用于多电池系统中电源管理的选择器电路的利记博彩app

文档序号:7454091阅读:302来源:国知局
专利名称:用于多电池系统中电源管理的选择器电路的利记博彩app
技术领域
本发明涉及选择器电路,更具体的是涉及用于多电池系统的选择器电路。
背景技术
选择器电路通常应用于各种电子装置的供电模块。这些选择器电路通常用来在一个直流电源(例如一个交流/直流适配器)和一个可充电电池之间进行选择。另外,在各种电子装置中,例如笔记本电脑,这些选择器电路通常由系统管理总线(SMBus)根据一个具体协议而传送的控制信号所控制。另外,这些选择器电路通常不能独立地确定、更正和通知供电模块中其它部件的电源危机状况。另外,这些选择器电路不能接收来自相关主电源管理单元(PMU)的控制信号。
因此,本领域需要一种能克服上述现有技术缺陷的选择器电路。

发明内容
在一个实施例中,本发明的一种供电系统包括一个与一个第一电池相连的第一路径;一个与一个第二电池相连的第二路径,且该第一路径和该第二路径连接于一个公共节点;与该第一路径相连的一个第一开关和一个第二开关,该第一开关和第二开关允许选择性地将该第一电池与一个负载相连从而对该第一电池放电;与该第二路径相连的一个第三开关和一个第四开关,该第三开关和第四开关允许选择性地将该第二电池与该负载相连从而对该第二电池放电;和一个选择器电路,若该第一电池的一个第一放电电流电平大于一个第一放电门限电平、且该第二电池的一个第二放电电流电平大于一个第二放电门限电平,该选择器电路闭合该第一、第二、第三和第四开关从而允许对相并联的该第一电池和第二电池放电。
在另一个实施例中,提供了一种电子装置。该电子装置包括一个与一个第一电池相连的第一路径;一个与一个第二电池相连的第二路径,且该第一路径和该第二路径连接于一个公共节点;与该第一路径相连的一个第一开关和一个第二开关,该第一开关和第二开关允许选择性地将该第一电池与一个该电子装置的系统相连从而对该第一电池放电;与该第二路径相连的一个第三开关和一个第四开关,该第三开关和第四开关允许选择性地将该第二电池与该系统相连从而对该第二电池放电;和一个选择器电路,若该第一电池的第一放电电流电平大于一个第一放电门限电平、且该第二电池的第二放电电流电平大于一个第二放电门限电平,该选择器电路闭合该第一、第二、第三和第四开关从而允许对该第一电池和第二电池并联放电。
在本发明的另一个实施例中,还提供了一种确保并联电池安全工作的方法。该方法包括接收一个来自相关电源管理单元的控制信号,该控制信号表示期望将至少一个第一电池和一个第二电池与一个公共节点并联;接收一个第一电流信号,该第一电流信号表示流经该第一电池和公共节点之间的第一路径的第一电流电平;接收一个第二电流信号,该第二电流信号表示流经该第二电池和公共节点之间的第二路径的第二电流电平;比较该第一电流信号和一个第一门限电流电平、该第二电流信号和一个第二门限电流电平;和若该第一电流信号大于该第一门限电流电平、且该第二电流信号大于该第二门限电平,则将相并联的该第一电池和第二电池连接于一个公共节点。


图1所示为一个带有供电模块的电子装置的简化高层框图,该电子装置包括本发明的一个响应电源管理单元(PMU)的一个输出信号而进行选择的选择器电路;图2所示为图1所示的带有本发明的一个选择器电路的供电模块的更为详细的框图,该选择器电路在一个直流电源和多个电池之间进行选择;图3所示为本发明的一个选择器电路的一个实施例的框图,该选择器电路包括一个提供信号且经由相关的开关驱动器网络和相关的开关在一个直流电源和多个电池之间进行选择的控制器;图4所示为图3所示的选择器电路的更具体的框图,该框图更详细地示出了控制器部分的各种部件;图5所示为当电子装置由直流电源供电时,选择器电路如何基于各种输入信号驱动各种开关至闭合ON和断开OFF状态的示范性表格;图6所示为当电子装置由各种电池的组合供电时,选择器电路如何基于各种输入信号驱动各种开关至闭合ON和断开OFF状态的示范性表格;图7所示为本发明的一个选择器电路的另一个示范性实施例的框图,该选择器电路包括一个控制器,该控制器提供信号且经由一个相关的开关驱动器网络和相关的开关在一个直流电源和多个电池之间进行选择;图8所示为图7所示的选择器电路的更具体的框图,该框图更详细地示出了控制器部分的各种部件;图9所示为当电子装置由一个直流电源供电时,图7所示的选择器电路如何根据各种输入信号驱动各种开关至闭合ON和断开OFF状态的示范性表格;图10所示为当电子装置由各种电池组合供电时,图7所示的选择器电路如何根据各种输入信号驱动各种开关至闭合ON和断开OFF状态的示范性表格;和图11A至11C所示为图7所示的选择器电路如何检测电池低电压状态、并防止电池内部流入电流的示范性电路图。
具体实施例方式
图1所示为一个可由任意数目的电源104、105供电的电子装置100的简化框图。这些电源包括多个电池105和一个直流电源104。电池105可以为各种类型的可充电电池,例如锂离子、镍镉、镍氢电池等等。电子装置100可以为任一种本领域所熟知的、由电源104或105供电的装置,例如便携式电子装置(笔记本电脑、手机、寻呼机、个人数字助理、可携式摄像机、数码相机、卡式收录机等等)、电力车、电力工具等。
如果电子装置100为一台笔记本电脑,它会包括本领域技术人员熟知的各种部件(未在图1中示出)。例如,笔记本电脑可包括一个输入数据至笔记本电脑的输入装置,一个执行指令和控制笔记本电脑工作的中央处理单元(CPU)或处理器(例如英特尔公司的奔腾处理器)和一个从笔记本电脑输出数据的输出装置(例如一个LCD或扬声器)。
为给电池105充电和/或给装置100供电,可将直流电源104与装置100相连。直流电源104可以为一个接收壁装电源插座的120伏标准交流电压且将其转换为一个直流输出电压的交流/直流适配器。直流电源104还可以为一个直流/直流适配器,例如可以插入直流插座的“点火器”型适配器。直流电源104如图1所示与装置100分离,但也可以集成于一些装置中。
装置100有一个至少包括一个本发明的选择器电路114的供电模块106。供电模块106还包括一个如图1所示的PMU120。另外,PMU120可以嵌入电子装置100的一个更为复杂的处理器中。PMU120可运行本领域熟知的各种电源管理程序。通常,供电模块106包括在各种情况下监视、控制和指挥电力从各电源传输至其它各电源和装置100的系统110的各种部件。有利的是,本发明的选择器电路114响应至少一个来自PMU120的输出信号,将在此详述。
