专利名称:制备层间绝缘层的工艺和其中使用的汽相淀积系统的利记博彩app
技术领域:
本发明涉及用于制造半导体器件的技术,特别涉及制造具有聚对亚苯基二甲基(parylene)聚合物的层间绝缘层的半导体集成电路器件的工艺和其中使用的汽相淀积系统。
制造者已经增加了集成电路的电路元件,因而,需要减小电路元件和用作信号线的导电条的尺寸。导电条以非常窄的间隔在绝缘层上排列,并用其它的绝缘层覆盖。相邻两导电条和其之间的绝缘层形成寄生电容器,该寄生电容器会妨碍信号沿着导电条传播。该寄生电容值与导电条之间的间隙成反比增加,而且信号延迟会加重。
寄生电容值与绝缘层的介电常数成正比。即使导电条以非常窄的间隔排列,具有小介电常数的一种绝缘层也不会增加寄生电容值。
聚对亚苯基二甲基是较吸引人的材料,并且聚对亚苯基二甲基的层间绝缘层在Majid等人的”Experimental Study of Parylene As InterlayerDielectrics for Wafer Scale Interconnections”,1988 VLSI MultilevelInterconnection Conference Proceedings,第299-305页,1988,June13-14中公开了。聚对亚苯基二甲基是一种聚合物(para-xylylene)。
图1表示用于聚对亚苯基二甲基绝缘层的现有技术淀积系统。该现有技术的淀积系统包括汽化器1,热解单元2和淀积单元3和连接在汽化器1、热解单元2和淀积单元3之间的管道4a和4b。聚对亚苯基二甲基的二聚物在汽化器1中在1torr、250摄氏度升华,并且聚对亚苯基二甲基的二聚物气体流过管道4a进入热解单元2中。热解单元2被保持在0.5torr、680摄氏度,聚对亚苯基二甲基的二聚物气体在热解单元2中热分解。从聚对亚苯基二甲基的二聚物气体产生了聚对亚苯基二甲基的单聚物气体,并从热解单元2输送到淀积单元3。半导体晶片5放置在淀积单元3中,并且淀积室保持处于0.1torr。半导体晶片5的表面接近于25摄氏度,聚对亚苯基二甲基的单聚物在半导体晶片5的表面上聚合。结果,形成了聚对亚苯基二甲基的聚合物层。
使用聚对亚苯基二甲基的聚合物层作为层间绝缘层,制造如图2A-2E所示的多层布线结构。首先,制备半导体晶片11。虽然未画在图中,但半导体晶片11的主表面用绝缘层覆盖。在半导体晶片11的主表面上淀积铝层,并且使用光刻和腐蚀把铝层构图成下导电条12a/12b,如图2A所示。
下导电条12a/12b通过图1中所示的现有技术淀积系统用聚对亚苯基二甲基的聚合物覆盖,并且聚对亚苯基二甲基的聚合物层13保角地在下导电条12a/12b上延伸,如图2B所示。使用化学汽相淀积在聚对亚苯基二甲基的聚合物层13上淀积硅氧化物,并化学机械地抛光硅氧化物层,于是产生了硅氧化物层14的平滑表面,如图2C所示。聚对亚苯基二甲基的聚合物层13和硅氧化物层14组合形成层间绝缘层15。
使用光刻和腐蚀技术在层间绝缘结构15中形成接触孔15a/15b,下导电条12a/12b暴露于接触孔15a/15b。接触孔15a/15b分别用钨塞16a/16b塞住,如图2D所示,使用淀积、光刻和腐蚀,在层间绝缘结构15上构图铝的上导电条17。上导电条17通过钨塞16a/16b电连接到下导电条12a/12b上,如图2E所示。
