基于碳纳米管薄膜的太阳能电池及其制备方法

文档序号:87270阅读:338来源:国知局
专利名称:基于碳纳米管薄膜的太阳能电池及其制备方法
技术领域
本发明涉及太阳能电池及其制备技术,尤其涉及一种碳纳米管薄膜作为光电转换材料太阳能电池及其制备方法,属于太阳能电池及纳米材料应用技术领域

背景技术
太阳能是当今最清洁的能源,取之不尽、用之不竭。地球每40秒接收到的太阳能就相当于210亿桶石油的能量,相当于目前全球一天所消耗的能源总和。太阳能的利用方式包括光能—热能转换、光能—电能转换、光能—化学能转换。太阳能电池是光能—电能转换的典型例子,是利用半导体材料的光生伏特原理制成的。根据半导体光电转换材料种类不同,太阳能电池可以分为硅基太阳能电池、砷化镓太阳能电池、铜铟镓硒薄膜太阳能电池、有机薄膜太阳能电池等。目前,市场上太阳能电池以硅基为主,占90%以上,包括单晶硅太阳能电池、多晶硅太阳能电池、非晶硅薄膜太阳能电池、多晶硅薄膜太阳能电池。理论上,单晶硅太阳能电池的转换效率可以达26%。但是,实际应用的硅基太阳能电池的光转换效率要远低于理论值,而国内产业化生产的太阳能电池的效率通常小于15%。
为了提高硅基太阳能电池的转换效率,人们采用了背表电场、浅结、绒面、减反射膜等技术可以提高太阳能电池的转换效率。1999年澳大利亚新南威尔士大学Green MA等人(GreenMA et al.,IEEE Trans.Electron Devices,1999,461940-1947)所制备的钝化发射区单晶硅太阳能电池转换效率为24.7%,已接近硅太阳能电池的理论上限。多晶硅太阳能电池的制造成本低于单晶硅太阳能电池,但其晶界对转化效率有一定的影响,1999年澳大利亚新南威尔士大学Zhao JH等人(Zhao JH et al.,IEEE Trans.Electron Devices,1999,461978-1983)所制备的钝化发射区多晶硅太阳能电池转换效率达19.8%。非晶硅对太阳光的吸收系数高,降低了硅材料的使用量,通过研究,实验室所制备的单结、双结和多结非晶硅太阳能电池的转换效率可以分别达到6~8%,10%和13%(赵玉文.物理,2004,3399-105)。多晶硅薄膜太阳能电池既具有晶体硅太阳能电池高效、稳定的优点,同时又具有薄膜太阳能电池节省材料的优点,目前实验室效率可达18%,北京太阳能研究所许颖等人(Xu Y et al.,Acta Energiae Solaris Sinica,2002,23108-110)采用快速热化学气相沉积技术在模拟非硅衬底上制备了多晶硅薄膜电池,并制作减反射膜,其转换效率可达10.21%。
目前,硅基太阳能电池制造工艺复杂,完全使用硅作为光电转换的材料,要获得高转换效率的硅太阳能电池,需要制备出高纯度的原料硅。目前原料硅的制备工艺远不能满足太阳能电池发展的需要,并且制备原料硅需要消耗大量的电能,这提高了硅太阳能电池的成本,并且对环境产生很大的污染。因此发展其他类型的太阳能电池,减少太阳能电池中的硅用量就具有重要的战略意义。人们对有机及塑料太阳能电池进行了研究。1998年Gratzel M等人(Bach U et al.,Nature,1998,395583-585)利用OMeTAD作为空穴传输材料,得到0.74%的光电转换效率。高分子材料具有易于加工的特点,部分高分子材料具有光电活性,人们根据这方面的特点研制了聚合物的太阳能电池。1993年,Sariciftci NS等人(Sariciftci NS etal.,Appl.Phys.Lett.,1993,62585-587)研制成功了第一个聚合物/C60的太阳能电池。
