加阶梯式异质结隔离区的共振隧穿二极管的利记博彩app
【专利摘要】本发明公开了一种产生微分负阻的共振隧穿二极管(RTD)器件新型结构,该结构可产生毫安?安培级输出电流,应用于太赫兹波信号源设计可产生毫瓦级输出功率的太赫兹波信号。本发明中的RTD的结构见附图。结构中采用AlzGa1?zN/GaN/AlzGa1?zN双势垒单势阱结构的量子阱区;发射区为重掺杂的AlxGa1?xN;集电区是重掺杂的GaN;集电极隔离区为GaN;而发射极隔离区是AlyGa1?yN阶梯型隔离区:AlyGa1?yN的Al组分y由x按阶梯减小到0。理论分析和仿真在室温下(300K)进行,仿真参数是x=0.4,y从0.4按五级阶梯减小,z=0.2,仿真结果峰值电流Ip=1.59A(53mA/um2),谷值电流Iv=0.655A(21.8 mA/um2),PVCR=2.43,我们获得的输出电流比目前共振隧穿二极管研究报道中最大输出电流更大。
【专利说明】
加阶梯式异质结隔离区的共振隧穿二极管
技术领域
[0001 ]本发明涉及电子元器件技术领域,尤其涉及一种GaN基共振隧穿二极管(ResonantTunneling D1de, RTD),可应用于产生大功率太赫兹波信号。
【背景技术】
[0002]太赫兹频段波由于在超高速无线通信技术和光谱成像技术中有广泛应用前景而受到科学界的重视。为了实现这些应用,微小而连续的太赫兹波源是关键技术所在。作为太赫兹波发射源电学器件之一,共振隧穿二极管(RTD)—直以来都是研究焦点。GaAs基RTD在太赫兹应用研究领域出现了瓶颈,例如:更高频率限制、输出功率和工作温度。
[0003]GaN基RTD因为GaN材料具有高电子迀移率、温度稳定性好和禁带宽度宽的特性,有望设计出室温下高功率太赫兹波源,受到越来越多的关注。目前研究的GaN基共振隧穿二极管结构的理论分析和实际器件测试表现不尽如人意,尤其是负阻特性在多次扫描之后会出现衰减。
[0004]普通GaN基双势皇单势阱RTD的结构从上到下通常为:重掺杂的发射区、发射极隔离区、双势皇单势阱的量子阱区、集电极隔离区、重掺杂的集电区。
【发明内容】
[0005]本发明采用了Al组分y参数阶梯型减少的AlyGa^N形成连续的异质结作为发射极隔离区,AlGaN和GaN异质结界面存在极化效应,因而形成极化电场,在电场作用下出现极化电荷,形成二维电子气,提高了载流子迀移率。
[0006]本发明所设计的RTD结构自上而下描述为:重掺杂的AlxGa^N发射区、Al组分从y=X按五个阶梯减少到y=0的AlyGapyN发射极隔离区、AlzGarzN势皇、GaN势阱、AlzGarzN势皇、GaN集电极隔离区、重掺杂的GaN集电区,结构图如图1,图中参数为仿真时采用的参数,SPx=
0.4,y从0.4开始按5个阶梯减少,AlzGanN势皇采用低Al组分Z=0.2。这样的结构增加了发射区载流子注入效率,并提高发射区载流子迀移率;同时减少了集电区耗尽电场,从而降低了共振隧穿二极管中载流子输运时间。理论分析和仿真结果都表明该器件获得了负微分电阻,且在该区域内有毫安-安培级的输出电流,可提高输出功率到毫瓦级。
[0007]在阶梯结构工艺设计中,由于目前器件生长工艺的限制,AlyGanN的Al组分阶梯型减少也会是连续线性减少,则本发明中的器件材料结构包括连续变化的情况,结构如图2。
[0008]本发明的关键是:在现有Ga N基R T D结构的基础上,设计AI组分阶梯型减少的AlyGanN形成的连续阶梯式异质结作为发射区到双势皇单势阱区之间的发射极隔离区。