制造者在现有技术工艺中遇到了问题,即硅氧化物层14从聚对亚苯基二甲基的聚合物层13上剥落下来。这种剥落现象是由聚合物层13中的残余聚对亚苯基二甲基的单聚物和残余聚对亚苯基二甲基的二聚物产生的。不是所有的二聚物气体会分解成单聚物气体,并且残余的二聚物气体与单聚物气体一起被载入淀积室中。而且,单聚物不仅在淀积室中聚合,而且再次合并成聚对亚苯基二甲基二聚物。为此,在聚合过程中二聚物和单聚物被引入聚对亚苯基二甲基层13中,并引起剥落。在淀积硅氧化物层14和淀积钨过程中,残余的二聚物和残余的单聚物在400摄氏度左右汽化,并且二聚物气体和单聚物气体使硅氧化物层14从聚对亚苯基二甲基的聚合物层13上剥落。
因此,本发明的主要目的是提供制造半导体器件的工艺,该半导体器件具有的聚对亚苯基二甲基的聚合物层能结实地粘接到另一层。
本发明另一主要目的是提供用于生长聚对亚苯基二甲基的聚合物层的淀积系统。
为实现该目的,本发明建议在聚合物层上淀积其它材料之前,从聚对亚苯基二甲基的聚合物层中释放残余的二聚物/单聚物气体。
根据本发明的一个方案,提供制造半导体器件的工艺,其包括以下步骤制备具有第一层的半导体结构;在第一层上输送源气,以便在第一层上形成主要由聚对亚苯基二甲基构成的聚合物;在高温真空中,在含有惰性气体的高温气氛或含有氮气的高温气氛中,从主要由聚对亚苯基二甲基构成的聚合物中释放残余源气;和用第二层覆盖主要由聚对亚苯基二甲基构成的聚合物。
根据本发明的另一方案,提供用于在半导体结构上形成主要由聚对亚苯基二甲基构成的聚合物层的汽相淀积系统,包括具有其中容纳半导体结构的反应室的反应器;与反应器连接的抽真空子系统,用于在反应室中产生真空;与反应器连接的气体输送子系统,给用于在半导体结构上形成主要由聚对亚苯基二甲基构成的聚合物层的反应室提供源气;和气体释放装置,用于在高温真空、含有惰性气体的高温气氛或含有氮气的高温气氛中,从主要由聚对亚苯基二甲基构成的聚合物层释放残余的源气。
通过下面结合附图的描述,能更清楚的理解本发明的工艺和淀积系统的特点和优点,其中图1是表示所述文章中公开的现有技术淀积系统示意图;图2A-2E是表示用于制造多层布线结构的现有技术工艺的截面图;图3A-3F是表示根据本发明制造半导体器件工艺的截面图;图4是表示汽相淀积系统的示意图;图5是表示根据本发明用于生长聚对亚苯基二甲基的聚合物层的条件的流程图;图6是表示从聚合物层释放二聚物聚对亚苯基二甲基的量与温度的曲线图;图7是表示从聚合物层释放单聚物聚对亚苯基二甲基的量与温度的曲线图;图8是表示根据本发明的另一汽相淀积系统的示意图。
第一实施例图3A-3F表示利用本发明制造半导体器件的工艺。该工艺是从制备半导体结构21开始的。在这种情况下,晶体管(未示出)制造在硅衬底21a上,并用下绝缘层21b覆盖。
在下绝缘层21b的整个表面上淀积铝或铝合金,在铝/铝合金层上涂敷光刻胶溶液。光刻胶溶液被烘干,并且用于导电布线条的浅像(latent image)从光掩模(未示出)转移到光刻胶层上以便形成浅像。显影该浅像,且光刻胶层形成为光刻胶腐蚀掩模(未示出)。使用光刻胶腐蚀掩模,选择性地去掉铝/铝合金层,以便将铝/铝合金层构图成下电极布线条22a/22b,如图3A所示。导电布线条22a/22b选择连接到晶体管上。