碳纳米管是由一层或者数层石墨层片按照一定螺旋角卷曲而成的一维纳米材料。理论计算和实测结果表明,根据碳纳米管的几何结构不同,碳纳米管既可能是导体,也可能是半导体。Satio等人(Satio R,et al.,Mater.Sci.Eng.B,19185-191)经过理论分析表明,约有1/3的单壁碳纳米管是导体性的,而2/3的是半导体性的。研究发现,碳纳米管的能隙宽度可以从0改变到与硅的相当,这表明了碳纳米管将在半导体领域中扮演重要的角色。如果将碳纳米管作为太阳能吸收转换材料,则可以吸收不同波长的太阳光。研究表明,碳纳米管具有很高的导电能力,其载流能力可以高达109A/cm2量级。Ugarte等人(de Heer WA et al.,Science,1995,268845-847)发现,碳纳米管的径向电阻远远大于轴向电阻,这种电阻各向异性随着温度的降低而增大。Li等人(Li SD,et al.,Nano Lett.2004,42003-2007)研究结果表明,单壁碳纳米管丝的轴向电阻率仅为1.4×10-8Ω·cm量级,表明了碳纳米管具有优异的导电性能。本研究小组的曹安源博士研究表明,碳纳米管具有很高的吸收太阳光能力,在可见光和红外光区的吸收率高达99%以上,这表明,如果将碳纳米管应用在太阳能电池领域,将具有传统材料无可比拟的优势。Singha A等人(Singha A et al.,Nano.Lett.2003,3383-388)论证了单壁碳纳米管的吸收光谱覆盖了可见光到红外的范围。上海交通大学LiuLY等人(Liu LY,et al.,Sens.Actuator A-Phys,2004,116394-397)发现,多壁碳纳米管在红外光的照射下可以产生光电流,可以作为红外的探测材料。Wei JQ等人(Wei JQ,et al.,Small,2006,2988-993)研究发现,宏观碳纳米管束在激光(波长从远红外到可见光范围)照射下可以产生光电流。
鉴于碳纳米管在电学等方面具有优异的性能,碳纳米管可能在太阳能电池中得到应用。实际上,基于碳纳米管的光电转换研究早在2005年就已经开展。早期的研究工作主要基于碳纳米管复合材料太阳能电池的研究工作,其中包括碳纳米管与聚合物等复合作为光电转换的材料。Landi BJ等人(Landi BJ et al.,Prog.Photovoltaics,2005,13165-172)将单壁碳纳米管与聚三辛基噻吩共混,所测得的太阳能电池开路电压为0.98 V,短路电流为0.12mA/cm2。Kymakis E等人(Kymakis E et al.,J.Phys.D-Appl.Phys.,2006,391058-1062)对单壁碳纳米管与聚三辛基噻吩共混后得到的太阳能电池进行了退火处理,在最佳退火温度120℃下保温5min后,所测得的太阳能电池开路电压为0.75V,短路电流为0.5mA/cm2。
这些基于碳纳米管复合材料的太阳能电池,是将粉术状的碳纳米管与聚合物等材料共混,碳纳米管间的相互结合较弱,这些碳纳米管间的界面与碳纳米管本体存在很大的差异,因此导致较大的电阻并使电子空穴对容易发生复合;同时由于使用聚合物,容易发生老化,使太阳能电池的效率降低。因此这些碳纳米管复合材料的太阳能电池转换效率很低,研究新型的碳纳米管太阳能电池具有重要意义。
目前现有技术中已成功制取性能优异的碳纳米管宏观体,包括了单壁碳纳米管长丝(专利号ZL02100684.9;Zhu HW et al.,Science,2002,296884-886)、双壁碳纳米管长丝及薄膜(专利号ZL03143102.X;Wei JQ et al.,J Phys Chem B,2004,1088844-8847)和定向碳纳米管阵列(Zhang XF et al.,Chem.Phys.Lett.2002,362285-290)以及大面积、超薄碳纳米管薄膜(专利申请号200510123986.2,公开号CN1803594)的制备。

