专利名称:经过改进的彩色显示系统的利记博彩app
本发明涉及具有带一字排列式电子枪的阴极射线管的彩色显示系统,特别是涉及里面装有象散补偿装置的那种电子枪,该象散补偿装置所补偿的是与系统的阴极射线管配用的自会聚偏转线圈所产生的象散。
虽然现在的偏转线圈能在阴极射线管中产生三个射束的自会聚,但这种自会聚是在以降低个别电子束光点形状品质为代价的基础上取得的。偏转线圈磁场具有象散性,它不仅使垂直面电子束射线过焦,从而使偏转的各光点明显的垂直闪烁,而且还使水平射线欠焦,从而使光点宽度略为增大。要补偿象散现象,通常的作法是往电子枪的射束形成区引入象散,使垂直射线散焦,并使水平射线聚焦。这种象散射束形成区历来是用控制栅极G1或具有若干槽形孔的帘栅极G2构成的。这些槽形孔用四极元件产生非轴向对称的场,由这些场以不同的方式作用于垂直面和水平面上的射线。一九八○年十一月十八日专利权授予Chen等人的美国专利4,234,814号中介绍了这种槽形孔。这些结构变化不大,四极场即使当射束不偏转且不受偏转线圈的象散现象的影响时也会产生同样的补偿性象散。
为提高校正效果,一九八二年三月九日专利权授予Chen的美国专利4,319,163加入了另一个逆向移位帘栅极G2a,该帘栅极G2a上有若干水平槽孔,并加有可调节或调制过的电势。顺向移位帘栅极G2b具有许多圆孔,且处于恒电位。G2a上的可调电压改变着四极场的强度,从而使所产生的象散正比于被扫描的轴外位置。
采用象散射束形成区虽然有效,但却具有若干缺点。第一,由于射束形成区面积小,因而对制造公差高度敏感。第二,必须改变原先没有槽形孔时栅极G2有效长度和厚度的最佳值。第三,射束流可能会随加到射束成形区的可变化电压而变化。第四,四极场的效能随射束的交叉点的位置变化因而也随射束电流而变化。因此希望能研究出一种没有上述缺点的电子枪象散校正方法。
彩色显示系统一般包括阴极射线管和偏转线圈。偏转线圈一般是自会聚式的,能在管内产生象散偏转磁场。阴极射线管通常有一个产生三电子束并将该三电子束引向管屏的电子枪。电子枪包括若干具有射束形成区的电极和若干形成主聚焦透镜的电极,还包括若干用以在射束形成区和各电子束路径主聚焦透镜之间形成多极透镜的电极。各多极透镜按一定的方向排列以校正有关电子束,从而起码部分补偿象散磁场对有关射束的影响。多极透镜电极有两个。两多极透镜电极中,第二个电极接到主透镜电极,第一个电极安置在第二多极透镜电极和射束成形区之间,面对第二多极透镜电极。
附图中图1是本发明彩色显示系统实施方案的部分轴向剖视平面图。
图2是图1中虚线所示电子枪的部分切开轴向剖面侧视图。
图3是从图2中3-3线截取的电子枪的轴向剖面图。
图4是电子枪使用的四极透镜电极的剖开透视图。
图5和图6分别为第一套四极透镜电极的正视图和侧视图。
图7是图5和图6四极透镜电极在右上方象限中的视图,从图中可以看到静电势场线。
图8和图9分别为另一套四极透镜电极的正视图和侧视图。
图10是图8和图9的四极透镜电极右上方象限的视图;从图中可以看到静电势场线。
图11是另一个电子枪的部分剖面顶视图。
图12是从图11的12-12线截取的另一个电子枪的四极透镜电极的正视图。
图1是彩色显示系统9,它包括矩形彩色显象管10,显象管10有一个玻璃壳11,玻璃壳11则包括矩形屏面板12和管颈14,两者由矩形玻璃锥15连接起来。玻璃锥15有一个从阳极按钮16延伸至管颈14的内部导电层(图中未示出)。屏面板12包括观看面板18和由玻璃料17密封到玻璃锥15上的外凸缘或侧壁20。三色荧光屏22铺设在面板18内表面。屏22最好是带三色组荧光条纹的条形屏,各三色组包括各三色荧光条。荧光屏也可以是点式屏。多孔彩色选择电极或荫罩24用一般方法可移动的装配成,与屏22相隔预定间距。经改进的电子枪26(图1中用虚线表示)装在管14内的中间位置,用以产生三电子束28并将三电子束28沿会聚路径透过荫罩24引至屏22上。