接着,在图3A所得结构上生长聚对亚苯基二甲基-N(parylene-N)的聚合物。汽相淀积系统如图4所示。汽相聚合物生长系统包括汽化器41,通过管道43连接到汽化器41的热解器42,通过管道45连接到热解器42的淀积反应器44,和处理炉46。扩散炉可以用作处理炉46。石英船46a设置在炉腔46b中,为炉腔46b提供加热器46c。惰性气体输送系统46d和真空泵46e连接到炉腔46b,在炉腔46b中产生真空或惰性气体气氛。惰性气体输送系统46d可以产生氮气氛或含有惰性气体的气氛,即惰性气体和氮气之间的混合气体和一种以上的惰性气体的混合气体。氮气氛和氮和惰性气体的混合气体属于含有氮气的气氛,以及惰性气体气氛,氮和惰性气体之间的混合气体和一种以上的惰性气体的混合气体属于含惰性气体的气氛。
聚对亚苯基二甲基-N的固相二聚物或二-聚苯二甲基(di-para-xylylene)储存在汽化器41中,并被升华以便在1torr、175摄氏度产生二聚物气体。热解器42保持在650摄氏度,气压调整到0.5torr。二聚物气体流过管道43进入热解器42,流动控制阀47控制二聚物气体PA1的流速。在热解器44中,二聚物气体PA1分解成聚对亚苯基二甲基-N的单聚物气体PA2。淀积反应器44被调整到0.1torr,图3A所示的得到的结构放置在淀积反应器44中。该结构的表面保持在0摄氏度。单聚物气体PA2引入到淀积反应器44中,并被聚合。聚对亚苯基二甲基-N的聚合物以每分钟5000埃的速度生长在该结构上,用聚合物层23覆盖下导电布线条22a/22b,如图3B所示。
当聚合物层23生长到预定厚度时,图3B所示的所得结构在真空中被加热到室温,然后,反应室通过负载锁定(load-lock)(未示出)恢复到大气压。
然后,图3B所示的得到的结构放置到石英船46a上,石英船46a传送到炉腔46b中而没有暴露大气。为了防止图3B所示的结构暴露于大气,以每分钟40升向石英船46a吹惰性气体混合物。在这种情况下,惰性气体混合物是由氮和氩组成的,氮气和氩气被调整到1∶1。
当石英船46a放置在炉腔中时,炉腔被加热到380摄氏度,对聚合物层23退火30分钟。在聚合物层23被退火时,氮和氩之间的气体混合物连续地以所述流速吹向石英船46a,残余的聚对亚苯基二甲基-N的二聚物/单聚物PA3从聚合物层23释放,如图3C所示。
图3C所示的所得结构从炉腔46b转移到等离子体-辅助(plasma-assisted)化学汽相淀积系统的淀积室47,并通过等离子体-辅助化学汽相淀积在380摄氏度在聚合物层23上淀积硅氧化物。硅氧化物形成硅氧化层24,并机械化学抛光,以便产生平坦表面,如图3D所示。
聚对亚苯基二甲基-N的聚合物层23和硅氧化层24组合形成层间绝缘结构25。聚对亚苯基二甲基-N的介电常数为2.8,希望层间绝缘层25能减少下导电布线条22a/22b和后面描述的上导电布线条之间的寄生电容值。
在硅氧化层24上形成光刻胶腐蚀掩模(未示出),选择腐蚀掉硅氧化层24和聚合物层23,以便形成接触孔26a/26b。下导电布线条22a/22b分别暴露于接触孔26a/26b。
接触孔26a/26b分别用钨塞27a/27b塞住,如图3E所示,并且,与下导电布线条22a/22b一样,在硅氧化层24上构图铝/铝合金布线条28,如图3F所示。
在第一实施例中,真空泵46e用作抽真空子系统,汽化器41、热解器42、管道43/45、和控制阀47作为一个整体构成气体输送子系统。处理炉46用作气体释放装置。
正如从前述所理解的,残余的二聚物/单聚物在淀积硅氧化物之前从聚合物层23释放,并且硅氧化层24不会从聚合物层23剥落。而且,聚合物层23本身增加了与下绝缘层21b的粘接力。这样,通过残余气体的释放,制造者提高了聚合物层24上的层间绝缘结构25的可靠性,有效地减少了下导电布线条22a/22b和上导电布线条28之间的寄生电容值。
