模制塑料型半导体器件及其制造工艺的利记博彩app

文档序号:6812348阅读:380来源:国知局
专利名称:模制塑料型半导体器件及其制造工艺的利记博彩app
技术领域
本发明涉及一种模制塑料型半导体器件,特别涉及一种利用转移模塑法制造的模制塑料型半导体器件及可有效在应用于制造该器件的工艺技术。
模制塑料型半导体器件是通过以下步骤制造的在通过支撑引线支撑于引线框框体上的管芯垫(也称为托板)的芯片安装表面上安装半导体芯片;通过键合线电连接设置于半导体芯片主表面上的外部端子与支撑于引线框框体上的引线的内段;用塑料模密封半导体芯片、管芯垫、支撑引线、引线的内段、键合线等;从引线框的框体上切割支撑引线和引线的外段;然后将引线的外段成形为预定形状。
上述模制塑料型半导体器件的塑料模根据适于批量生产的转移模塑法制造。具体说,已经过前面各步骤(管芯键合步骤和引线键合步骤)的引线框设置于模具的上部和下部之间,同时在模具的凹腔内设置半导体芯片、管芯垫、支撑引线和引线的内段及键合线。然后在压力下,通过其流道和浇口从模具槽将树脂浇入到凹腔内,从而制造塑料模。
在上述塑料模制造步骤中,为了抑制在凹腔内填充树脂的失效,换言之,抑制空洞的产生,已尝试通过将半导体芯片2和管芯垫3A设置于凹腔11内,如

图16(示意剖面图)所示,以便使从半导体芯片2的主表面到与该主表面相对的凹腔11的内壁表面的距离L1,等于从管芯垫3A的背面到与该背面相对的凹腔11的内壁表面的距离L2,使流入到半导体芯片2的主表面侧上的填充区11A的树脂的流动性等于流到半导体芯片2的背面侧上的填充区域11B的树脂的流动性。此外,还已尝试通过采用在引线框3之上和之下延伸的中心浇口12(也称为垂直浇口)作为控制浇入凹腔2的树脂量的浇口,将树脂同时填充到半导体芯片2的主表面侧上的填充区11A和背面侧上的填充区11B内、在上述模制塑料型半导体器件中,用塑料模密封管芯垫及半导体芯片,这样塑料模中所含水趋于聚集于管芯垫的背面内。聚集于管芯垫背面的水分借温度周期试验所产生的热或封装时产生的热蒸发并膨胀,并变为塑料模龟裂(封装龟裂)的原因,其中所说温度周期试验是一种在完成了产品后进行的环境试验。
为了克服这种技术问题,日本专利特许公开昭63-204753公开了一种技术,使管芯垫的面积小于半导体芯片的面积,利用该技术,可以抑制塑料模的树脂中的水聚集于管芯垫背面的现象。所以可以防止由于管芯垫背面中的水分蒸发和膨胀造成的塑料模龟裂(封装龟裂)。
如图17(示意剖面图)所示,在使管芯垫3A的面积小于半导体芯片2的面积时,半导体芯片2背面侧上的填充区11B因而变得较宽,这使得在半导体芯片2背面侧上的填充区11B内流动的树脂的流动性,高于在半导体芯片2的主表面侧的填充区11A中流动的树脂的流动性。换言之,半导体芯片2背面侧上填充区11B的树脂填充早于半导体芯片2主表面侧上填充区11A的树脂填充完成。如图18(示意剖面图)所示,填充于半导体芯片2背面侧上的填充区11B的树脂1A向上顶起半导体芯片2,导致半导体芯片2、键合线等从塑料模中显现,进而导致了模制塑料型半导体器件的成品率显著下降。
另一方面,在采用QFP结构的树脂模制型半导体器件中,在半导体芯片角部的外部区域设置有支撑引线,同时在半导体芯片每个侧边的外部区域上设置有多个引线和多个键合线。换言之,半导体芯片角部的外部区域比半导体芯片每个侧边的外部区域更大,所以树脂的流动性在半导体芯片角部的外部区域高于半导体芯片每个侧边的外部区域。因此,键合线因从角部的外部区域流到半导体芯片的每个侧边的外部区域中的树脂而流动,两相邻键合线间发生短路,这会引起模制塑料型半导体器件的成品率显著下降。这些键合线间的短路在连接到与半导体芯片角部的外部区域最相邻的第一级引线的键合线,与连接到与第一引线相邻的第二引线的键合线间特别显著。