图2所示为一个用于多电池系统的示范性供电模块206的详细框图。电源包括直流电源204(例如一个交流/直流转换器)和任意数目的多个电池205-1、205-2和205-k。这些电池可以为可充电电池。在任何时刻,这些电源204、205-1、205-2和205-k中的每一个都可以存在或不存在于该系统中。
通常,供电模块206包括一个PMU220、一个充电器电路222、一个电源转换单元(power conversion element)226、一个电池开关网络217、一个开关230、一个从直流电源204到系统210的供电路径209、一个从电池205-1、205-2、205-k到系统的供电路径240、一个用于充电目的从直流电源204到可充电电池205-1、205-2、205-k的供电路径207、一个本发明的选择器电路214和各种数据或通信路径。电池开关网络217还包括分别连接于电池205-1、205-2、205-k的充电开关CSW1、CSW2、CSWk和放电开关DSW1、DSW2、DSWk。
供电模块206的各种部件之间的数据或通信路径可以为单向或双向,并可以导通模拟或数字信号。数据路径可以传输指令或控制信号或数据。数据路径的数量总体上是根据电池205-1、205-2、205-k、充电器电路222、PMU220和供电模块206的特性而定的。例如,如果相关装置100为一台笔记本电脑,则一个智能充电器电路和智能电池可根据一个具体协议经由系统管理总线(SMBus)进行通信。
通常,选择器电路214响应供电模块206中的各种部件(包括PMU220)的多种输入信号,并经由路径250将开关控制信号提供给电池开关网络217和开关230,从而在各种情况下控制和指挥电力从各电源传输至其它各电源和系统210。
例如,选择器电路214的一组特定输入信号可以表示一个具有可接受的电压电平的直流电源204的存在。为了响应该输入信号,选择器电路214提供一个控制信号来闭合开关230,并断开电池开关网络217中的放电开关DSW1、DSW2、DSWk。如此,直流电源204的电力就能提供至系统210。另外,如果选择器电路214的输入信号表示直流电源204不存在或直流电源204的电压电平不可接受,则选择器电路214提供一个合适的控制信号来断开开关230,并闭合电池开关网络中的放电开关DSW1、DSW2、DSWk中的一个。如此,只要符合其它安全条件,相关电池205-1、205-2、205-k中的一个或多个就能提供电力给系统210,将在此详述。
当充电开关为了充电的目的而闭合时,每个与充电电池205-1、205-2、205-k相关的充电开关CSW1、CSW2、CSWk提供一个从电源线207到每个相关电池的导通路径。放电开关DSW1、DSW2、DSWk提供一个从每个相关电池205-1、205-2、205-k到系统210的导通路径,并根据哪个放电开关DSW1、DSW2、DSWk闭合,通过一个或多个电池给系统210供电。
有利的是,至少一个选择器电路214的输入信号表示PMU220的一个输出信号。PMU220和选择器电路214可经由数据路径211进行通信。本领域的技术人员了解,PMU220能运行主装置的电源管理程序。PMU220可以提供一系列信号给选择器214,这些信号包括表示电池205-1、205-2、205-k中的哪个或哪些相并联组合可以选择来充电或放电。正如在此所详述的,选择器电路214响应PMU220。但是,选择器电路214还有其本身的内部检测,并能在多种情况下(将进一步详述)忽略来自PMU的期望使用信号,从而提供附加安全和节省电池功耗。充电器电路222经由数据路径252与选择器214进行通信,并经由数据路径254与电源转换单元226(例如一个充电器控制的直流/直流转换器)进行通信。充电器电路222可以经由供电路径207和电源转换单元226对给电池205-1、205-2、205-k提供的充电电流进行控制。
图3所示为一个与三个电源一起工作的示范性供电模块306。这些电源包括一个经由供电路径309与供电模块306相连的直流电源(未示出)、一个第一可充电电池A和一个第二可充电电池B。供电模块306包括一个本发明的选择器电路314和其它部件,例如一个相关的PMU320、一个充电器电路322和一个电源转换单元326(例如一个直流/直流转换器)。尽管如前所述的PMU320为供电模块306的一部分,但PMU320可以位于供电模块的外部,嵌入供电模块外部的一个独立部件,或PMU的功能可以由一个电子装置的独立部件(例如CPU)来提供。
为清晰简单起见,图2所示的直流电源和各种数据连接(例如,从充电器电路306到电源转换单元326和PMU320,电池与PMU320之间的连接)在图3中未示出。有利的是,为了便于操作和安装,选择器电路314和充电电路322可以集成到一个集成电路390上。
选择器电路314包括一个控制器315和一个开关驱动器网络317,并将在此详述。选择器电路314有接收各种输入数据和控制信号的各种输入端380。这些输入端380都与控制器315相连。选择器电路314还有提供控制信号给相关的开关SW1、SW2、SW3、SW4、SW5和SW6并提供数据给供电模块306的相关部件的各种输出端382。输入端380包括引脚380-1至380-9来接收标号分别为PSM、USE_A、USE_B、ICHG、VAD、VSYS、BATT_A、BATT_B和AUXIN的控制和数据信号。输出端382包括引脚382-1至382-10来提供标号分别为PWR_AC、PWR_BATT、CHGA、DCHA、ACAV、ALERT、CHGEN、CHGB、DCHB和AUXOUT的控制和数据信号。每个输入端380和每个输出端382以及相关控制和数据信号如下所述。