而且,聚合物层23在完成聚合反应和淀积硅氧化物之间没有暴露于湿气氛。真空或惰性气体气氛可以防止聚合物层23接触含在该气氛中的水蒸汽,并且水很难进入聚合物层23中。水能增加聚对亚苯基二甲基聚合物的介电常数。但是,聚合物层23不含有水,具有小的介电常数。
二聚物/单聚物/聚合物不限于聚对亚苯基二甲基-N。聚对亚苯基二甲基-C、聚对亚苯基二甲基-D、聚对亚苯基二甲基-F或主要由聚对亚苯基二甲基构成的有机绝缘化合物都可以用于层间绝缘层23。为此,汽化器41、热解器42、反应室和炉腔46b中的温度下降到图5所示的范围。详细地说,升华是在1torr、200-250摄氏度进行的,热解是在0.5torr、大于或等于600摄氏度的温度进行的。聚合反应是在0.1torr、-50℃-50℃进行的,退火是在真空或惰性气体气氛中在300-500摄氏度进行30分钟到一个小时。
本发明人研究了退火温度如下。本发明人淀积聚对亚苯基二甲基-N聚合物,并在10-6torr下把聚合物层从室温加热到600摄氏度。本发明人使用四极质谱仪(quadrupole mass spectrometer)分析输出气体。四极质谱仪的输出强度与温度的关系曲线如图6和7所示。M/e=208表示聚对亚苯基二甲基-N的二聚物,M/e=105表示聚对亚苯基二甲基-N的单聚物。从图6和7中应看出,二聚物聚对亚苯基二甲基气体从200-250摄氏度释放,并且单聚物聚对亚苯基二甲基气体在300摄氏度左右和480摄氏度左右释放。在300摄氏度左右单聚物聚对亚苯基二甲基气体被引入聚合物层中而没有发生聚合反应,在480摄氏度左右通过聚合物聚对亚苯基二甲基的分解产生单聚物聚对亚苯基二甲基气体。为此,对于聚对亚苯基二甲基-N,合适的退火温度范围是在300摄氏度和450摄氏度之间,因为可以防止聚合物聚对亚苯基二甲基分解。但是,其它种聚合物聚对亚苯基二甲基具有高于500摄氏度的分解温度。为此,本发明人确定退火温度在300摄氏度和500摄氏度之间。第二实施例第二实施例的工艺与第一实施例相似,除了其中使用了汽相淀积系统之外。图8表示汽相淀积系统。该汽相淀积系统包括汽化器51,热解器52,和反应室53。汽化器51在2torr、200摄氏度加热二-聚苯二甲基的二聚物,然后二聚物被升华。二聚物气体引入到热解器52中,并在680摄氏度热分解成单聚物气体。该单聚物气体输送到反应器53,并在放置半导体晶片54的反应室53中聚合。从而在半导体晶片54上生长聚对亚苯基二甲基-N的聚合物层。
该汽相淀积系统还包括退火室55,淀积室56,负载锁定室57,真空室58,用于加热退火室55的灯加热器59,与室53、55-58连接的抽真空子系统60,与淀积室56连接的气体输送子系统61,和传送机构62。反应室53、退火室55、淀积室56和负载锁定室57安装在真空室58周围,并通过真空室58彼此是相连的。传送机构62把半导体晶片54从负载锁定室57通过真空室58传送到反应室53,从反应室53通过真空室58传送到退火室55,从退火室55通过真空室58传送到淀积室56,以及从淀积室56通过真空室58传送到负载锁定室57。
半导体晶片54被载入负载锁定室57中,并通过真空室58传送到反应室53,在反应室53中生长聚对亚苯基二甲基-N的聚合物,如前所述。生长聚合物层之后,半导体晶片54从反应室53通过真空室58传送到退火室55。退火室55保持在10-3torr,借助于灯加热器59半导体晶片54被加热到380摄氏度。半导体晶片54保持在高温真空中2分钟。