本发明的目的是提供一种能够提高模制塑料型半导体器件的成品率的技术。
本发明另一目的是提供一种能够提高模制塑料型半导体器件制造工艺中成品率的技术。
通过以下介绍和附图,本发明的上述和其它目的及新颖特点将变得更清楚。
下面简要介绍本申请所公开的典型发明。
(1)一种制造模制塑料型半导体器件的工艺,所说模制塑料型半导体器件中,管芯垫形成为具有小于安装于管芯垫的主表面上的半导体芯片的面积,半导体芯片和管芯垫利用塑料模密封,所说工艺包括以下步骤在通过支撑引线支撑于引线框的框体上的管芯垫的主表面上安装半导体芯片;在模具的上部和下部之间设置所说引线框,并在模具的凹腔中设置半导体芯片和管芯垫,以便管芯垫的背面侧到与管芯背面侧相对的凹腔的内壁表面间的距离,变得比半导体芯片主表面到与半导体芯片主表面相对的凹腔内壁表面间的距离窄管芯垫的厚度那么多;从位于所说半导体芯片一侧的所说模具的浇口浇入树脂。该工艺还包括利用在引线框之上和之下延伸的中心浇口作模具的浇口,并同时将树脂浇入到凹腔的上部和下部,从而形成塑料模。
(2)一种模制塑料型半导体器件,其中多个外部端子设置于半导体芯片主表面上的至少一个侧边上,并沿该至少一侧边排列,多个引线设置于所说半导体芯片一侧边的外部,并沿该侧边排列,多个外部端子中的每一个通过键合线与所说多个引线中的每一个的一端部电连接,半导体芯片、引线和键合线用树脂密封。在该模制塑料型半导体器件中,至少最邻近所说半导体芯片角部的第一级引线的端部与邻近第一级引线的第二级引线间的距离形成为宽于另外两引线端部间的距离。
根据第(1)条,半导体芯片主表面侧上的填充区具有基本上与背面侧上的填充区相同的容积,每个区都设置于凹腔内,从而可以使得流过半导体芯片主表面上的填充区的树脂的流动性几乎与流过背面侧上的填充区的树脂相等。另外,采用中部浇口可以同时将树脂提供到半导体芯片的主表面侧上的填充区和背面侧上的填充区。因此,半导体芯片主表面侧上的填充区的树脂填充和背面侧上的填充区的树脂填充几乎可以同时完成,这可以防止半导体芯片因填充到半导体芯片背面侧上的填充区的树脂而被顶起。结果,可以防止半导体芯片、键合线等从塑料模中显现,进而可以提高模制塑料型半导体器件的成品率,根据本发明的上述第(2)条,由于连接到最邻近半导体芯片角部的外部区域的第一级引线的一端部的键合线,与连接到邻近第一级引线的第二级引线的一端部的另一键合线间的距离可以形成得较宽,即使键合线由于从半导体芯片角部的外部区域流到半导体芯片一侧边的外部区域的树脂而移动,也可以抑制这些键合线间的短路。结果,可以提高模制塑料型半导体器件的成品率。
图1是本发明第一实施例的模制塑料型半导体器件的平面图,其中已去掉了塑料模的上部。
图2是沿图1的A-A线取的剖面图。
图3是沿图1的B-B线取的剖面图。
图4是用于制造上述模制塑料型半导体器件的引线框的平面图。
图5是展示制造上述模制塑料型半导体器件的工艺的部分剖面图。
图6是展示制造上述模制塑料型半导体器件的工艺的另一部分剖面图。
图7是展示树脂流动的示意剖面图。
图8是展示树脂流动的另一示意剖面图。
图9是用于制造上述模制塑料型半导体器件的另一引线框的平面图。
图10是用于制造上述模制塑料型半导体器件的再一引线框的平面图。