图1中的管子是为与外部磁偏转线圈配用而设计的,例如毗邻玻璃锥与管颈交界部分所示的那个偏转线圈30。当加电时,偏转线圈使三射束28受磁场的作用,该磁场使射束沿水平方向和垂直方向在整个屏22的矩形屏面上扫描。初始偏转平面(零偏转)约在偏转线圈30中部。由于散乱边场的作用,管子偏转区从偏转线圈30轴向延伸到电子枪26的部位。为简明起见,图1中没有显示出偏转区内的偏转射束路径。在最佳实施例中,偏转线圈30在管屏上产生自会聚的三电子束。这种偏转线圈产生的象散磁场使垂直平面射束射线过焦,并使水平平面射束射线欠焦。经改进的电子枪26具有补偿此象散现象的能力。
从图1中还可以看到激励管子10和偏转线圈30用的电子设备的一部分。下面介绍这些电子设备。
图2、3和4是电子枪26的详图。电子枪26包括三个按一定间距配置的一字形排列的电极34(各射束一个,图中只示出了一个)、控制栅极36(G1)、帘栅极38(G2)、加速电极40(G3)、第一四极电极42(G4)、第二四极电极和第一主聚焦透镜电极44(G5)的组合件、和第二主聚焦透镜电极46(G6),这些电极都按命名顺序按一定的间距配置。电极G1至G6中个个都有一字形排列的三个孔,三电子束即从该三个孔通过。G5电极44和G6电极46面对面的部分形成电子枪26的静电主聚焦透镜。G3电极40由三个杯形元件48、50和52组成。这些元件,其中有两个(元件48和50)其开口端彼此相连,第三个元件52带孔的闭合端则与第二个元件50的带孔的闭合端相连。虽然图中所示的G3电极40是由三个元件组成,它是可以由任意数目的元件制成同样的长度或任何其它要求的长度。
第一四极电极42包括平板54。平板54中有三个成一字形排列的孔56和若干从那里与孔56对齐延伸的城堡形(槽形)筒58,各筒58包括与板54接触的筒形部分60和两个从筒形部分60延伸的扇形部分62。两扇形部分62彼此对向配置,各占圆筒周边约85度的圆心角。
含有第二四极透镜电极的G5电极的部分包括平板64。平板64中有三个成一字形排列的孔66,和从那里与孔66对齐延伸的城堡形筒68。各筒68包括一个与板64接触的筒形部分70和两个从筒形部分70延伸的扇形部分72。两扇形部分彼此对向配置,各占圆筒周边约85度的圆心角。各扇形部分72都相对于各扇形部分62转90度角配置,且各扇形部分都彼此不接触地呈叉指形进行装配。虽然图中各扇形部分的各拐角都呈方角,但也可呈圆角。
含有第一主聚焦电极的G5电极44的部分包括一个略呈杯形的元件74,板64即封住该元件的开口端。G6电极46的形状和元件74相似,但其开口端由带孔的护罩76封闭。G5电极44和G6电极46彼此对向的带孔封闭端中分别有大凹口78和80,该两个凹口78和80阻止含有三个成直线排列的孔的G5电极44的一部分从含有三个成直线排列的孔84的G6电极46的部分后退。G5电极44和G6电极46各封闭端的其余部分分别形成围绕凹口78和80周边延伸的边缘86和88。边缘86和88是两电极44和46彼此最接近的部分。
电子枪的所有电极不是直接就是间接地与两个绝缘支杆90连接。支杆90可以延伸到并支撑着G1电极36和G2电极38,此两电极也可以用其它一些绝缘物接到G3电极40。在最佳实施例中,支杆由玻璃制成,经过加热压入从各电极延伸的凸起部分,使各凸起部分嵌入支杆中。
图5和图6分别为筒58和68的扇形部分62和72。四个扇形部分尺寸相等,曲率半径为a,交叠长度为t。各扇形部分62上加有电压V4=Vo4+Vm4,各扇形部分72上加有电压V5=Vo5+Vm5。脚标“o”表示直流电压,脚标“m”表示调制电压。该结构产生四极电位。