第一输入引脚380-1接收一个来自PMU320的功耗节省模式(PSM)数字输入控制信号,该控制信号表示PMU320是否期望功耗节省模式。第二和第三输入引脚380-2和380-3接收来自PMU320的USE_A和USE_B控制信号,该控制信号表示在所给的充电或放电模式中采用PMU所需的电池或电池组合。例如,图3所示的实施例中有两个电池A和B,USE_A和USE_B控制信号可以为数字信号,如果USE_A为低电平而USE_B为高电平,则使用电池A。如果USE_A为高电平而USE_B为低电平,则使用电池B。如果USE_A为低电平且USE_B为低电平,则使用相并联的电池A和电池B。最后,如果USE_A为高电平且USE_B为高电平,则电池A和电池B都不使用。这些用于USE_A和USE_B的表示高电平和低电平的信号仅用于说明目的,本领域的技术人员了解还可以选择其它的组合。
第四输入引脚380-4接收一个来自充电器电路322的充电电流(ICHG)模拟信号,该模拟信号表示提供给电池的充电电流。第五输入引脚380-5接收一个来自直流电压源204(例如交流/直流适配器)的模拟信号(VAD),该信号表示在特定时刻直流电源204提供的电压电平。第六输入引脚380-6接收一个表示系统供电电压电平的模拟信号(VSYS)。第七输入引脚380-7和第八输入引脚380-8分别接收来自电池A(BATT_A)和电池(BATT_B)的模拟信号,这些信号分别表示每个电池的电压电平。该BATT_A和BATT_B模拟信号可以通过分别测量每个电池的正极电压来得到。最后,第九输入引脚380-9表示一个能接收任何其它输入控制和数据信号(AUXIN)的通用输入引脚(generic input terminal),但由于并非特别关键,本发明在此不作描述。
第一输出引脚382-1提供一个开关控制信号(PWR_AC)给开关SW1。第二输出引脚382-2提供一个开关控制信号(PWR_BATT)给开关SW2。第三输出引脚382-3提供一个开关控制信号(CHGA)给电池A的充电开关SW3。第四输出引脚382-4提供一个开关控制信号(DCHA)给电池A的放电开关SW4。第五输出引脚382-5提供一个表示直流电源204存在与否的数字直流电源使能信号(ACAV),该直流电源的输出电压大于一个可接受的门限值。
第六输出引脚382-6提供一个数字数据信号(ALERT)来通知至少包括PMU 320的其它部件电源危机状况,将如下所述。第七输出引脚382-7提供一个数字数据信号(CHGEN)给充电器,该信号表示是否到达充电使能状态。第八输出引脚提供328-8提供一个开关控制信号(CHGB)给电池B的充电开关SW5。第九输出引脚382-9提供一个开关控制信号(DCHB)给电池B的放电开关SW6。最后,第十输出引脚380-10表示一个能提供任何其它输出控制和数据信号(AUXOUT)的通用输入引脚,但由于并非特别关键,本发明在此不作描述。
控制器315接收上述来自选择器电路314的输入端380的输入数据和控制信号,并通过控制开关SW1到SW6中的一个或多个的组合决定选择或不选择电源(例如直流电源、电池A或电池B)中的哪个或哪些组合。控制器315还能直接提供数据和其它控制信号给其它输出引脚,例如输出引脚382-5、382-6、382-7和382-10,从而实现与供电模块306的其它部件之间的通信。
开关驱动器网络317还包括多个开关驱动器SD1、SD2、SD3、SD4、SD5和SD6。每个开关驱动器SD1、SD2、SD3、SD4、SD5和SD6可以进一步与相关的开关SW1、SW2、SW3、SW4、SW5和SW6相连,从而由选择器电路314的控制器315控制来驱动每个开关至闭合和断开状态。
图4所示为选择器电路314的更详细的框图,更具体地示出了图3所示的选择器电路314的控制器315。通常,控制器315包括一个选择器输出电路470、一个充电使能电路472、一个并联电池使用使能电路476、一个输入有效电路478、一个电源危机电路474和多个比较器CMP1、CMP2、CMP3和CMP4。
通常,选择器输出电路470接收各种内部控制信号,例如一个来自充电使能电路472的充电使能信号(CHGEN),一个来自电源危机电路474的二极管模式(DM)信号,一个来自输入有效电路的478的有效输入信号(VINP1),一个来自并联电池使用使能电路476的并联电池使用使能信号(PBUE)和一个来自比较器CMP1的直流电源使能信号(ACAV)。选择器输出电路470还能接收一个来自充电器电路322的表示充电电流的模拟信号ICHG。正如在此所详述,选择器输出电路470基于各种输入信号的状态指挥开关驱动器网络317闭合或断开相关的开关SW1、SW2、SW3、SW4、SW5和SW6。
控制器315包括一个比较一个表示直流电源的电压电平的模拟信号与一个第一门限值VT1的第一比较器。第一门限值VT1设置为高于系统可接受的最小供电电压VT3。如果直流电源存在、且具有一个大于第一门限值VT1的供电电压,则第一比较器CMP1产生一个高电平ACAV控制信号给选择器输出电路470。否则该第一比较器将产生一个低电平ACAV信号。该ACAV信号也可提供给电源危机电路474。
如果选择器输出电路470接收到一个来自第一比较器CMP1的高电平ACAV信号,它将产生合适的开关控制信号来闭合开关SW1并断开开关SW2至SW6(假设直流电源的电源电压不大于第二门限值VT2,如下所述),从而系统210由直流电源供电且不会有任何电池充电。在这种情况下,选择器电路314将使用直流电源,而不考虑PMU的USE A和USE B控制信号。如此,只要直流电源存在且具有一个大于VT1的合适的电压电平,选择器电路314就能忽略PMU的控制信号使用电池A或电池B,而要求系统210由直流电源供电。有利的是,该特性通过确保在合适的条件下使用直流电源而延长了电池的使用寿命。
为使系统210由直流电源供电并对一个或多个电池充电,充电使能信号(CHGEN)必须有效。本实施例中的CHGEN信号为一个高电平有效信号。充电使能电路472如果接收到一个来自第二比较器CMP2的合适的CHGP信号和一个来自输入有效电路478的合适的有效信号VINP1,将产生一个高电平CHGEN信号。如果直流电源的供电电压大于第二门限电平VT2(其中VT2>VT1,且VT1>VT3),则第二比较器CMP2产生一个合适的CHGP信号。输入有效电路478产生一个有效信号VINP1。若PMU的USE_A和USE_B信号表示至少使用电池A或B中的一个,就会产生一个合适的有效信号VINP1。若USE_A和USE_B信号表示不能使用电池A或B中的任何一个(例如USE_A和USE_B都为高电平),则不能产生一个合适的有效信号VINP1。充电使能电路472还需要来自通用输入引脚380-9的其它辅助有效输入信号(AUXIN)来产生一个有效的CHGEN信号。