完成退火后,半导体晶片54从退火室55通过真空室58传送到淀积室56。气体输送子系统61给淀积室56中输入合适的气体混合物,通过等离子体-辅助化学汽相淀积在聚合物层上生长6000埃厚的硅氧化物。
生长硅氧化物之后,半导体晶片54从淀积室56通过真空室58传送到负载锁定室57中,并从负载锁定室57取出到大气中。
这样,聚合反应、退火和化学汽相淀积在真空中连续进行,而没有把半导体晶片54暴露于大气中。残余二聚物/单聚物在退火过程中从聚合物层中排除,通过真空室进行晶片传送可以防止聚合物层免受残余单聚物和水之间的反应。结果,硅氧化层不会从聚合物层上剥落,聚合物的介电常数降低到2.5。
在第二实施例中,汽化器51和热解器52组合形成气体输送子系统,退火室55和灯加热器59作为一个整体构成气体释放装置。
聚对亚苯基二甲基-C、聚对亚苯基二甲基-D、聚对亚苯基二甲基-F和主要由聚对亚苯基二甲基构成的任何种的有机化合物都适用于聚合物层,与第一实施例一样。含聚对亚苯基二甲基的有机化合物的例子是四乙烯基-四甲基-环四硅氧烷(tetravinyl-tetramethyl-cyclotesiloxane)和聚对亚苯基二甲基-N的共聚物。
从前面的描述可以看出,残余单聚物和残余二聚物通过在惰性气体气氛或真空中退火从聚合物层释放或排出,并且硅氧化层牢固地粘接到聚合物层上。在惰性气体气氛或真空是干燥时,残余单聚物不会与水反应,聚对亚苯基二甲基的聚合物具有小的介电常数。
虽然上面示出和描述了本发明的特殊实施例,但是,对本领域技术人员来说,在不脱离本发明的精神和范围的情况下显然可以做出各种改变和改型。
例如,惰性气体不限于氮和氩之间的气体混合物。根据本发明,任何种惰性气体或气体混合物都适用于退火。氮气氛适用于退火。因此,该气氛可以由例如氩、氮气的惰性气体之一,惰性气体和氮之间的气体混合物,和一种以上的惰性气体混合物构成。当然,惰性气体、氮或气体混合物都要求是干燥的。
权利要求
1.制造半导体器件的工艺,包括以下步骤a)制备具有第一层(22a/22b)的半导体结构(21/22a/22b;54);b)在所述第一层上输送源气,以便在所述第一层上形成主要由聚对亚苯基二甲基构成的聚合物;c)用第二层覆盖所述主要由聚对亚苯基二甲基构成的聚合物,其特征在于还包括以下步骤d)在所述步骤b)和c)之间,在高温真空中、在含有惰性气体的高温气氛或含有氮气的高温气氛中,从所述主要由聚对亚苯基二甲基构成的聚合物释放所述源气的残余物。
2.根据权利要求1所述的制造半导体器件工艺,其中所述聚对亚苯基二甲基选自聚对亚苯基二甲基-N、聚对亚苯基二甲基-C、聚对亚苯基二甲基-D、聚对亚苯基二甲基-F,和主要由任何一种所述聚对亚苯基二甲基-N、所述聚对亚苯基二甲基-C、所述聚对亚苯基二甲基-D和所述聚对亚苯基二甲基-F构成的有机化合物。
3.根据权利要求2所述的制造半导体器件工艺,其中所述高温真空、所述含有惰性气体的高温气氛和所述含有氮气的高温气氛的温度高于300摄氏度。
4.根据权利要求2所述的制造半导体器件工艺,其中所述高温真空、所述含有惰性气体的高温气氛和所述含有氮气的高温气氛的温度范围是从300摄氏度到500摄氏度。
5.根据权利要求2所述的制造半导体器件工艺,其中所述聚对亚苯基二甲基是聚对亚苯基二甲基-N,所述高温真空、所述含有大气的高温惰性气体和所述含有大气的高温氮气的温度范围是从300摄氏度到450摄氏度。