φ=(V4+V5)/2+(V4-V5)(X2-y2)/2a+……和横向电场Ex=-(△V/a2)X=(-X/y)Ey,其中 △V=V4-V5此电场使进来的射线偏转一个角度θ≌LEx/2VO,其中相互作用区的有效长度为L≌.4a+t,平均电位为V0=(V4+V5)/2因此,该四极透镜的等轴焦距为fx=X/θ≌[2a2/(.4a+t)](V0/△V)=-fy采用不同的透镜半径a和/或长度t来获得与对围绕中心射束的控制相比而言的其它对围绕两个外部射束的四极的控制程度。
由相等的扇形部分62和72确定的其中一个象限的静电场势线如图7所示。可以看到,加到扇形部分72和62的标称电压分别为1.0和-1.0。静电场形成四极透镜,四极透镜对电子束所起的总的作用是使电子束在一个方向上压缩,在正交方向上扩展。
虽然上面列举的实施例是具有等象限和圆扇形部分,但非圆形和/或不等扇形部分也以获得其它级别的多极,图8和图9就是一个例子。在该实例中,两个扇形部分62′各占约145度圆心角,两个较小的扇形部分72′各占约25度圆心角。这些扇形部分62′和72′加有标称电压时形成的静电场线如图10所示。该静电场总的效果是使电子束在一个方向上受到的压缩作用比在正交方向上受到扩展作用大。
虽然上面介绍的是采用城堡形叉指式圆筒作为多极透镜,但也可以采用其它制造方法。图11和12是另一个电子枪的实施例。在该实施例中,其各孔上具有突出部分的主透镜聚焦电极130,从其电极闭合端切割出而形成四个部分132、134、136和138。如图12所示,分段是通过各孔进行的,将各突出部分划分成四个圆筒段。然后将四个部分用绝缘陶瓷粘合剂140连接电极130的主要部分,用细导线142彼此进行电气连接。电子枪形成主聚焦透镜的其余部分是缓冲板144和最后电极146。缓冲板144将各主透镜与各四极透镜在电气上和结构上加以隔离。
电子枪26包括在配置位置上和结构上与现行电子枪所使用的四极透镜不同的动态四极透镜。这种新型的四极透镜有若干各平面平行于电子束路径并形成垂直于射束路径的静电场线的弯板。四极透镜配置在射束成形区和主聚焦透镜之间,但更接近主聚焦透镜。这种配置方式有这样的好处1)对制造公差的敏感性小,2)无需将有效G2的长度从最佳值加以改变,3)由于四极离主聚焦透镜近,因而产生在主透镜中几乎呈圆形而且不大可能与主聚焦透镜相交的射束群,4)射束电流不会被可调节的四极电压所调制,5)四极透镜距主透镜越近,其有效强度越大,6)四极透镜由于与主聚焦透镜分开,因而不会对主透镜起不良的影响。这种新结构的优点是1)四极的横向场系直接产生且大于上述美国专利4,319,163的现行管间接产生的横向磁场,这是因为该横向磁场仅仅是伴随G2b电压局部穿透G2a沟槽而产生的,2)不存在因槽形孔式栅极透镜额外产生的极数更多的多极而引起的球面象差,3)装备俱全,因而结构上与附近各电极无关。
现在回过来看图1,从图中可以看到使系统作为电视接收机并作为计算机监控器工作的电子设备100。电子设备100通过输入端子104引入红、绿、蓝视频信号,对经天线102接收下来的扩播信号起反应。广播信号加到调谐器和中频线路106上,该线路的输出则加到视频检波器108上。视频检波器108的输出是一个复合视频信号,加到同步信号分离器110和彩色信号及亮度信号处理器112上。同步信号分离器110产生水平和垂直同步脉冲,分别加到水平偏转线路114和116。水平偏转线路114在偏转线圈30的一个水平偏转绕组中产生水平偏转电流,垂直偏转线路116则在偏转线圈30的一个垂直偏转绕组中产生垂直偏转电流。彩色信号和亮度信号处理线路112除接收来自视频检波器108的复合视频信号外,还可以通过端子104接收来自计算机的个别红、绿、蓝视频信号。同步脉冲可以通过分开的导线,或如图1所示,通过与绿色视频信号结合,加到同步信号分离器110上。彩色和亮度信号处理线路112的输出包括分别通过导线RD、GD和BD加到阴极射线管10的电子枪26的红、绿、蓝三色激励脉冲。