充电期间,充电电路322提供表示充电电流电平的ICHG信号给选择器电路314。选择器电路314接收输入引脚380-4处的ICHG信号并提供该信号给选择器输出电路470。选择器输出电路470比较该ICHG信号和一个充电门限电平信号ICHT。如此详述,基于该比较,选择器输出电路470判定充电电流电平为高还是为低,并基于此和其它输入信号闭合或断开各种开关。该实施例中,低电平控制信号表示一个低充电电流,而高电平控制信号则表示一个高充电电流,如图5的表格所示。
并联电池使用使能电路476提供一个并联电池使用使能信号(PBUE)给选择器输出电路470。选择器输出电路470通过允许使用并联电池来响应一个高电平PBUE信号,而通过禁止使用并联电池来响应一个低电平PBUE信号(尽管PMU320的USE_A和USE_B信号表示需要使用并联电池,例如USE_A和USE_B信号都为低电平)。如此,选择器电路314就提供额外的预防和保护,从而防止电池A和电池B的并联使用,直到出现合适的条件。
例如,使用两个或两个以上相并联的电池(例如电池A和电池B)的问题在于当这些电池相并联时,电压差值较大从而产生不期望的高电流状况。如此,控制器315的第四比较器CMP4就比较信号BATT_A和BATT_B。该BATT_A和BATT_B信号可以为来自电池A和电池B正极的模拟信号。如果BATT_A和BATT_B信号间的差值在一个预定的范围之内,则比较器CMP4会提供一个有效的BATTCOMP信号给并联电池使用使能电路476。并联电池使用使能电路476除了接收来一个第四比较器CMP4的有效的BATTCOMP信号之外,还接收一个输入有效电路478的合适的输入有效信号VINP2,从而产生一个有效的PBUE信号。若USE_A和USE_B控制信号表示使用相并联的电池A和电池B(例如,USE_A和USE_B为低电平),则产生一个合适的有效信号VINP2。
若PMU的USE_A和USE_B控制信号表示PMU期望使用并联电池,但由于电池A和电池B之间的电压差值不在预定范围之内而使得PBUE信号无效,则选择器输出电路474将指挥具有相对低的电压电平的电池充电。相似情况下,当不存在有效的直流电源时,该选择器输出电路将指挥具有相对较高的电压电平的电池放电给系统。
有利的是,选择器电路314还可以包括一个电源危机电路474,该电源危机电路474能独立地监控和判定电源危机状况,并当检测到电源危机状况时提供一个合适的二极管模式(DM)控制信号给选择器输出电路470。选择器输出电路470响应一个来自电源危机电路474的合适的DM控制信号,使得开关驱动器网络317的开关驱动器将开关SW2、SW4和SW6保持在闭合状态,而将开关SW1、SW3和SW5保持在断开状态。如此,具有最高电压的电源(电池A、电池B或直流电源)将分别通过二极管模式中的二极管D1、D3或D5中的一个给系统供电。另外,选择器电路314还能在输出引脚382-6产生一个表示电源危机状况的ALERT状态信号。该ALERT状态信号可以提供给多种部件,至少包括PMU320。
电源危机状况包括一个无效输出或一个无效输入的状况。当给系统供电的一个电源或多个电源不能将系统电压电平保持在最小系统门限电压电平VT3时,将会产生一个无效输出。比较器CMP3比较系统电压电平与最小门限电压电平VT3,且基于该比较,一个系统检测控制信号(system check control signal)VSYSOK传输至电源危机电路474。如果一个或多个电压电源被有意或无意地断开,则会产生一个低电平系统电压电源危机状况。
一个无效的输入也会造成电源危机问题。一个无效的输入可以为PMU通过USE_A和USE_B信号表示一个期望的状态,该期望的状态将使系统失去电源。例如,USE_A和USE_B信号表示不使用任何电池(低电平VINP1信号,例如USE_A和USE_B都为高电平),且直流电源不存在(低电平ACAV信号),或不能将系统保持在最小VT3电压电平(低电平VSYSOK信号)。另一种无效输入情况为尽管PMU的USE_A和USE_B信号逻辑正确,但会造成系统失去电源。例如,USE_A和USE_B信号可以指定由一个不存在的或无意被移去的电池供电。使用该电池将造成系统的电压电平下降至VT3门限之下,且表示该状态的VSYSOK信号将传输至电源危机电路374。
由于二极管D1、D3或D5的功率损耗,将不适宜DM供电模式保持很长时间。有利的是,电源危机电路474连续监控其输入信号,一旦脱离电源危机状况,便使DM信号无效。因此,一旦脱离电源危机状况(例如一个移去的电源被重新连接至系统),电源危机电路的内部DM信号就会无效并恢复常规供电模式。
与图2至图4相联系,图5的表格500所示为基于选择器电路314和选择器输出电路470的各种输入信号的开关SW1到SW6的各个开关状态。表格500所示为当系统210由直流电源204而非电池305供电时的各个开关状态。如此,ACVC信号就为高电平,且选择器输出电路470发送合适的开关控制信号给开关驱动器网络317,因此如表格500的每列所示,SW1为闭合且SW2为断开。
CHGEN信号在表格500中的每一列都为“高”,除了最后一列522。这样,不仅直流电源存在,而且其它条件(直流电源的电压大于VT2,且存在一个合适的输入有效信号VINP1)都满足提供高电平的CHGEN信号。如此,表格500的502列至520列允许进行充电。
502列和504列中,USE_A和USE_B信号分别为低电平和高电平,表示PMU期望使用电池A。如此,在这两种情况中,电池B的开关SW5和SW6都断开。502列中,充电电流信号为“低”,表示从电源转换单元226到电池305的充电电流低于一个门限充电电流电平ICHT。这样,选择器输出电路470通过发送合适的控制信号至开关驱动器网络317,从而响应该充电电流信号而闭合SW3、断开SW4。这样,电池A的充电电流流经闭合的SW3和与断开的SW4并联的二极管D4。因为充电电流为低电平,其流经二极管D4将产生可忽略的功率损耗。