图11是本发明第二实施例的模制塑料型半导体器件的平面图,其中去掉了塑料模的上部。
图12是图11的部分放大剖面图。
图13是用于制造上述模制塑料型半导体器件的引线框的平面图。
图14是展示上述模制塑料型半导体器件的变形的部分平面图。
图15是展示上述模制塑料型半导体器件的变形的半导体芯片的平面图。
图16是展示常规问题的示意剖面图。
图17是展示常规问题的另一示意剖面图。
图18是展示常规问题的再一示意剖面图。
下面结合各实施例介绍本发明的构成。
在任何一幅展示实施例的附图中,功能相同的元件用相同的参考数字表示,将省略对它们的重复介绍。
(第一实施例)在本实施例的模制塑料型半导体器件中,半导体芯片2安装于管芯垫3A的芯片安装表面(主表面)上,如图1和2所示。
半导体芯片2具有平面形,例如,外部尺寸为9[mm]×9[mm]的方形平面。例如,其主要由单晶硅构成的半导体衬底和形成于衬底主表面上的互连层构成。
在半导体芯片2上,例如安装有逻辑电路系统或组合有逻辑电路系统和存储电路系统的混合电路系统。此外,在半导体芯片2的主表面上,沿主表面的每侧边设置有多个外部端子(键合焊盘)2A。每个外部端子2A都形成于半导体芯片2的互连层中的上互连层上,并由铝(Al)膜或铝合金膜构成。
在半导体芯片2每个侧边的外部,沿每个侧边设置有多个引线3C。这多个引线3C的每个内段3C1通过键合线5与设置于半导体芯片2主表面上的多个外部端子2A中的每一个电连接。
键合线5例如使用金(Au)丝。或者,可以采用具有被绝缘树脂覆盖的如铝(Al)丝或铜(Cu)丝等金属丝的线。键合线5的连接通过采用热压键合和超声振动结合的键合法进行。
四个支撑引线3B耦合到管芯垫3A上。在引线框的情况下,四个支撑引线3B中的每一个都用于将管芯垫3A支撑于引线框的框体上。四个支撑引线3B在其四个点上支撑管芯3A,以便与管芯垫3A形成符号X作为交叉。支撑引线3B的宽度例如设置为0.4[mm]。
半导体芯片2、管芯垫3A、支撑引线3B、引线3C的内段3C1及键合线5等被转移模塑法形成的塑料模1密封。塑料模1例如由加有苯酚硬化剂、硅酮橡胶、填料等的联苯树脂形成以降低应力。转移模塑法是这样一种方法,利用备有槽、流道、浇口、凹腔等的模具,在压力下,通过流道和浇口从槽将树脂浇入凹腔内,从而形成塑料模。
塑料模1的平面形状例如是外部尺寸为14[mm]×14[mm]的方形。塑料模1每个侧边的外部排列有多个引线3C的外段3C2。多个引线3C的外段3C2例如以鸥翼形式沿塑料模1的每个侧边排列。简言之,根据本发明的模制塑料型半导体器件制造成具有QFP(方形扁平封装)结构。
管芯3A的平面形状例如为外部尺寸是直径为2-4[mm]的圆形。换言之,本实施例的管芯垫3A形成为具有小于半导体芯片2的面积。通过使管芯垫3A形成为具有小于半导体芯片2的面积,可以抑制含于塑料模1的树脂中的水分聚集于管芯垫3A的背面的现象,进而防止因水分蒸发和膨胀引起的塑料模1龟裂。
在塑料模1的制造步骤中,即使键合线5的中部悬下,也可以防止管芯垫3A与键合线5接触,这是由于管芯垫3A不存在于半导体芯片2外围以外的缘故。键合线5越长,键合线5的中部悬下越显著。
另一方面,在半导体芯片2的面积减小到管芯垫3A的面积时,管芯垫3A也不存在于半导体芯片2外围以外。因此,即使键合线5的中部悬下,也不会使管芯垫3A与键合线5接触,所以可以安装具有不同外部尺寸的半导体芯片2。