系统电源由电压源118提供,该电压源系接到交流电压源上。电压源118产生经调节的直流电压电平+V1,该电压电平,例如,可以给水平偏转线路114供电。电压源118还产生可用以给垂直偏转线路116等电子设备的各种线路供电的直流电压+V2。此外,电压源还产生加到最后阳极端子或阳极按钮16的高电压VM。
调谐器106、视频检波器108、同步信号分离器110。处理器112、水平偏转线路114、垂直偏转线路116和电压源118等的线路及元件都是本专业公知的东西,因此这里不逐一加以介绍。
除下述元件外,电子设备100还包括一个或两个动态电路和聚焦电压波形发生器122,带或不带光点形状波形发生器120。光电形状波形发生器120为电子枪26的扇形部分62提供动态变化电压Vm4。聚焦电压波形发生器122的设计与发生器120类似,但它给电极42和44通过动态变化聚交电压Vms。应用这两个发生器可以使管屏上任何点的电子束光点的聚焦和光点形状达到最佳化。
发生器120和122两者分别从水平偏转线路114和垂直偏转线路116接收水平和垂直扫描信号。波形发生器的线路可以是本专业中公知的线路。例如,一九八○年七月二十二日专利权授予巴伐罗等人的美国专利4,214,188、一九八一年三月二十四日专利权授予希尔本等人的美国专利4,258,298和一九八二年二月十六日专利权授予Shiratsuchi的美国专利4,316,128都介绍有该类公知线路。
下面的表一和表二列出了对26V110°彩色显象管的电子枪(例如电子枪26)的中心射束光点大小和边角射束光点大小进行实验的结果,实验条件为高压电极电压25K伏,射束电流2.0毫安。表一列出了不加偏压时加到第一四极电极42的电压VG4、加到联合第二四极电极和第一主聚焦电极44的电压VG5、这些电压之间的差值△V和在屏中心和边角以密尔计(还有其相当的毫米值)的水平H光点的大小和垂直V光点的大小。
表一水平×垂直VG5VG4△V 密尔 (毫米)中心 6550 6550 0 71×132(1.80×3.35)边角 6550 6550 0 147×86(3.73×2.18)表二列出了类似的实验结果,但系在加偏压情况下的实验结果。
表二水平×垂直VG5VG4△V 密尔 (毫米)中心 6000 5800 -200 61×76(1.55×1.93)边角 6750 7000 +250 91×51(2.31×1.30)通过以上两表的对比可以看出,往四极结构上加适当的电压可以大大减小电子束光点的竖向尺寸。
权利要求
1.一种彩色显示系统,该彩色显示系统包括一个阴极射线管和一个产生象散偏转磁场的自会聚偏转线圈,该阴极射线管有一个用以产生三电子束并将该三电子束沿一定的路径引向所述管子的管屏上的电子枪,所述电子枪包括若干具有射束形成区的电极和若干形成主聚焦透镜用的电极,所述彩色显示系统的特征在于在所述电子枪(26)中用以在射束形成区与各电子射束路径中主聚焦透镜之间形成多极透镜的诸电极,各多极透镜按一定的方向配置,使其能对有关电子束(28)进行校正,从而至少部分补偿象散偏转磁场对有关射束的影响,其中,所述形成多极透镜用的电极包括两个电极-第一多极透镜电极(42)和第二多极透镜电极(44),所述第二多极透镜电极与其中一个所述电极(44)相连接,形成主聚焦透镜,所述第一多极透镜电极安置在第二多极透镜电极与射束形成区之间,面对第一多极透镜电极。
2.如权利要求
1所述的彩色显示系统,其特征在于,形成多极透镜的各电极(42,44)包括圆筒(60,70)的对向配置的扇形部分(62,72;62′,72′),其中一个形成多极透镜对向设置的扇形部分与形成多极透镜的其它透镜的对向设置的扇形部分呈叉指式配置。
3.如权利要求
2所述的彩色显示系统,其特征在于,各扇形部分(62,72)在圆筒(60,70)圆周上占约85度的圆心角。
4.如权利要求