相反,由充电电流信号的“高”电平所示,504列中的充电电流为高电平。这样,开关SW3和SW4就都闭合。因为该例中电流流经闭合的开关SW4,因此二极管D4中就不存在额外的功率损耗。通常,在相同的电流电平下,处于闭合状态的开关SW1到SW6将比它们相应的并联二极管D1到D6损耗更小的功率。这种差异在高电流电平下尤为重要。
如506列和508列所示,USE_A和USE_B信号分别为高电平和低电平,表示PMU期望使用电池B。如此,电池A的开关SW3和SW4都断开。506列与502列有些相似,充电电流为低电流表示充电电流信号为低电平。从而开关SW5闭合而SW6断开。这样,电池B的充电电流流经闭合的SW5和与断开的SW6并联的二极管D6。相反,由高电平充电电流信号所示,508列中的充电电流为高。这样,开关SW5和SW6就都闭合,因此该例中二极管D6中就不存在功率损耗。
如510列至520列所示,USE_A和USE_B信号分别为低电平和低电平,表示PMU期望使用相并联的电池A和电池B。若510列和512列中所示的并联电池使用使能信号(PBUE)为高电平,则允许电池A和电池B并联充电。若512列中所示的充电电流为高(即充电电流信号为高电平),开关SW3到SW6将处于闭合状态。若510列中所示的充电电流为低(即充电电流信号为低电平),开关SW3和SW5将处于闭合状态,而开关SW4和SW6将处于断开状态。
若USE_A和USE_B信号表示PMU期望使用相并联的电池A和电池B,但PBUE信号为低电平,选择器电路314将不允许并联电池工作,从而忽略PMU期望的并联电池工作。只要其它条件合理,选择器电路314就允许给具有相对低的电压电平的电池充电。例如,514和516列表示电池A有相对低的电压电平。如此,电池B的开关SW5和SW6均为断开。因为低充电电流,510列中电池A的开关SW3为闭合,而因为高充电电流,512列中的开关SW3和SW4都为闭合。同样,若电池B有相对低的电压电平,则如518列和520列中所示,电池A的开关SW3和SW4将保持断开。电池B的开关SW5和SW6将根据充电电流电平保持闭合。
与直流电源供电相反,电源可以由一个或多个电池在各种电池电源系统供电模式下供电。在电池供电模式下,选择器电路314命令开关SW1断开而SW2闭合。若直流电源不存在或直流电源存在、但其电压不大于由第一比较器CMP1判定的第一门限电平VT1,则选择器电路314命令开始电池供电模式。如此,从第一比较器CMP1到选择器输出电路470的ACAV信号将为低电平,表示电池供电模式。当ACAV信号为低电平,则选择器输出电路470将命令开关SW1断开且SW2闭合。
图3所示的实施例中,有两个常规电池系统供电模式。在常规电池系统供电模式1(nbssm1)中,PMU的USE_A和USE_B信号表示只使用一个电池A或电池B,且目标电池存在,并能给系统提供至少一个电压电平使得系统的电压电平大于VT3门限电平。在常规电池系统供电模式2(nbssm2)中,PMU的USE_A和USE_B信号表示使用相并联的电池A和电池B,且两个电池都存在,并且两个电池都能给系统提供至少一个电压电平使得系统的电压电平大于VT3门限电平,且两个电池各有一个电压电平,且在另一个电池预定的电压范围之内。
图6的表格600所示为电池系统供电模式nbssm1和nbssm2的输入信号和相应的开关SW1至SW6的状态。如前所述,因为开始电压系统供电模式,开关SW1断开而SW2闭合。表格600的602列和604列所示为第一电池供电模式nbssm1,其中期望使用电池A(602列)或电池B(604列)。在这些例子中,输入有效信号VINP1和VINP2应该处于合理的电平(VINP1为高电平且VINP2为低电平)。因此,如果由电池A供电(602列),开关SW3和SW4将闭合且开关SW5和SW6将断开。相反,如果由电池B供电(604列),开关SW5和SW6将闭合且开关SW3和SW4将断开。
在第二常规电池供电模式(nbssm2)下,比较器CMP4的BATTCOMP信号为高电平,表示电池A和电池B的电压在可接受的范围内。并联电池使用使能信号(PBUE)也为高电平,表示所有其它由并联电池使用使能电路476监控的并联电池使用条件(包括高电平VINP2信号)都满足。如此,与电池A相连的开关SW3和SW4都闭合,且与电池B相连的开关SW5和SW6也闭合。
与充电情况有些相似,若USE_A和USE_B信号表示期望使用两个相并联的电池A和电池B,但PBUE信号无效(例如PBUE为低电平),则与另一电池相比具有相对高的电压电平的电池被放电,从而给系统供电。如此,若电池A具有相对高的电压,则开关状态如602列所示,若电池B具有相对高的电压,则开关状态如604列所示。
如果直流电源不存在且期望低功率消耗来延长电池使用时间,PMU320可以发送一个功耗节省模式请求给选择器电路314。一旦选择器电路314接收到该功耗节省模式请求,则控制器315命令开关SW1断开,开关SW2断开,开关SW3断开,开关SW4闭合,开关SW5断开且开关SW6闭合。如此,具有相对高的电压的电池A或电池B将分别通过相关的二极管D3或D5供电。另外,与常规工作相比,在功耗节省模式下选择器电路314本身供电电流的总装置功耗将大大减小。
图7所示为本发明选择器电路714的另一个实施例。选择器电路714包括一个控制器715和一个开关驱动器网络317。通常,控制器715提供控制信号给开关驱动器网络317来驱动开关SW1、SW2、SW3、SW4、SW5和SW6至闭合或断开,从而选择各种电源,将在此详述。与图3的实施例相似,选择器电路714能提供并联电池安全工作。通常,若存在不期望的情况,尽管PMU320发出一个并联电池连接的请求,选择器电路714仍将防止电池并联。一种不期望的情况可能为一个电池与另一电池相比具有相对较高的电压,如此,就会产生不期望的内部电池电流从具有相对较高电压的电池流向具有相对较低电压的电池。
图7的许多元件与图3的元件相似,且标号相似。因此,为了清晰起见,在图3中对相似元件的详述在此将不再重复,而着重描述图3与图7之间的差异。通常,图3和图7的两个实施例基于两电池之间电压的差值将两个电池并联。图3的实施例直接比较每个电池的Batt_A和Batt_B的电压信号。