与半导体芯片2的主表面相反的背面的中心区通过粘合剂4粘附并固定到管芯垫3A的芯片安装表面上。粘合剂4例如由环氧树脂基银(Ag)膏材料构成。在半导体芯片2的键合步骤,粘合剂4利用多点涂敷法施加在管芯垫3A的芯片安装表面上。
支撑引线3B由引线部分3B1和引线部分3B2构成,如图3所示。引线部分3B1设置在模具厚度方向(垂直方向)上与图2所示引线3C的内段3C1相同的位置,而引线部分3B2设置在模具厚度方向(垂直方向)上与管芯垫3A相同的位置。在本实施例的模制塑料型半导体器件中,管芯垫3A的芯片安装表面,在模具的厚度方向上,从引线3C的内段3C1的上表面(键合表面)下降。
在塑料模1中,如图2和3所示,半导体芯片2主表面上树脂的厚度L1,比管芯垫3A背面上树脂的厚度厚相当于管芯垫3A厚度那么多。换言之,半导体芯片2几乎设置在塑料模1厚度方向上塑料模1的中心处。
具有上述结构的模制塑料型半导体器件通过采用引线框3的工艺制造,如图4所示。
引线框3具有每一个都设置在由框体3E限定的区域内的管芯垫3A、四个支撑引线3B、多个引线3C等。管芯垫3A通过四个支撑引线3B耦合到框体3E上。多个引线3C与框体3E连接,同时通过连杆(阻挡条)3D彼此连接。
引线3C由将被塑料模1密封的内段3C1和形成为预定形状的外段3C2构成。支撑引线3B由引线部分3B1和引线部分3B2构成。引线部分3B1设置在模具的厚度方向(垂直方向)上与引线3C的内段3C1相同的位置,而引线部分3B2设置在模具的厚度方向(垂直方向)上与管芯垫3A相同的位置。
引线框3例如由铁(Fe)-镍(Ni)基合金、铜(Cu)或铜基合金构成。这种引线框通过将板材腐蚀或冲压成预定图形,然后冲压支撑引线3B形成。
在靠近支撑引线3B连接到引线框3的框体3E的区域,为了注入树脂,形成通孔3F。在塑料模1制造期间,这种通孔将通过流道从模具的槽供应的树脂流分成两股,即,引线框3之上和之下的两股。
管芯垫3A的外径越小,支撑引线3B变得越长,这容易在垂直方向上移动管芯垫。另外,随着管脚数的增加,支撑引线3B变窄,管芯垫3A会更容易在垂直方向上移动。另外,塑料模1越薄,支撑引线3B越薄,这可以容易在垂直方向移动管芯垫3A。
下面介绍上述模制塑料型半导体器件的制造方法。
首先,制备如图4所示引线框3。
然后,利用多点涂敷法将粘合剂4涂敷在通过支撑引线3B支撑于引线框3的框体3E上的管芯垫3A的芯片安装表面(主表面)上。
通过粘合剂4将半导体芯片2安装于管芯垫3A的芯片安装表面上。粘附半导体芯片2,从而通过粘合剂4将之固定到管芯垫3A的芯片安装表面上。
通过键合线5电连接半导体芯片2的外部端子2A与支撑到引线框3的框体上的引线3C的内段3C1。
如图5和6所示,将引线框3设置于模具10的上部10A和下部10B之间,同时将半导体芯片2和管芯垫3设置于模具10的凹腔11内,使从管芯垫3A的背面侧到与该背面侧相对的凹腔11的内壁表面间的距离L2,比从半导体芯片2的主表面到与该主表面相对的凹腔11的内壁表面间的距离L1窄相当于管芯垫3A的厚度的长度。通过以使从管芯垫3A的背面侧到与该背面侧相对的凹腔11的内壁表面间的距离L2,比从半导体芯片2的主表面到与该主表面相对的凹腔11的内壁表面间的距离L1窄相当于管芯垫3A的厚度的长度的方式设置半导体芯片2和管芯垫3A,半导体芯片2主表面侧上的填充区11A具有几乎与其背面侧上的填充区11B相同的容积,从而可以使在半导体芯片2主表面侧上的填充区11A中流动的树脂的流动性几乎与流过背面侧上填充区11B的树脂的流动性相等。