2所述彩色显示系统,其特征在于,在一个电极上形成特定多极透镜的扇形部分(62′)所占的圆心角比在其它电极上形成特定多极透镜的扇形部分(72′)所占的圆心角大。
5.如权利要求
4所述的彩色显示系统,其特征在于,在一个电极上的扇形部分(62′)在圆筒上占约145度的圆心角,其它电极的扇形部分(72′)在圆筒上占约25度的圆心角。
6.如权利要求
1或2所述的彩色显示系统,其特征在于包括往所述用以形成多极透镜的电极(42,44)的至少其中一个施加动态信号(Vm4)用的装置(120),所述动态信号与电子束(28)的偏转情况有关。
7.如权利要求
6所述的彩色显示系统,其特征在于包括,往所述用以形成多极透镜的所述电极(42,44)的至少其中一个施加第二动态信号(Vm5)用的装置(122),所述第二动态信号与电子束的偏转情况有关。
8.如权利要求
1所述的彩色显示系统,其特征在于,所述多极透镜安置得离所述主聚焦透镜比离所述射束形成区近。
9.一种彩色阴极射线管,具有一个用以产生三电子束并将该三电子束沿一定路径引向该彩色阴极射线管管屏的电子枪,所述电子枪包括若干具有射束形成区的电极和若干形成主聚焦透镜的电极;该彩色阴极射线管的特征在于包括在所述电子枪(26)中用以在射束形成区与各电子射束路径中主聚焦透镜之间形成多极透镜的诸电极,其中,所述形成多极透镜用的电极包括两个电极-第一多极透镜电极(42)和第二多极透镜电极(44),所述第二多极透镜电极与其中一个所述电极(44)相连接,形成主聚焦透镜,所述第一多极透镜电极安置在第二多极透射电极与射束形成区之间,面对第一多极透镜电极。
10.如权利要求
1所述的彩色阴极射线管,其特征在于,形成多极透镜的各电极(42,44)包括圆筒(60,70)的对向配置的扇形部分(62,72;62′72′),其中一个形成多极透镜对向设置的扇形部分与形成多极透镜的其它透镜的对向设置的扇形部分呈叉指式配置。
11.如权利要求
10所述的彩色阴极射线管,其特征在于,各扇形部分(62,72)在圆筒(60,70)圆周上占约85度的圆心角。
12.如权利要求
10所述的彩色阴极射线管,其特征在于,在一个电极上形成特定多极透镜的扇形部分(62′)所占的圆心角比在其它电极上形成特定多极透镜的扇形部分所占的圆心角大。
13.如权利要求
12所述的彩色显示系统,其特征在于,在一个电极上的扇形部分(62)在圆筒上占约145度的圆心角,其它电极扇形部分(72′)在圆筒上占约25度的圆心角。
14.如权利要求
9或10所述的彩色显示系统,其特征在于包括往所述用以形成多极透镜的电极(42,44)的至少其中一个施加动态信号(Vm4)用的装置(120),所述动态信号与电子束(28)的偏转情况有关。
15.如权利要求
14所述的阴极射线管系统,其特征在于包括往所述用以形成多极透镜的所述电极(42,44)的至少其中一个施加第二动态信号(Vm5)用的装置(122),所述第二动态信号与电子束的偏转情况有关。
16.如权利要求
9所述的阴极射线管系统,其特征在于,所述多极透镜安置得离所述主聚焦透镜比离所述射束形成区近。
专利摘要
彩色显示系统包括阴极射线管和偏转线圈。该管有一用以产生三电子束电子枪。该枪包括若干具有射束形成区的电极、形成主聚焦透镜的电极和用以在射束形成区和各电子束路径主聚焦透镜之间形成多极透镜的各种性能电极。各多极透镜取一定的方向配置以校正有关电子束,从而至少部分补偿偏转线圈产生的象散磁场对有关射束的影响。两多极透镜电极中的第二个与主聚焦透镜电极相连并结合一起,第一个安置在第二多极透镜电极与射束形成区之间面对第二多极透镜电极。
文档编号H01J29/50GK87100841SQ87100841
公开日1987年9月30日 申请日期1987年2月10日
发明者斯坦利·布卢姆, 埃里克·弗朗西斯·霍金斯 申请人:美国无线电公司导出引文BiBTeX, EndNote, RefMan