6.根据权利要求1所述的制造半导体器件工艺,其中所述步骤b)得到的结构(22a/22b/23)在没有把所述聚合物(23)暴露于湿气氛的情况下传送到用于进行所述步骤d)的地方。
7.根据权利要求6所述的制造半导体器件工艺,其中惰性气体吹向所述步骤b)得到的所述结构(22a/22b/23),以便防止所述结构接触所述湿气氛。
8.根据权利要求6所述的制造半导体器件工艺,其中在所述步骤b)和d)之间,所述得到的结构(54)保持在真空中。
9.一种汽相淀积系统,用于在半导体结构(21/22a/22b;54)上形成主要由聚对亚苯基二甲基构成的聚合物层(23),该系统包括具有其中容纳所述半导体结构(21/22a/22b;54)的反应室(44;53)的反应器;与所述反应器连接的抽真空子系统(60),用于在所述反应室中产生真空;气体输送子系统(41/42/43/45/47;51/52),与所述反应器连接并给用于在所述半导体结构上形成主要由聚对亚苯基二甲基构成的聚合物层(23)的所述反应室输送源气(PA2);气体释放装置(46;55/59),用于在高温真空中、在含有惰性气体的高温气氛或含有氮气的高温气氛中,从所述主要由聚对亚苯基二甲基构成的聚合物层释放所述源气的残余物。
10.根据权利要求9所述的汽相淀积系统,其中所述气体释放装置是处理炉(46)。
11.根据权利要求10所述的汽相淀积系统,其中所述处理炉(46)适用于把杂质扩散到半导体层中。
12.根据权利要求9所述的汽相淀积系统,其中所述气体释放装置包括用于容纳覆盖有所述聚合物层的所述半导体结构的真空室(55)和用于加热所述聚合物层的加热器。
13.根据权利要求9所述的汽相淀积系统,还包括传送装置,用于把所述覆盖有所述聚合物层的所述半导体结构从所述反应器传送到所述气体释放装置,而没有把覆盖有所述聚合物层的所述半导体结构暴露于湿气氛。
14.根据权利要求13所述的汽相淀积系统,其中所述传送装置包括用于向所述聚合物层吹惰性气体的吹气子装置。
15.根据权利要求13所述的汽相淀积系统,其中所述传送装置包括设置在所述反应器和所述气体释放装置之间的真空室(58)和用于把覆盖有所述聚合物层的所述半导体结构从所述反应器通过所述真空室传送到所述气体释放装置的传送机构(62)。
16.根据权利要求15所述的汽相淀积系统,还包括用于容纳覆盖有所述聚合物层的所述半导体结构的淀积室(56)和与所述淀积室连接并输送用于化学汽相淀积的源气气体混合物的气体输送子系统(61)。
17.根据权利要求16所述的汽相淀积系统,其中所述淀积室(56)与所述真空室连接,所述传送机构(62)把覆盖有所述聚合物的所述半导体结构从所述气体释放装置通过所述真空室传送到所述淀积室。
全文摘要
聚对亚苯基二甲基的聚合物由于其小的介电常数而希望用于层间绝缘层;但是,聚对亚苯基二甲基的二聚物/单聚物在淀积过程中引入到聚合物层(23)中,在聚合物层上淀积硅氧化物过程中,残余二聚物/单聚物释放出气体(PA3),从而硅氧化物层容易从聚合物层(23)剥落;为防止得到的半导体结构发生硅氧化层的剥落,在淀积硅氧化物之前,对聚合物层(23)退火,用于预先从聚合物层(23)释放残余的二聚物/单聚物(PA3)。
文档编号H01L21/768GK1219764SQ9812479
公开日1999年6月16日 申请日期1998年11月18日 优先权日1997年11月18日
发明者五味秀树 申请人:日本电气株式会社