[0009]针对所发明的GaN基RTD结构进行了仿真,仿真过程中对所设计器件采用的截面积是6 X 5um2,为了和实际寄生串联电阻一致,电极端接触电阻率设为4.36 X 10—3 Ω cm2。10nm的η型AlQ.4GaQ.6N发射区和10nm的η型GaN集电区采用重掺杂,掺杂浓度为I X 1019cm—3,目的是和电极形成欧姆接触,其他区域都不掺杂;发射区和双势皇单势阱区之间是5nm的阶梯式异质结的AlyGanN发射极隔离区,其中Al的组分y从靠近发射区一端的0.4阶梯型减少到势皇附近的O;量子阱区由1.5nm Al0.2Ga0.sNa.5nm GaN、1.5nm Al0.2GaQ.8N双势皇单势阱结构组成,采用低铝组分的AlQ.2GaQ.8N,晶格匹配于GaN势阱,从而提高异质结质量,降低极化电场,抑制负微分电阻特性的退化现象;集电极隔离区是5nm的GaN。图3呈现了该结构的静态导带剖面图。仿真设定在室温下进行,1-V特性仿真结果如图4所示,峰值电流Ip=1.59A(53mA/ um2),谷值电流Ιν=0.655Α(21.8 mA/ um2),PVCR=2.43,这是目前该器件研究工作报道中所得的最大输出电流。
【附图说明】
[0010]图1是带阶梯式异质结隔离区的GaN基RTD结构示意图。
[0011 ]图2是考虑目前器件生长工艺限制的GaN基RTD结构示意图。
[0012]图3是带阶梯式异质结隔离区的GaN基RTD静态导带剖面图。
[0013]图4是带阶梯式异质结隔离区的GaN基RTD的1-V特性图。
【主权项】
1.本发明中的加阶梯式异质结隔离区的共振隧穿二极管(ResonantTunnelingD1de, RTD)的主要结构由发射极到集电极依次包括了:发射区、阶梯式异质结构成的发射极隔离区、双势皇单势阱结构、集电极隔离区和集电区。2.根据权利要求书I,RTD器件结构组成是:双势皇单势阱结构夹在阶梯式异质结构成的发射极隔离区和GaN集电极隔离区之间,所得结构不掺杂;该结构又夹在重掺杂的发射区和集电区之间,从而形成整体的RTD器件。3.根据权利要求书2建立新型GaN基RTD理论分析模型结构,该结构自上而下描述为:器件的发射极电极、重掺杂的AlxGa^xN发射区、Al的组分y参数阶梯型减少的AlyGa^yN形成阶梯式异质结构成的发射极隔离区、AlzGahN势皇、GaN势阱、AlzGapzN势皇、GaN集电极隔离区、重掺杂的GaN集电区、器件的集电极电极。4.根据权利要求书2的GaN基RTD有源区结构和权利要求书3的理论分析模型,其特征在于:在发射区和双势皇单势阱结构之间有一层Al组分阶梯型减少的AlyGa^N形成阶梯式异质结构成的发射极隔离区,在这个隔离区中Al的组分从靠近发射区一端的y=x阶梯型减少到双势皇单势阱结构的势皇附近为y=0,根据目前加工工艺技术,理论分析和仿真模型阶梯异质结分为了 5层阶梯。5.根据权利要求书4,本发明中的关键结构一一Al组分阶梯型减少的AlyGanN层构成的阶梯式异质结发射极隔离区一一由于目前器件生长工艺的限制,该区域Al的组分y可以由从靠近发射区一端的y=x线性减少到双势皇单势阱结构的势皇端O。6.根据权利要求书4的阶梯式异质结构成的隔离区,其特征在于形成了二维电子气,提高了载流子迀移率、降低集电极耗尽区电场,提高了输出电流,仿真结果中获得的输出电流大于目前该器件研究报道中的最大电流。7.根据权利要求书6的理论分析和仿真结果,将该器件应用于太赫兹信号源设计中,可产生毫瓦级输出功率的太赫兹信号,可应用于太赫兹微系统设计。
【文档编号】H01L29/88GK105870171SQ201610131515
【公开日】2016年8月17日
【申请日】2016年3月9日
【发明人】高博, 刘洋
【申请人】四川大学