用网、尤其是船舶、特别是潜艇上的DC电船用网的应用。
全文摘要
本发明的目的是减小电驱动系统中的通用模式干扰电流,该电驱动系统包括至少两个由一个共用DC供电装置(4)供电的脉冲变换器(1,2),用于为具有至少两个绕组相(31,32)或至少两个绕组系统(33,34)的感应式电机(3)供电。该目的这样来实现,通过控制装置(5)控制至少每两个脉冲变换器(1,2),使得在两个脉冲变换器(1、2)的输出端(1a、1b、1c或2a、2b、2c)将对于形成通用模式电流(Icm1、Icm2)起决定作用的电压(U1a、U1b、U1c或U2a、U2b、U2c)至少接近于同时地施加到感应式电机(3)的带有寄生电容(Cp31、Cp32)的绕组相(31、32)上或带有寄生电容(Cp33、Cp34)的绕组系统(33、34)上,从而使绕组相(31、32)的寄生电容Cp31、Cp32上或绕组系统(33、34)的寄生电容(Cp33、Cp34)上的电压电势(Uc31、Uc32或Uc33、Uc34)相互间相对于地电势方向相反。
文档编号H02K11/02GK1739233SQ200480002306
公开日2006年2月22日 申请日期2004年1月13日 优先权日2003年1月15日
发明者汉斯-于尔根·托勒, 莱茵哈德·沃格尔, 彼得·温格勒 申请人:西门子公司