顺便提及,在凹腔11内,除设置有半导体芯片2和管芯垫3A外,还设置有支撑引线3B、引线3C的内段3C1、键合线5等。除凹腔11外,模具10还备有槽、流道、中部浇口12。中部浇口12存在于引线框3之上和之下,以便树脂可以同时提供到设置于凹腔11内的半导体芯片2的主表面侧上填充区11A及半导体芯芯片背面侧上的填充区11B。中部浇口12设置在支撑引线3B与引线框3的框体3E连接的区域附近。
然后,在压力下,通过存在于引线框3之上和之下的中部浇口12将树脂浇入凹腔11中。树脂通过流道从模具10的槽提供到中部浇口12。图7和8示出了该步骤中树脂的流动。从中部浇口12注入的树脂1A几乎同时送入半导体芯片2主表面上的填充区11A和其背面侧上的填充区11B。树脂1A在填充区11A的填充与在填充区11B的填充几乎同时完成,如图8所示。换言之,半导体芯片2没有被填充到半导体芯片2背面侧上的填充区11A的树脂1A向上顶起。
从引线框3的框体3E上切割支撑引线3B及引线3C的外段3C2,然后将引线3C的外段3C2成形为鸥翼形,从而同时完成图1、2和3所示的模制塑料型半导体器件。
该实施例中介绍了制造模制塑料型半导体器件的工艺,所说半导体器件中,管芯垫3A的面积形成为小于将于其主表面上安装的半导体芯片2的面积,并且半导体芯片2和管芯垫3A由塑料模密封。该工艺包括以下步骤在通过支撑引线3B支撑于引线框3的框体3E上的管芯垫3A的主表面上安装半导体芯片2;在模具10的上部10A和下部10B之间设置所说引线框3;设置半导体芯片2和管芯垫3A,使从管芯垫3A的背面侧到与该背面侧相对的凹腔11的内壁表面间的距离L2,变得比从半导体芯片2主表面到与该主表面相对的凹腔11内壁表面间的距离L1窄相当于管芯垫3A厚度的长度;从半导体芯片一侧将树脂浇入凹腔11。另外,树脂浇入步骤包括从存在于引线框3之上和之下的中部浇口12将树脂浇入到凹腔11,从而形成塑料模1。
根据上述工艺,设置于凹腔11的半导体芯片2主表面侧上的填充区11A的容积几乎与背面侧上填充区11B的容积相等,因而流过半导体芯片2主表面侧上填充区11A的树脂的流动性几乎与流过其背面侧上填充区11B的树脂的流动性相等。采用中部浇口12可以同时将树脂提供到主表面侧上的填充区11A和背面侧上填充区11B。因此,半导体芯片2主表面侧上填充区11A的树脂填充和半导体芯片2背面侧上填充区11B的树脂填充可以几乎同时完成,所以防止了半导体芯片2被填充到半导体芯片2的背面侧上填充区的树脂顶起。于是,可以防止半导体芯片2、键合线5等从塑料模1显现,并可以提高模制塑料型半导体器件的成品率。
通过将管芯垫3A设置成在塑料模厚度方向低于由引线框3的框体3E支撑的引线3C的内段3C1,可以使在半导体芯片2主表面侧上填充区中流动的树脂的流动性基本上等于在背面侧上填充区11B中流动的树脂的流动性。
顺便提及,可通过利用具有形成为方形的管芯垫3A的引线框3的制造工艺制备模制塑料型半导体器件,如图9所示。通过采用这种引线框3的工艺可以得到类似的优点。
还可以通过采用具有形成为X形平面的管芯垫3A的引线框3的制造工艺制备模制塑料型半导体器件,如图10所示。通过采用这种引线框3的工艺可以得到类似的优点。
(第二实施例)根据该实施例的模制塑料型半导体器件具有安装于管芯垫3A的芯片安装表面(主表面)上的半导体芯片2,如图11和12所示。
半导体芯片2具有平面形,例如外部尺寸为9[mm]×9[mm]的方形。在半导体芯片2的主表面上,沿主表面的每个侧边设置有多个外部端子(键合焊盘)2A。