相反,图7中的选择器电路714接收分别表示流经路径797和路径799的电流的I_A和I_B信号。路径797与电池A和节点781相连,而路径799与电池B和同一节点781相连。流经路径797、799的电流根据不同情况表示每个电池的充电电流或电池的放电电流。
I_A和I_B信号为来自充电器电路722的输入。另外,I_A和I_B信号也可以为直接来自检测器791、793的输入,其分别检测流经路径797、799的电流。例如,这些检测器791、793可以为独立的检测电阻。选择器电路714有接收各种电源的I_A和I_B信号的输入端780-1和780-2。I_A和I_B信号接着传输给选择器电路714的控制器715。
图8所示为图7所示的选择器电路714的控制器715更具体的框图。图8的许多元件与图4的元件相似且标号相似。因此,为了清晰起见,对相似元件的详述在此将不再重复,而详尽描述图4与图8之间的差异。尤其是省略了图4的选择器电路714中的比较器CMP4和并联电池使用电路476(以及相关的BATTCOMP和PBUE信号)。
相反,选择器电路714接收如前所详述的输入端780-1和780-2的I_A和I_B信号,且接着将这些信号提供给控制器715的选择器输出电路870。选择器输出电路870比较该I_A和I_B信号和一个电流门限电平I_TH,且基于该比较控制开关SW3、SW4、SW5和SW6,将在此详述。每个电池的电流门限电平I_TH可以相同。另外,电池A(I_THA)的电池B(I_THB)的电流门限电平I_TH也可以不同。本领域技术人员了解各种比较I_A和I_B信号和电流门限电平I_TH或电平I_THA和I_THB的方法。例如,选择器输出电路870可以有一个比较电池A的I_A信号和一个I_THA信号的比较器,和另一个比较电池B的I_B信号和一个I_THB信号的比较器。
选择器输出电路870所作的这些比较将提供一个“低”或“高”电池电流信号给每个电池。一个“低”电流信号表示一个电流电平沿着合适的方向、且小于相关的门限电平,或沿着与期望电流相反的方向。与期望电流相反的方向的电流在电池传送电流(在放电模式)时流向各个电池,或在电池接收电流(在充电模式)时从各个电池流出。
例如,若电池A处于放电模式,则期望电流方向为从电池A到系统。若表示电池A流出的电流的I_A信号小于一个I_TH电平,则将提供一个“低”电流控制信号给电池A。另外,不管流向电池A的电流电平为多少,其将提供一个“低”电流控制信号给电池A。充电电路722能够提供表示电流幅值和方向的I_A和I_B信号给每个电池。另外,本领域所熟知的各种检测器791、793也可直接给选择器电路714提供电流幅值和方向。例如,若检测器791、793为检测电阻,则一个通过检测电阻的正电压压降表示电流沿着某个方向,而一个负电压压降表示电流沿着另一个相反的方向。
若电流沿着合适的方向且大于相关的I_TH电平,则选择器输出电路870所作的比较将提供一个“高”电流信号给每个电池。
一旦对流向或来自每个电池的电流和各个门限电平进行比较后,选择器输出电路870就发送合适的指令信号给开关驱动器网络417。开关驱动器网络417响应这些指令信号来驱动开关SW3、SW4、SW5和SW6至闭合或断开(参考图9和图10的表格),并当并联电池连接于一个公共节点时提供防止内部电池电流的保护。
与图7和图8相联系,图9的表格900所示为当系统由一个直流电源而非电池供电时开关SW1至SW6的各个开关状态。因此,如表格900的每列所示,来自比较器CMP1的ACAV信号为高电平,且选择器输出电路870命令开关驱动器网络417来驱动开关SW1闭合、开关SW2断开。
CHGEN信号在表格900中的每一列都为“高”,除了最后一列918。这样,不仅直流电源存在,而且其它条件(直流电源的电压大于VT2,且存在一个合适的输入有效信号VINP1)都满足提供高电平的CHGEN信号。如此,表格900的902列至916列允许进行充电。
902列和904列中,USE_A和USE_B信号表示PMU期望使用电池A。如此,在这两个例子中,电池B的开关SW5和SW6都断开。若选择器输出电路870提供给电池A的电流信号为“低”,则充电电流流经闭合的开关SW3和二极管D4至电池A;若电池A的电流信号为“高”,则充电电流流经闭合的开关SW3和SW4至电池A。
906列和908列中,USE_A和USE_B信号表示PMU期望使用电池B。如此,在这两个例子中,电池A的开关SW3和SW4都断开。若电池B的电流信号为“低”,则充电电流流经闭合的开关SW5和二极管D6至电池B;若电池B的电流信号为“高”,则充电电流流经闭合的开关SW5和SW6至电池B。
910列至916列中,USE_A和USE_B信号表示PMU期望电池A和电池B并联(在该例子中并联充电)。910列中,选择器输出电路870提供给电池A和电池B电流信号都为“低”。从而,开关驱动器网络417分别驱动开关SW3闭合、SW4断开、SW5闭合和SW6断开。这样,至电池A的充电电流流经闭合的开关SW3和并联于断开的开关SW4的二极管D4。同样,至电池B的充电电流流经闭合的开关SW5和并联于断开的开关SW6的二极管D6。在这种情况下,当电池A和电池B的电压电平互相在另一个电池的某个小区间内时,流向电池A和电池B的电流相当。若电压电平互相不在另一个电池的某个小区间内,流向具有相对高的电压的电池(例如,在一种情况下一个电池的电压比另一个电池的电压高约为0.1伏特)的电流可忽略不计。
912列中,电池A的电流信号为“高”,电池B的电流信号为“低”。这种情况表示电池B的电压高于电池A的电压,因此,将有不期望的内部电流从电池B流向电池A。因为电池B提供内部电流给电池A,电池B的净电流电平可减小至门限电流电平I_TH以下,从而导致电池B电流信号为“低”。有利的是,在这种情况下,选择器电路714能断开开关SW6,闭合开关SW5。二极管D6反向偏压于电池B,从而防止在这种情况下不期望的内部电流从电池B流向电池A。
914列中,电池A的电流信号为“低”,电池B的电流信号为“高”。从而,选择器电路714断开开关SW4,闭合开关SW3。因此,在这种情况下,通过二极管D4反向偏压于电池A来防止内部电流从电池A流向电池B。