发明内容本发明的目的是针对现有技术中存在的太阳能电池转换效率低、制作工艺复杂以及使用寿命较低的不足和缺陷,提供一种基于碳纳米管薄膜的太阳能电池及其制备方法,旨在利用碳纳米管的电学和光学特性,获得较好的太阳能电池转换效率和较长的使用寿命。
本发明的技术方案如下本发明提出的一种基于碳纳米管薄膜的太阳能电池,依次含有背电极、硅片衬底、光电转换材料以及上电极,其特征在于光电转换材料采用碳纳米管薄膜,该碳纳米管薄膜同时作为上电极。
本发明还提供了上述基于碳纳米管薄膜的太阳能电池的制备方法,具体工艺步骤如下1)使用银胶将铜网粘在硅片衬底一侧表面上,待银胶固化,以铜网作为碳纳米管薄膜太阳能电池的背电极;或在硅片衬底一侧表面蒸镀Ti/Pd/Ag金属薄膜,以Ti/Pd/Ag金属薄膜作为碳纳米管薄膜太阳能电池的背电极,并用导线引出;2)将纯化处理后铺展为厚度50~200 nm的碳纳米管薄膜,转移到硅片衬底的另一侧表面上,使碳纳米管薄膜与硅片衬底紧密接触,碳纳米管薄膜作为光电转换材料,同时作为上电极,并用导线引出。
本发明还提供了另一种基于碳纳米管薄膜的太阳能电池,依次含有背电极、硅片衬底、光电转换材料以及上电极,其特征在于光电转换材料采用碳纳米管薄膜,在所述的碳纳米管薄膜的上面设有透明导电薄膜,在透明导电薄膜上面设有透明材料基底,所述的透明导电薄膜作为上电极。
本发明提供的上述另一种基于碳纳米管薄膜的太阳能电池的制备方法,具体工艺步骤如下1)在透明材料的基底上的一侧沉积透明导电薄膜;2)使用银胶将铜网粘在硅片衬底一侧表面上,待银胶固化,以铜网作为碳纳米管薄膜太阳能电池的背电极;或在硅片衬底一侧表面蒸镀Ti/Pd/Ag金属薄膜,以Ti/Pd/Ag金属薄膜作为碳纳米管薄膜太阳能电池的背电极,并用导线引出;
3)将纯化处理后铺展的碳纳米管薄膜,转移到硅片衬底的另一侧表面上;将已沉积透明材料上的透明导电薄膜与碳纳米管薄膜紧密接触;4)以透明导电薄膜作为碳纳米管薄膜太阳能电池的上电极,并用导线引出。
本发明的上述技术方案中,其特征还在于所述的碳纳米管薄膜为单壁碳纳米管、双壁碳纳米管或定向碳纳米管薄膜,其厚度为50~200 nm。所述的透明导电薄膜为氧化锌铝或氧化铟锡。
本发明以碳纳米管薄膜作为太阳能电池的光电转换材料,电池的制备方法简单,相对于传统的硅基太阳能电池,理论上硅的使用量至少降低一半,因此,其制造成本低廉;又由于碳纳米管对于光的吸收包括了红外光、可见光以及紫外光范围,即使不制备绒面、减反射层,也可对太阳光具有很强的吸收,因此有助于提高太阳能电池的转换效率;相对于一般的碳纳米管/聚合物的太阳能电池,本发明所用的碳纳米管宏观形态为连续的膜状,组成薄膜的碳纳米管管束间具有很强的结合力,致使管束间的界面电阻很小,有利于电荷的传导,同时由于未使用有机物,提高了太阳能电池的使用寿命。目前所制备的基于碳纳米管薄膜的太阳能电池,其开路电压超过0.45V,短路电流超过0.5mA/cm2,具有潜在的应用前景。
图1为以碳纳米管薄膜为光电转换材料和上电极的碳纳米管薄膜太阳能电池的结构示意图。
图2为以碳纳米管薄膜为光电转换材料,以透明导电薄膜为上电极的碳纳米管薄膜太阳能电池的结构示意图。
图3为沉积在硅片衬底上的碳纳米管薄膜的扫描电镜照片。
具体实施方式下面结合附图和具体实施例对本发明做进一步的说明。