半导体芯片2每个侧边的外部区域中,设置有沿每个侧边排列的多个引线3C。设置于半导体芯片2主表面上的多个外部端子2A通过键合线电连接到多个引线3C的内段3C1。
四个支撑引线3B耦合到管芯垫3A。在引线框的条件下,这四个支撑引线3B用于将管芯垫3A支撑于引线框的框体上。这四个支撑引线3B分别设置于半导体芯片2的四个角部的外部区域上。
半导体芯片2、管芯垫3A、支撑引线3B、引线3C的内段3C1、键合线5等由利用转移模塑法形成的塑料模1密封。
塑料模1的平面形状例如是外部尺寸为14[mm]×14[mm]的方形。塑料模1每个侧边的外部排列有多个引线3C的外段3C2。多个引线3C的外段3C2例如以鸥翼形沿塑料模1的每个侧边排列。于是将根据本实施例的模制塑料型半导体器件制造成具有QFP(方形扁平封装)结构。
管芯垫3A的平面形状例如为外部尺寸是直径为2-4[mm]的圆形。换言之,管芯垫3A形成为具有小于半导体芯片2的面积。
每个支撑引线3B与上述第一实施例类似,由一个引线部分(3B1)和另一个引线部分(3B2)构成。
关于排列在半导体芯片2每个侧边的外部区域中的多个引线3C,从与半导体芯片2角部的外部区域邻近的第一级引线3CA的一端部到与第一级引线3CA邻近的第二级引线3CB间的距离P宽于任何其它两个引线3C间的距离。通过如上所述使从最邻近半导体芯片2角部的外部区域的第一级引线3CA的一端部到邻近第一级引线3CA的第二级引线3CB间的距离P形成为宽于任何其它两个引线3C间的距离,可以拓宽连接到最邻近半导体芯片2角部的外部区域的第一级引线3CA的一端部的键合线5,与连接到邻近第一级引线3CA的第二级引线3CB的一端部的另一键合线5间的间距。
如上构成的模制塑料型半导体器件可通过利用如图13所示的引线框3的工艺制造。
引线框3具有排列于由框体3E限定的区域内的管芯垫3A、四个支撑引线3B和多个引线3C。管芯垫3A通过四个支撑引线3B耦合到框体3E。多个引线3C与框体3E连接,同时通过连杆(阻挡条)3D彼此连接。
框体3E是方形平面。引线3C的每一个沿框体3E的每个侧边排列,这四个支撑引线3B沿框体3E的对角线排列。
关于沿框体3E的每个侧边排列的多个引线3C。最邻近支撑引线3B的第一级引线3CA的一端部到邻近第一级引线3CA的第二级引线3CB的一端部间的距离形成为宽于任何其它两引线3C端部间的距离。
下面介绍上述模制塑料型半导体器件的制造工艺。
首先,制备如图13所示引线框3。
然后,通过粘合剂4将半导体芯片2安装于通过支撑引线3B支撑于引线框3的框体3E上的管芯垫3A的芯片安装表面上。
通过键合线5电连接半导体芯片2的外部端子2A与支撑到引线框3的框体上的引线3C的一个端部(内段3C1的一个端部)。
与第一实施例相同,将引线框3设置于模具10的上部10A和下部10B之间,同时将半导体芯片2、管芯垫3A、支撑引线3B、引线3C的内段3C1、键合线等设置于模具的凹腔内。
然后,通过流道和浇口从模具10的槽注入树脂,从而形成塑料模1。在该步骤,支撑引线3B设置于半导体芯片2角部的外部区域,多个引线3C和多个键合线5设置在半导体芯片2每个侧边的外部区域。换言之,半导体芯片2一个角部的外部区域比半导体芯片2一侧边的外部区域更大,以便半导体芯片2一个角部的外部区域内的树脂的流动性高于半导体芯片2一侧边的外部区域。因此,键合线5由于从一个角部的外部区域流到半导体芯片2一侧边的外部区域的树脂趋于流动。由于连接到最邻近半导体芯片2角部的外部区域的第一级引线3CA的一个端部的键合线5,与连接到邻近第一级引线3CA的第二级引线3CB的一个端部的另一键合线5间的间距形成得宽,即使键合线由于从其角部的外部区域流到半导体芯片2一侧边的外部区域的树脂流动,也可以抑制这些键合线间的短路。