916列所示为电池A和电池B的电流信号都为“高”时的一种常规电池充电模式。因此,选择器电路714闭合开关SW3、SW4、SW5和SW6从而使得在这种情况下对两个相并联的电池充电。该“高”电池A和电池B的控制信号表示电池A和电池B的电压电平互相在另一个电池的可接受范围内,因此无需防止内部电池电流。当然,一旦流向任一电池的电流太低,则相应的开关将断开(如912列和914列所示),从而防止从具有相对较高电压的电池到较低电压的电池的交叉传导。
与图7和图8相联系,图10的表格1000所示为一些电池组给该系统供电时开关SW1至SW6的各种开关状态。
1010列至1016列中,USE_A的USE_B信号表示PMU期望将电池A和电池B并联(在这种情况下并联放电)。1010列中,选择器输出电路870提供给电池A和电池B的电流信号都为“低”。从而,开关驱动器网络417驱动开关SW3断开、开关SW4闭合、SW5断开和开关SW6闭合。如此,即为一种电池供电二极管模式,且在这种情况下,电池A或电池B中具有相对较高电压电平的电池将经由二极管D3或D5给该系统供电。
1012列中,电池A的电流信号为“高”,电池B的电流信号为“低”。这种情况表示电池A的电压大于电池B的电压,从而将有不期望的内部电流从电池A流向电池B。因为电池A可能提供内部电流给电池B,所以在这种放电模式下,电池B的净电流电平可减小至门限电流电平I_TH以下,从而导致电池B的电流信号为“低”。有利的是,在这种情况下,选择器电路714能断开SW5、闭合SW6。二极管D5反向偏压于电池A,从而在这种情况下可防止不期望的内部电流从电流A流向电池B。电池B仍能够通过二极管D5提供放电电流给该系统。然而,若电池B的输出电压下降至一个最小输出电压电平以下而导通偏置的二极管D5,则电池B将不能给该系统提供电流,而所有电流由电池A提供给该系统。
1014列中,电池A的电流信号为“低”,电池B的电流信号为“高”。因此,选择器电路714断开开关SW3、闭合开关SW4。二极管反向偏压于电池B,从而在这种情况下可防止不期望的内部电流从电池B流向电池A。电池A仍能够通过二极管D3提供放电电流给该系统。然而,若电池A的输出电压下降至一个导通偏置二极管D3的最小输出电压电平以下,则电池A将不能给该系统提供电流,而所有电流将由电池B提供给该系统。
1016列所示为电池A和电池B的电流信号都为“高”时的一种常规电池放电模式。因此,选择器电路714闭合开关SW3、SW4、SW5和SW6,从而使得在这种情况下两个相并联的电池常规放电。该“高”电池A和电池B的控制信号表示电池A和电池B的电压电平互相在另一个电池的可接受范围内,因此无需防止内部电池电流。当然,一旦流向任一电池的电流太低,则相应的开关将断开(如1012列和1014列所示),从而防止从具有相对较高电压的电池到较低电压的电池的交叉传导。
图11A至11C所示为如上所详述的电池A和电池B处于电池放电模式下选择器电路714的开关图式的另一个实施例。图11A所示为电池A和电池B的常规并联放电。电池A经由闭合的开关SW3和SW4且沿着路径1197提供电池Ia,电池B经由闭合的开关SW5和SW6且沿着路径1199提供电流Ib给该系统。电流Ia和Ib在节点1181处叠加后将提供一个系统电流,该系统电流等于电流Ia和Ib之和。只要电流Ia和Ib分别保持大于各自的门限电流电平,则选择器电路714保持开关SW3、SW4、SW5和SW6闭合,如图10中1016列所示。
图11B所示为电池B提供一个电流Ia给电池A时的一种不可接受的交叉传导状态。该情况在电池A放电比电池B快时发生。若所有开关SW3、SW4、SW5和SW6都保持闭合,则电流A提供的电流将逐渐地减小。另外,电池B提供的部分电流在特定的时刻将被反向,且流向电池A,最后的净电流将流向电池A而非从电池A流出。
图11C所示为选择器电路714的内部逻辑如何避免图11B中不期望的情况。若电池A的放电电流下降至其相关的门限放电电流电平以下(见图10中1014列),则选择器电路714的选择器输出电路870驱动开关SW3断开。因此,电池A仍能够通过闭合的开关SW4和并联于断开的开关SW3的二极管D3给该系统提供电流。有利的是,二极管D3反向偏压于电池B从而防止电池B到电池A的交叉传导。另外,若电池A的输出电压下降至一个导通偏置的二极管D3的最小输出电压电平以下,则电池A将不能给该系统提供电流,而总电流由电池B提供给该系统。
在此所述的实施例只是采用本发明的其中几个,但并不受限于本发明。显而易见,还存在其它本领域的技术人员了解的并不脱离附加的权利要求所定义的本发明的精神和范围的实施例。
权利要求
1.一个供电系统,所述供电系统包括一个与一个第一电池相连的第一路径;一个与一个第二电池相连的第二路径,所述第一路径与所述第二路径连接于一个公共节点;与所述第一路径相连的一个第一开关和一个第二开关,所述第一开关和所述第二开关使得所述第一电池选择性地与一个负载相连,从而对所述第一电池放电;与所述第二路径相连的一个第三开关和一个第四开关,所述第三开关和所述第四开关使得所述第二电池选择性地与所述负载相连,从而对所述第二电池放电;和一个选择器电路,若所述第一电池的第一放电电流电平大于一个第一放电门限电平且所述第二电池的第二放电电流电平大于一个第二放电门限电平,则所述选择器电路闭合所述第一、第二、第三和第四开关,从而对相并联的所述第一电池和所述第二电池放电。
2.根据权利要求1所述的供电系统,其中所述第一放电门限电平等于所述第二放电门限值。
3.根据权利要求1所述的供电系统,其中所述第一开关和所述第二开关还使得所述第一电池选择性地与一个直流电池相连,从而对所述第一电池充电;其中所述第三开关和所述第四开关还使得所述第二电池选择性地与所述直流电源相连,从而对所述第二电池充电;和其中若所述直流电源提供给所述第一电池的第一充电电流电平大于一个第一充电门限电平且所述直流电源提供给所述第二电池的第二充电电流电平大于一个第二充电门限电平,所述选择器电路将闭合所述第一、第二、第三和第四开关,从而对相并联的所述第一电池和所述第二电池充电。
4.根据权利要求3所述的供电系统,其中所述第一充电门限电平等于所述第二充电门限电平。
