锂硫二次电池的利记博彩app
【专利摘要】本发明提供一种锂硫二次电池,其可抑制溶出到电解液中的多硫化物向负极扩散,可抑制充放电容量下降。本发明的锂硫二次电池包括:正极(P),其具有含硫的正极活性物质;负极(N),其具有含锂的负极活性物质;以及隔板(S),其配置在正极和负极之间,并保持电解液(L),所述锂硫二次电池,其特征在于:在隔板与正极之间以及隔板与负极之间中的至少一处,配置了具有磺基的高分子无纺布(F)。
【专利说明】
锂硫二次电池
技术领域
[0001 ] 本发明涉及一种锂硫二次电池。
【背景技术】
[0002]由于锂二次电池具有高能量密度,所以其不仅应用于移动电话和个人电脑等便携式设备等中,还广泛适用于混合动力汽车、电动汽车、电力存储蓄电系统等。作为这种锂二次电池中的一种,近年来通过锂和硫的反应进行充放电的锂硫二次电池受到人们的关注。已知一种锂硫二次电池,包括:正极,其具有含硫的正极活性物质;负极,其具有含锂的负极活性物质;以及隔板,其配置在正极和负极之间,并保持电解液,例如专利文献I。
[0003]另一方面,已知一产品,为增加促进电池反应的硫的量,使多个碳纳米管在正极的集电体表面上朝与该表面正交的方向定向,用硫覆盖各碳纳米管的表面,例如专利文献2。
[0004]此处,在锂硫二次电池的正极中,硫(S8)和锂在多个阶段进行反应,通过反复进行最终反应到Li2S的过程和从Li2S返回到S8的过程而进行充放电。虽然在充放电反应的过程中生成叫做多硫化物(Li2Sx:X = 2?8)的反应物,但Li2S6和Li2S4非常易于溶出到电解液中。在上述专利文献I中,使用高分子无纺布或树脂材质微多孔膜构成了隔板,但使用这些材料导致溶出到电解液中的多硫化物透过隔板向负极扩散。由于扩散到负极侧的多硫化物无助于充放电反应,正极的硫的量减少,所以导致充放电容量的下降。进而一旦多硫化物与负极的锂发生反应,则无法促进充电反应(产生所谓的氧化还原穿梭现象),充放电效率降低。
[0005]现有技术文献
[0006]专利文献
[0007]专利文献1:专利公开2013-114920号公报
[0008]专利文献2:国际公开第2012/070184号说明书
【发明内容】
[0009]发明要解决的技术问题
[0010]鉴于以上内容,本发明的课题是提供一种锂硫二次电池,其可抑制溶出到电解液中的多硫化物向负极扩散,并可抑制充放电容量下降。
[0011]解决技术问题的手段
[0012]为解决上述技术问题,本发明的锂硫二次电池包括:正极,其具有含硫的正极活性物质;负极,其具有含锂的负极活性物质;以及隔板,其配置在正极和负极之间,并保持电解质,所述锂硫二次电池,其特征在于:在隔板与正极之间以及隔板与负极之间中的至少一处,配置了具有磺基的高分子无纺布。此外,隔板和具有磺基的高分子无纺布既可以相接触,也可以间隔规定的距离。再有,高分子无纺布是聚丙烯材质或聚乙烯材质的。
[0013]此处,由于隔板允许多硫化物通过,所以一旦正极处生成的多硫化物溶出到电解液中,多硫化物就经过隔板向负极侧扩散,由于正极的硫的量减少而导致充放电容量下降。因此,本发明等经过仔细研究,得到具有磺基的高分子无纺布既允许通过锂离子通过又抑制多硫化物通过的认识。在本发明中,由于将该具有磺基的高分子无纺布设置在隔板的正极侧和负极侧的至少一侧,可抑制溶解到电解液中的多硫化物向负极扩散,可抑制充放电容量下降。
[0014]本发明优选用于正极包括集电体以及在集电体表面上朝与该表面正交的方向定向的多个碳纳米管,并用硫覆盖各碳纳米管的表面的情况。此时,与将硫涂在集电体表面的产品相比硫的量更多,多硫化物更容易溶出到电解液中,但采用本发明,可有效抑制多硫化物向负极侧扩散。
【附图说明】
[0015]图1是示出本发明实施方式的锂硫二次电池的结构的剖面示意图。
[0016]图2是将图1中示出的正极进行放大显示的剖面示意图。
[0017]图3是示出用于确认本发明的效果的实验结果(放电容量保持率的循环特性)的图表。
【具体实施方式】
[0018]在图1中3是锂硫二次电池,锂硫二次电池B包括:正极P,其具有含硫的正极活性物质;负极N,其具有含锂的负极活性物质;以及隔板S,其配置在正极P和负极N之间,并保持电解液L。