通过从引线框3的框体3E上切割支撑引线3B和引线3C的外段3C2,然后将引线3C的外段3C2成形为鸥翼形,从而同时完成图11所示的模制塑料型半导体器件。
该实施例中介绍了制造模制塑料型半导体器件的工艺,所说半导体器件中,多个外部端子2A设置于半导体芯片、主表面的至少一侧边上,并至少沿该至少一侧边排列;多个引线3C设置于半导体芯片2一侧边外,并沿该侧边排列;多个引线3C每一个的一端部通过键合线5与多个外部端子2A电连接;半导体芯片2各引线和键合线等由塑料模1密封。在该模制塑料型半导体器件中,最邻近半导体芯片2角部的外部区域的第一级引线3CA的一端部到邻近第一级引线3CA的第二级引线3CB间的距离P,形成为宽于任何其它两个引线3C间端部的距离。
上述结构可以拓宽连接到最邻近半导体芯片2角部的外部区域的第一级引线3CA的一端部的键合线5,与连接到邻近第一级引线3CA的第二级引线3CB的一端部的另一键合线5间的间距。因此,在塑料模的制造步骤中,即使键合线由于从半导体芯片2角部的外部区域流到一侧边的外部区域的树脂而发生流动,也可以防止键合线5之间发生短路。所以可以提高模制塑料型半导体器件的成品率。
在减小半导体芯片2的外部尺寸时,这种减小伴随着键合线5长度的增大。即使第一级引线3CA的一端部到第二级引线3CB的一端部间的距离P拓宽,并且键合线5因半导体芯片2的外部尺寸减小而变得较长,也可以防止与第一级引线3CA的一端部连接的键合线5和与第二级引线3CB的一端部连接的另一键合线5间的短路。
顺便提及,在设置于半导体芯片2主表面的一侧边上并沿该侧边排列的多个外部端子2A中,如图14所示,还可以与任何其它两个外部端子间的距离相比,拓宽最邻近半导体芯片2角部的外部端子2A1和邻近外部端子2A1的外部端子2A2间的距离P。另外,这种情况下,与第一级引线3CA的一端部连接的键合线5和与第二级引线3CB连接的另一键合线5间的距离可以拓宽,从而可以抑制这些键合线5间的短路。
另外,从半导体芯片2角部的外部区域流到半导体芯片一侧边的外部区域的树脂的流动性向着半导体芯片2一侧边的外部区域的中心逐渐变低。如图15所示,就设置于半导体芯片2主表面一侧边上且沿该侧边排列的外部端子2A而言,因此可以拓宽从半导体芯片2一侧边的中心顺时针向着其角部的两相邻外部端子2A间的每个距离。这种情况下,可以在不明显增大半导体芯片的外部尺寸的情况,抑制任何两相邻键合线5间的短路,这是因为根据树脂的流动性两键合线5间的距离从半导体芯片2一侧边的中心向着其角部可以逐渐变宽的缘故。
上面结合上述实施例具体介绍了本发明人完成的发明。然而,应理解,本发明不限于这些实施例或不受这些实施例的限制,在不背离其本质的情况下可以进行变形。
本发明可以提高模制塑料型半导体器件的成品率。
权利要求
1.一种制造模制塑料型半导体器件的工艺,所说模制塑料型半导体器件中,管芯垫形成为具有小于安装于管芯垫的主表面上的半导体芯片的面积,所说半导体芯片和所说管芯垫用塑料模密封,所说工艺包括以下步骤(A)在通过支撑引线支撑于引线框的框体上的管芯垫的主表面上安装半导体芯片;(B)在模具的上部和下部之间设置所说引线框,并在模具的凹腔中设置所说半导体芯片和所说管芯垫,以便管芯垫的背面侧到与管芯背面侧相对的凹腔的内壁表面间的距离,变得比半导体芯片主表面到与半导体芯片主表面相对的凹腔内壁表面间的距离窄;(C)从位于所说半导体芯片一侧的所说模具的浇口浇入树脂,从而用树膜密封所说半导体芯片和所说管芯垫。