5.根据权利要求1所述的供电系统,所述供电系统还包括一个与所述第一开关并联的第一二极管、一个与所述第二开关并联的第二二极管、一个与所述第三开关并联的第三二极管和一个与所述第四开关并联的第四二极管。
6.根据权利要求3所述的供电系统,所述供电系统还包括一个与所述第一开关并联的第一二极管、一个与所述第二开关并联的第二二极管、一个与所述第三开关并联的第三二极管和一个与所述第四开关并联的第四二极管。
7.根据权利要求5所述的供电系统,其中所述第一二极管反向偏压于所述第二电池,且若所述第一放电电流电平小于所述第一放电门限电平,所述选择器电路将断开所述第一开关、闭合所述第二开关。
8.根据权利要求6所述的供电系统,其中所述第二二极管反向偏压于所述第一电池,且若所述第一充电电流电平小于所述第一充电门限电平,所述选择器电路将断开所述第二开关、闭合所述第一开关。
9.根据权利要求7所述的供电系统,其中所述第三二极管反向偏压于所述第一电池,且若所述第二放电电流电平小于所述第二放电门限电平,所述选择器电路将断开所述第三开关、闭合所述第四开关。
10.根据权利要求8所述的供电系统,其中所述第四二极管反向偏压于所述第二电池,且若所述第二充电电流电平小于所述第二充电门限电平,所述选择器电路还断开所述第四开关、闭合所述第三开关。
11.一种电子装置,所述电子装置包括一个与一个第一电池相连的第一路径;一个与一个第二电池相连的第二路径,所述第一路径和所述第二路径连接于一个公共节点;与所述第一路径相连的一个第一开关和一个第二开关,所述第一开关和所述第二开关使得所述第一电池选择性地与所述电子装置的一个系统相连,从而对所述第一电池放电;与所述第二路径相连的一个第三开关和一个第四开关,所述第三开关和所述第四开关使得所述第二电池选择性地与所述系统相连,从而对所述第二电池放电;和一个选择器电路,若所述第一电池的第一放电电流电平大于一个第一放电门限电平且所述第二电池的第二放电电流电平大于一个第二放电门限电平,则所述选择器电路闭合所述第一、第二、第三和第四开关,从而对相并联的所述第一电池和所述第二电池放电。
12.根据权利要求11所述的电子装置,其中所述第一放电门限电平等于所述第二放电门限电平。
13.根据权利要求11所述的电子装置,其中所述第一开关和所述第二开关还使得所述第一电池选择性地与一个直流电源相连,从而对所述第一电池充电;其中所述第三开关和所述第四开关还使得所述第二电池选择性地与所述直流电源相连,从而对所述第二电池充电;和其中若所述直流电源提供给所述第一电池的第一充电电流电平大于一个第一充电门限电平且所述直流电源提供给所述第二电池的第二充电电流电平大于一个第二充电门限电平,所述选择器电路将闭合所述第一、第二、第三和第四开关,从而对相并联的所述第一电池和所述第二电池充电。
14.根据权利要求13所述的电子装置,其中所述第一充电门限电平等于所述第二门限电平。
15.根据权利要求11所述的电子装置,所述电子装置还包括一个与所述第一开关并联的第一二极管、一个与所述第二开关并联的第二二极管、一个与所述第三开关并联的第三二极管和一个与所述第四开关并联的第四二极管。
16.根据权利要求13所述的电子装置,所述电子装置还包括一个与所述第一开关并联的第一二极管、一个与所述第二开关并联的第二二极管、一个与所述第三开关并联的第三二极管和一个与所述第四开关并联的第四二极管。
17.根据权利要求15所述的电子装置,其中所述第一二极管反向偏压于所述第二电池,且若所述第一放电电流电平小于所述第一放电门限电平,所述选择器电路将断开所述第一开关、闭合所述第二开关。
18.根据权利要求16所述的电子装置,其中所述第二二极管反向偏压于所述第一电池,且若所述第一充电电流电平小于所述第一充电门限电平,所述选择器电路将断开所述第二开关、闭合所述第一开关。
19.根据权利要求17所述的电子装置,其中所述第三二极管反向偏压于所述第一电池,且若所述第二放电电流电平小于所述第二放电门限电平,所述选择器电路将断开所述第三开关、闭合所述第四开关。
20.根据权利要求18所述的电子装置,其中所述第四二极管反向偏压于所述第二电池,且若所述第二充电电流电平小于所述第二充电门限电平,所述选择器电路将断开所述第四开关、闭合所述第三开关。
21.一种确保并联电池安全工作的方法,所述方法包括接收一个来自一个相关电源管理单元的控制信号,所述控制信号表示期望至少并联一个第一电池和一个第二电池于一公共节点;接收一个第一电流信号,所述第一电流信号表示流经所述第一电池和所述公共节点之间的第一路径的电流电平;接收一个第二电流信号,所述第二电流信号表示流经所述第二电池和所述公共节点之间的第二路径的电流电平;比较所述第一电流信号与一个第一门限电流电平,和所述第二电流信号与一个第二门限电流电平;和若所述第一电流信号大于所述第一门限电流电平且所述第二电流信号大于所述第二门限电流电平,将相并联的所述第一电池和所述第二电池连接于所述公共节点。
22.根据权利要求21所述的方法,所述方法还包括若所述第二电流信号小于所述第二门限电流电平,防止放电电流从所述第一电池流向所述第二电池。
23.根据权利要求21所述的方法,所述方法还包括若所述第一电流信号小于所述第一门限电流电平,防止充电电流从所述第一电池流向所述第二电池。
全文摘要
本发明提供了一种在电子装置的一个直流电源和多个电池之间进行选择的选择器电路。该选择器电路响应一个来自相关电源管理单元的输出信号。该选择器电路还允许两个或两个以上的电池并联工作。该选择器还能独立检验电源状况并在某些情况下忽略PMU的任何指令来增强供电安全和延长电池使用时间(例如通过防止从具有相对较高电压的电池流向与其相并联的具有相对较低电压的电池的内部电池电流)。本发明还提供了一种包括上述选择器电路的供电模块和一个包括该供电模块的电子装置。该选择器电路可以和一个充电电路集成于同一个集成电路上。
文档编号H02J7/34GK1578045SQ200410045370
公开日2005年2月9日 申请日期2004年5月21日 优先权日2003年7月3日
发明者康斯坦丁·布克, 法拉·坡贝斯库-斯塔内斯缇, 玛利安·尼古拉 申请人:美国凹凸微系有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1