[0019]并且参考图2,正极P包括正极集电体Pl和在正极集电体Pl表面形成的正极活性物质层P2。正极集电体Pl例如具有基底1、在基底I的表面上形成的薄膜厚度为5?50nm的基膜(也叫做“阻隔膜”)2、以及在基膜2上形成的薄膜厚度为0.5?5nm的催化剂层3。作为基底I,例如可使用由N1、Cu或Pt构成的金属箔或金属网。基膜2是用于提高基体I与下文的碳纳米管4的密合性的产品,例如可从Al、T1、V、Ta、Mo和W中选出的至少一种金属或该金属的氮化物构成。催化剂层3例如由从N1、Fe或Co中选出的至少一种金属构成。正极活性物质层P2由在正极集电体Pl的表面朝与该表面正交的方向定向生长的多个碳纳米管4、以及分别覆盖各碳纳米管4整个表面的硫5构成。在用硫5覆盖的碳纳米管4彼此间存在间隙,使下文的电解液L流入该间隙。
[0020]此处,考虑到电池的特性,各碳纳米管4例如为长度在100?ΙΟΟΟμπι的范围内、直径在5?50nm的范围内的高长径比的产品是有利的,再有,优选单位面积的生长密度在I X 11t3?I X 112个/cm2范围内。并且,覆盖各碳纳米管4整个表面的硫5的厚度范围例如优选设为I?3nm0
[0021]上述正极P可通过下述方法形成。即在作为基底I的Ni箔的表面依次形成作为基膜2的Al膜和作为催化剂层3的Ni膜得到正极集电体P1。作为基膜2和催化剂层3的形成方法,可使用公知的电子束蒸镀法、溅镀法、以及使用含催化剂金属的化合物溶液的浸渍法,因此,此处省略详细说明。得到的正极集电体Pl设置在公知的CVD装置的处理室内,在10Pa?大气压的工作压力下向处理室内提供含原料气体和稀释气体的混合气体,通过在600?800°C的温度下加热正极集电体Pl,在集电体Pl的表面上形成朝与该表面正交的方向定向生长的碳纳米管4。作为使碳纳米管4生长的CVD法,可使用热CVD法、等离子体CVD法、以及热丝CVD法。作为原料气体,例如可使用甲烷、乙烯、乙炔等烃类或甲醇、乙醇等醇,再有,作为稀释气体,可使用氮气、氩气或氢气。再有,原料气体和稀释气体的流量可根据处理室的容积而适当设置,例如原料气体的流量可设定在10?500sccm范围内,稀释气体的流量可设定在100?5000sccm的范围内。在碳纳米管4生长的整个区域上从其上方播撒粒径在I?10ym范围内的颗粒状的硫,将正极集电体Pl设置在管式炉内,加热到在硫的熔点(113°C)以上的120?180 °C的温度使硫熔融。如果在空气中加热,则熔融的硫与空气中的水反应生成二氧化硫,因此,优选在Ar或He等惰性气体气氛中,或在真空中加热。熔融的硫流入碳纳米管4彼此间的间隙中,各碳纳米管4的表面全部被硫5所覆盖,相邻的碳纳米管4彼此间存在间隙(参照图2)。此时,可根据碳纳米管4的密度设定上述配置的硫的重量。例如当碳纳米管4的生长密度为I X 101()?I X 112个/cm2时,优选将硫的重量设定为碳纳米管4的重量的0.7倍?3倍。像这样形成的正极P,碳纳米管4的单位面积的硫5的重量(浸渗量)为2.0mg/cm2以上。
[0022]作为上述负极N,例如除Li单质之外,可使用Li和Al或Li和In的合金,或者掺杂了锂离子的S1、S1、Sn、Sn02或硬碳。
[0023]上述隔板S由聚乙烯或聚丙烯等树脂材质的多孔质膜或无纺布构成,以便可通过电解液L在正极P和负极N之间传导锂离子(Li+)。
[0024]此处,在上述正极P中,硫和锂在多个阶段进行反应的过程中生成多硫化物。多硫化物(尤其是Li2S4和Li2S6)易于溶出到电解液L中,上述隔板S允许多硫化物通过。因此,溶出到电解液L中的多硫化物通过隔板S向负极侧扩散,由于正极的硫的量减少引起容量下降。因此,如何抑制多硫化物向负极侧的扩散是很重要的。
[0025]因此,本发明人等经过仔细研究,得到具有磺基的高分子无纺布既允许锂离子通过又抑制多硫化物通过的认识。并且,如图1所示,在隔板S和负极N之间配置了具有磺基的高分子无纺布F。作为高分子无纺布F,可使用聚丙烯材质或聚乙烯材质的产品。如果采用这样的结构,溶出到电解液L中的多硫化物难以通过高分子无纺布F,因此可抑制多硫化物向负极侧扩散,可抑制充放电容量下降。