2.根据权利要求1的工艺,其中所说浇口由所说引线框的上部和下部限定。
3.根据权利要求1的工艺,其中所说管芯垫定位成在塑料模的厚度方向上低于支撑于所说引线框的框体上的所说引线的内段。
4.根据权利要求1的工艺,其中所说管芯垫形成为具有圆形平面、方形平面或X形平面。
5.根据权利要求1的工艺,其中所说浇口设置在支撑引线与所说引线框体连接的区域附近。
6.一种模制塑料型半导体器件,其中多个外部端子设置于半导体芯片主表面的至少一个侧边上并沿该至少一侧边排列,多个引线设置于所说半导体芯片一侧边的外部,并沿该侧边排列,所说多个外部端子中的每一个通过键合线与所说多个引线中的每一个的一端部电连接,所说半导体芯片、各引线和键合线用树脂密封,其中,至少最邻近所说半导体芯片角部的引线的一端部与邻近该引线的引线的一端部间的距离形成为宽于另外两引线端部间的距离。
7.一种模制塑料型半导体器件,其中多个外部端子设置于半导体芯片主表面的至少一个侧边上并沿该至少一侧边排列,多个引线设置于所说半导体芯片一侧边的外部,并沿该侧边排列,所说多个外部端子中的每一个通过键合线与所说多个引线中的每一个的一端部电连接,所说半导体芯片、各引线和键合线用树脂密封,其中,至少最邻近所说半导体芯片角部的外部端子与邻近该外部端子的另一外部端子间的距离形成为宽于另外两外部端子间的距离。
8.一种模制塑料型半导体器件,其中多个外部端子设置于半导体芯片主表面的至少一个侧边上并沿该至少一侧边排列,多个引线设置于所说半导体芯片一侧边的外部,并沿该侧边排列,所说多个外部端子中的每一个通过键合线与所说多个引线中的每一个的一端部电连接,所说外部端子、各引线和键合线用树脂密封,其中,所说多个外部端子间的距离从所说半导体芯片一侧边的中心向着所说半导体芯片的角部逐渐变宽。
9.根据权利要求6的模制塑料型半导体器件,其中所说半导体芯片角部的外部设置有从所说角部向着其外部延伸,且与半导体芯片将安装于其上的管芯垫连接的支撑引线。
10.根据权利要求6的模制塑料型半导体器件,其中所说管芯垫形成为具有比所说半导体芯片小的面积。
全文摘要
一种制造树脂密封半导体器件的方法,所说半导体器件中管芯垫具有小于安装于管芯垫主表面上的半导体芯片的面积,半导体芯片和管芯垫密封在模制树脂体中。半导体芯片和管芯垫设置于模具的凹腔中,使管芯垫背面和凹腔的相对内表面间的间距比半导体芯片主表面和凹腔的相对内表面间的间距窄相当于管芯垫厚度的距离。通过中部浇口同时向凹腔内注入树脂,从而模制树脂体。于是半导体芯片不会因注入到芯片背侧空间的树脂而向上移动。因此,由于防止了半导体芯片、键合线等暴露于模制树脂体外的缺陷,所以可以提高树脂密封半导体器件的成品率。
文档编号H01L21/02GK1242105SQ96180555
公开日2000年1月19日 申请日期1996年12月26日 优先权日1996年12月26日
发明者宫木美典, 铃木博通, 铃木一成, 西田隆文, 伊藤富士夫, 坪崎邦宏, 龟冈昭彦, 西邦彦 申请人:株式会社日立制作所, 日立超大规模集成电路系统株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1