用于交联或硫化细长元件的方法和装置的制造方法
【专利摘要】本发明涉及一种用于交联或硫化细长元件的方法和装置,该方法包括挤出步骤(2)和交联步骤(3),在挤出步骤中,导体元件由可交联的合成材料涂覆,在交联步骤(3)中,在挤出步骤之后进行交联反应。首先通过以550摄氏度或更高的温度、在第一加热区(图3a)加热已涂覆的导体元件而进行交联反应。第一加热区(3a)位于所述挤出步骤(2)的下游。在第一加热区(3a)之后,通过以200-300摄氏度的温度、在第二加热区(3b)中加热已涂覆的导体元件而进一步进行交联反应。
【专利说明】
用于交联或硫化细长元件的方法和装置
技术领域
[0001]本发明涉及一种用于交联或硫化细长元件的方法,该方法包括挤出步骤和交联步骤,在挤出步骤中,导体元件由可交联的合成材料的层涂覆,在交联步骤中,在挤出步骤之后进行交联反应。本发明还涉及一种用于交联或硫化细长元件的装置。
【背景技术】
[0002]本发明涉及用于制造电力电缆(尤其是高压和超高压电缆(MV、HV和EHV电缆))的过程中使用的方法和装置。这些电缆主要在连续硫化生产线(CV生产线)中进行塑料绝缘和交联。上面讨论的连续硫化生产线可以是干燥固化接触网CV生产线(CCV生产线)或竖直连续硫化生产线(VCV生产线)。
[0003]电缆的芯由导体元件(铝或铜,35至3500平方毫米)和三个绝缘层(内部半导体0.5至2毫米、绝缘体3.5至35毫米和外部半导体0.5至2毫米)。
[0004]电缆的固化是在加压管(CV管)在约10巴的压力下实现的,该加压管具有200至300毫米的内径和100至200米的长度。在氮气氛中、在CV管的第一部分中发生层的交联。为了激活交联化学反应,绝缘层被加热到升高的温度(200至300°C)。该升高的温度还产生热膨胀。
[0005]上面所讨论的事项对于本领域技术人员而言是公知的,并且因此在此没有详细描述连续硫化生产线的操作或/和构造。作为涉及连续硫化生产线技术的现有技术文献的一个示例,可提及EP 2574439A1。
[0006]现有技术的问题涉及芯圆度或实际上缺乏芯圆度。换言之,使用现有技术的技术时的结果即电缆的横截面并不总是完全圆形的而是例如为卵形的或一些其它形式。
[0007]缺乏芯圆度可以大致分类为以下类别,即:
[0008]-绝缘层接缝附近扁平
[0009]-大致卵形
[0010]-下垂(在CCV生产线中)
[0011 ]-由于流量分配器而导致的不规则形状
[0012]前三个类别是最重要的类别。在垂直硫化生产线中下垂显然不是问题。绝缘层的流动分布足够好而不会造成任何可测量的圆度误差。因此,在交联阶段期间形成扁平和卵形两者。
【发明内容】
[0013]本发明的目的是消除现有技术的问题。这通过本发明来获得。本发明的方法的特征在于,首先通过以550摄氏度或更高的温度、在第一加热区中加热已涂覆的导体元件而进行交联反应,第一加热区位于所述挤出步骤的下游,在第一加热区之后,通过以200 — 300摄氏度的温度、在第二加热区中加热已涂覆的导体元件而进一步进行交联反应。本发明的装置的特征在于,首先通过以550摄氏度或更高的温度、在第一加热区中加热已涂覆的导体元件而进行交联反应,第一加热区位于所述挤出步骤的下游,在第一加热区之后,通过以200 — 300摄氏度的温度、在第二加热区中加热已涂覆的导体元件而进一步进行交联反应。
[0014]本发明的一个优点在于,它解决了上面讨论的现有技术的问题。
【附图说明】
[0015]下面将参照附图来更加详细地描述本发明,其中
[0016]图1示出一种竖直连续硫化生产线的原理布局图,
[0017]图2显示了相比于现有技术的固化,本发明的固化对扁平(接缝深度)的影响,
[0018]图3显示了相比于现有技术的固化,本发明的固化对卵形的影响,
[0019]图4示出了由本发明和现有技术获得的交联渗透深度,
[0020]图5示出了本发明和现有技术的加热区轮廓,以及