[0026]电解液L包含电解质和溶解电解质的溶剂,作为电解质,可使用公知的双(三氟甲烷磺酰)亚胺锂(下称“1^?31”)、1^?6、1^?4等。再有,作为溶剂,可使用公知的产品,例如可使用从四氢呋喃、甘醇二甲醚、二甘醇二甲醚、三甘醇二甲醚、四甘醇二甲醚、二乙氧基乙烷(DEE)、二甲氧基乙烷(DME)等醚类中选出的至少一种。再有,为使放电曲线稳定,优选在该选出的至少一种中混合二氧戊环(DOL)。例如,当使用二乙氧基乙烷和二氧戊环的混合液作为溶剂时,可将二乙氧基乙烷和二氧戊环的混合比设定为9:1。再有,要在负极表面形成既允许锂离子通过又抑制多硫化物通过的涂层,也可在电解液L中添加硝酸锂。
[0027]接着,为了确认本发明的效果而进行了实验。在本实验中,首先,以如下方式制作了正极P。即以直径为14πιπιΦ、厚度为0.020mm的Ni箔作为基底I,通过电子束蒸镀法在Ni箔I上形成薄膜厚度为15nm的作为基膜2的Al膜,通过电子束蒸镀法在Al膜2上形成薄膜厚度为5nm的作为催化剂层3的Fe膜,得到正极集电体PI。将得到的正极集电体PI载置于热CVD装置的处理室内,向处理室内提供乙炔200sccm和氮气100sccm,在工作压力为一个大气压、温度为750°C、生长时间为10分钟的条件下,在正极集电体Pl表面使碳纳米管4垂直定向生长800μπι的长度。通过在碳纳米管4上配置颗粒状的硫,并将其放置在管式炉内,在Ar气氛下以120°C加热5分钟,以硫5覆盖碳纳米管4而制作正极P。在该正极P中,碳纳米管4的单位面积的硫5的重量(浸渗量)为4mg/cm2。以直径为15mmΦ、厚度为0.6mm的金属锂作为负极N,以聚丙烯材质的多孔质膜为隔板S。这些正极P和负极N在隔板S两侧相对设置,在隔板S和负极N之间配置具有磺基的聚丙烯材质的无纺布F,使隔板S保持电解液L,制得锂硫二次电池的硬币电池。此处,使用的电解液L是将作为电解质的LiTFSI溶解到二乙氧基乙烷(DEE)和二氧戊环(DOL)的混合液(混合比9:1)中浓度调整为lmol/1、并添加了 1%的硝酸锂的产品。以如此制作出的硬币电池作为发明产品。再有,以不使用具有磺基的聚丙烯材质的无纺布F,而是使用不具有磺基的聚丙烯材质的无纺布F,除此以外都与上述发明产品同样制作的硬币电池为比较产品I。进而,以不配置无纺布F,除此以外都与上述发明产品同样制作的硬币电池为比较产品2。图3分别示出对这些发明产品和比较产品1、2以0.5mA/cm2的放电电流密度进行充放电测试时的放电容量保持率(第二个循环的放电容量设为100 % )。由此确认发明产品与比较产品1、2相比可抑制充放电容量下降。这可以认为是由于可通过具有磺基的聚丙烯材质的无纺布F抑制多硫化物向负极侧。另一方面,确认在比较产品I与比较产品2相比充放电容量下降更多。这可以认为是通过配置不具有磺基的聚丙烯材质的无纺布,锂离子的传导度下降导致的。
[0028]以上,对本发明的实施方式进行了说明,但本发明并不仅限于上述内容。锂硫二次电池的形状没有特别限定,除上述硬币电池外,也可以是纽扣型、片型、层叠型、圆筒形等电池。再有,在上述实施方式中,虽然以在隔板S和负极N之间配置无纺布F的情况为例进行了说明,但也可不在隔板S和负极N之间配置无纺布。进而,例如,当硫在电解液中的溶出量大时,也可在隔板S和正极P之间以及隔板S和负极N之间两处配置无纺布。
[0029]附图标记说明
[0030]B…锂硫二次电池、P…正极、N…负极、L...电解液、P1...集电体、I…基底、4…碳纳米管、5…硫。
【主权项】
1.一种锂硫二次电池,包括:正极,其具有含硫的正极活性物质;负极,其具有含锂的负极活性物质;以及隔板,其配置在正极和负极之间,并保持电解液,所述锂硫二次电池,其特征在于:在隔板与正极之间以及隔板与负极之间中的至少一处,配置了具有磺基的高分子无纺布。2.根据权利要求1所述的锂硫二次电池,其特征在于:所述正极包括:集电体;以及在集电体表面上朝与该表面正交的方向定向的多个碳纳米管;用硫覆盖各碳纳米管的表面以使相邻的碳纳米管彼此之间存在规定的间隙。
【文档编号】H01M10/052GK105830273SQ201480067929
【公开日】2016年8月3日
【申请日】2014年10月15日
【发明人】福田义朗, 野末竜弘, 塚原尚希, 村上裕彦
【申请人】株式会社爱发科