[0021]图6示出了在电缆的横截面中看到的交联过程中的膨胀情况。
【具体实施方式】
[0022]通过使用竖直连续硫化生产线作为一个示例来描述本发明。图1示出了硫化生产线的原理布局图,特别是竖直连续硫化生产线(VCV生产线)的原理布局图。所示出的生产线包括供给部1、挤出头装置2、硫化管3、冷却管4和收取部5。导体通过生产线从供给部I引导到收取部5。图1仅示出生产线的最基本的元件。在看图1时,本领域技术人员立即意识到该生产线还可以包括另外的元件,即,用于导体元件的预加热器、后加热器和计量绞盘(capstans)或计量履带(caterpillars)等。由于之前所述的操作和图1中所示的生产线的结构对于本领域的技术人员而言是公知,因此,在此没有详细描述所述事项。这些事项在现有技术中已有广泛描述,例如在之前涉及的EP 2574439中有描述。
[0023]在VCV生产线中,包围电缆的结构是径向对称的,因此,在各层本身中(尤其是在绝缘层中)找到了导致圆度误差的不对称现象。不对称效应是下述的组合
[0024]-不对称温度
[0025]-接缝的机械性弱点
[0026]-分子取向
[0027]-机械应力
[0028]-不均匀性
[0029]这些效应没有一个足够强以在电缆仅仅被冷却而未经交联的情况下引起圆度误差。圆度误差源自在交联期间芯热膨胀时引发的内力和位移(径向和切向)。热膨胀增大导致圆度误差增大。接缝区的机械性弱点(相比于塑料层的其余部分,分子缠结少)引起扁平区(即,厚度减小)。卵形和其它的不对称效应之间的关系不太明显。
[0030]本发明的想法是使用短固化第一加热区3a以异常高的温度使得表面层交联达到芯的某一渗透深度。可以使用术语“脉冲固化”很好地描述本发明。在一个全尺寸的CV生产线中,该特定的第一加热区3a将位于十字头或挤出装置2的右侧下游(例如十字头或挤出装置2的恰好后面),该第一加热区具有0.5-4米的长度,设定温度为550摄氏度或更高。在所述第一加热区3a之后,通过以200-300摄氏度的较低温度在第二加热区3b中加热所述芯来继续进行固化过程。
[0031]根据现有技术工艺装置的状态,电缆表面温度不应该超过300摄氏度。这一限制不适用于脉冲固化,因为表面的热降解是暴露时间和温度两者的函数;对于EEA(乙烯丙烯酸乙酯)和EBA(乙烯丙烯酸丁酯)基的半导体材料,高得多的温度是可接受的。
[0032]由脉冲固化早期诱导的交联使得接缝区的表面加强,在该处,热膨胀的影响最强(图2)。它还固定了原始的圆形(图3)。在热膨胀之前、在恰好交联阶段开始时施加脉冲固化是至关重要的。
[0033]渗透深度定义为从外表面在交联程度超过80%情况下的距离。图4针对标准的现有技术方法d (η)的渗透深度和脉冲固化d (s)的渗透深度将所计算的沿CV管的渗透深度进行比较。
[0034]对图2和图3所示的相同的电缆进行计算。(铝导体Dc = 50.0毫米,外径0。= 98.0毫米)。显然脉冲固化导致交联材料的大部分层早期对绝缘外侧赋予强度,以承受与热膨胀相关的应力。作为一个示例,在开始形成显著膨胀的7毫米的长度处,渗透深度几乎是双倍。
[0035]总层厚度(所有三个层)的计算的热膨胀量对于脉冲固化为2.2%,对于正常固化为2.6%。在图5示出了相应的加热轮廓,其示出了脉冲加热的加热区轮廓Tz(S)和正常固化的加热区轮廓Tz(n)。
[0036]图5还示出如何在第一加热区3a之后在第二加热区3b中以较低的温度进行加热。在这个示例中,使用用于将挤出头连接到CV管的短的无源中性“电缆套管”8。电缆套管的长度可以例如是2.5米。
[0037]在竖直连续硫化生产线中,第一加热区3a可以位于电缆套管8的上游或下游。图1示出了第一加热区的上游位置,即第一加热区3a在从芯6的移动方向上看时位于电缆套管5之前。在下游位置中,第一加热区3a在从芯6的移动方向上看时位于电缆套管之后。在该位置处,在热膨胀变得显著之前交联所挤出的表面层。在接触网硫化生产线中,情况因下垂而不同。由于所述原因,在接触网硫化生产线中,第一加热区3a必须放成尽可能靠近挤出头2,即,在电缆套管8的上游。
[0038]本发明(S卩,脉冲固化)提高圆度且降低扁平性的原因随后可通过观察图6所示的电缆的横截面而描述如下。在图6中,导体用附图标记6示出,半导体绝缘材料用附图标记7示出。
[0039]扁平的起源是外部的半导体绝缘材料的切向位移。接缝(焊接线)相比于绝缘/半导体的其余部分熔化强度弱。正常地,当内部部件正在膨胀(参照图6,碰撞a)时,周长增大。因为接缝区较弱,它沿着切向(图6,拉伸b)延伸并且变得更薄(图5,变薄C)。所描述的机理首先发生在表面附近,然后渗透并且朝向导体减弱。
[0040]在脉冲固化的情况下,在显著热膨胀之前的圆周快速交联加强了接缝区而且显著降低了扁平度。
[0041]已经通过使用附图中所示的实施例来描述本发明。但是,所示出的实施例决不用于限制本发明,而是本发明可以在权利要求书的范围内完全自由地改变。所示的实施例涉及一种竖直连续硫化生产线(VCV生产线)。然而,本发明并不局限于VCV生产线,而是本发明还能够很好地与连续接触网CV生产线(CCV生产线)等联合使用。
【主权项】
1.用于交联或硫化细长元件的方法,所述方法包括挤出步骤(2)和交联步骤(3),在挤出步骤中,导体元件由可交联的合成材料的层涂覆,在交联步骤中,在挤出步骤之后进行交联反应, 其特征在于,首先通过以550摄氏度或更高的温度、在第一加热区中加热已涂覆的导体元件而进行交联反应,第一加热区(3a)位于所述挤出步骤(2)的下游,在第一加热区(3a)之后,通过以200 — 300摄氏度的温度、在第二加热区(3b)中加热已涂覆的导体元件而进一步进行交联反应。2.如权利要求1的方法,其特征在于,在将挤出步骤(2)连接到第二加热区(3b)的无源电缆套管(8)的上游进行在第一加热区(3a)中的加热。3.如权利要求1中,其特征在于,在将挤出步骤(2)连接到第二加热区(3b)的无源电缆套管(8)的下游进行在第一加热区(3a)中的加热。4.如权利要求1-2中任一项所述的方法,其特征在于,第一加热区(3a)的长度为0.5-4米。5.如权利要求1-4中任一项所述的方法,其特征在于,在竖直连续硫化生产线(VCV生产线)中进行所述方法。6.如权利要求1,2或4中任一项所述的方法,其特征在于,在接触网连续硫化生产线(CCV生产线)中进行所述方法。7.用于交联或硫化细长元件的装置,在所述装置中,导体元件通过使用挤出头(2)而由可交联的合成材料的层涂覆,在挤出头之后、在硫化管(3)中进行交联反应, 其特征在于,首先通过以550摄氏度或更高的温度、在第一加热区(3a)中加热已涂覆的导体元件进行交联反应,第一加热区(3a)位于挤出头(2)的下游,在第一加热区(3a)之后,通过以200 — 300摄氏度的温度、在第二加热区(3b)中加热已涂覆的导体元件而进一步进行交联反应。8.如权利要求7所述的装置,其特征在于,第一加热区(3a)位于挤出头(2)与无源电缆套管(2)之间,所述无源电缆套管将挤出头(2)连接到硫化管(3)。9.如权利要求7所述的装置,其特征在于,第一加热区(3a)位于无源电缆套管(8)与硫化管(3)的第二硫化区(3b)之间,所述无源电缆套管将挤出头(2)连接到硫化管(3)。10.如权利要求7-9中任一项所述的装置,其特征在于,第一加热区(3a)的长度为0.5-4米。11.如权利要求7-10中任一项所述的装置,其特征在于,所述装置是连续硫化生产线(VCV生产线)的一部分。12.如权利要求7、8或10所述的装置,其特征在于,所述装置是接触网连续硫化生产线(CCV生产线)的一部分。
【文档编号】H01B13/14GK105895271SQ201610087681
【公开日】2016年8月24日
【申请日】2016年2月17日
【发明人】P·霍塔里
【申请人】梅勒菲尔股份有限公司