图1为本发明提供的以碳纳米管薄膜为光电转换材料和上电极的碳纳米管薄膜太阳能电池实施例的结构示意图。该碳纳米管薄膜太阳能电池含有背电极3、硅片衬底2和碳纳米管薄膜1,碳纳米管薄膜作为光电转换材料,同时作为上电极。本实施例中,背电极通过以下方法制备,使用银胶将铜网粘在硅片衬底的一侧表面上,通过红外灯加热,或将其置于干燥箱内,将银胶固化,以铜网作为背电极;或者在硅片衬底表面蒸镀Ti/Pd/Ag金属薄膜作为背电极,也可以采用常规太阳能电池背电极的制备方法实现。碳纳米管薄膜可采用单壁碳纳米管、双壁碳纳米管或定向碳纳米管薄膜,例如采用化学气相沉积法制备的单壁碳纳米管(专利号ZL02100684.9;Zhu HW et al.,Science,2002,296884-886)、双壁碳纳米管(专利号ZL 03 1 43102.X;Wei JQ et al.,J Phys Chem B,2004,1088844-8847)或定向碳纳米管(Zhang XF et al.,Chem.Phys.Lett.2002,362285-290)。将上述方法制备的碳纳米管或薄膜需要进行纯化处理在空气中氧化、双氧水浸泡、盐酸浸泡去除非晶碳和催化剂颗粒,得到较纯净的碳纳米管,这时所得到的碳纳米管相互团聚;将其置于去离子水中,滴加乙醇、丙酮等有机溶剂,碳纳米管便在去离子水表面铺展为碳纳米管薄膜(专利申请号200510123986.2,公开号CN1803594),其厚度为50~200nm。将所得到的碳纳米管薄膜转移到硅片衬底未制备背电极的一侧表面,使用红外灯、干燥箱等使其干燥,碳纳米管薄膜便与硅片衬底紧密结合。使用银胶将导线分别粘在碳纳米管薄膜和背电极上,作为电池的上电极和背电极引出。
图2为以碳纳米管薄膜为光电转换材料,以透明导电薄膜为上电极的碳纳米管薄膜太阳能电池实施例的结构示意图。碳纳米管薄膜太阳能电池含有背电极3、硅片衬底2、碳纳米管薄膜1、透明导电薄膜5和透明材料4。碳纳米管薄膜作为光电转换材料,透明导电薄膜作为上电极。以石英片、载玻片为透明材料,在其上沉积氧化锌铝或氧化铟锡透明导电薄膜。本实施例中,背电极通过以下方法制备,使用银胶将铜网粘在硅片衬底的一侧表面上,通过红外灯加热,或将其置于干燥箱内,将银胶固化,以铜网作为背电极;或者在硅片衬底表面蒸镀Ti/Pd/Ag金属薄膜作为背电极,也可以采用常规太阳能电池背电极的制备方法实现。碳纳米管薄膜可采用单壁碳纳米管、双壁碳纳米管或定向碳纳米管薄膜,例如采用化学气相沉积法制备的单壁碳纳米管(专利号ZL 02 1 00684.9;Zhu HW et al.,Science,2002,296884-886)、双壁碳纳米管(专利号ZL 03 143102.X;Wei JQ et al.,J Phys Chem B,2004,1088844-8847)或定向碳纳米管(Zhang XF et al.,Chem.Phys.Lett.2002,362285-290)。将上述方法制备的碳纳米管或薄膜需要进行纯化处理在空气中氧化、双氧水浸泡、盐酸浸泡去除非晶碳和催化剂颗粒,得到较纯净的碳纳米管,这时所得到的碳纳米管相互团聚;将其置于去离子水中,滴加乙醇、丙酮等有机溶剂,碳纳米管便在去离子水表面铺展为碳纳米管薄膜(专利申请号200510123986.2,公开号CN1803594),其厚度为50~200nm。将所得到的碳纳米管薄膜转移到硅片衬底未制备背电极的一侧表面,使用红外灯、干燥箱等使其干燥,碳纳米管薄膜便与硅片衬底紧密结合。将沉积在石英片或载玻片上的透明导电薄膜5与碳纳米管薄膜1紧密接触,作为上电极。使用银胶将导线粘在透明导电薄膜5和背电极3上,作为电池的上电极和背电极引出。
实施例1(1)使用银胶将铜网粘在硅片衬底2一侧表面,固化24小时,作为碳纳米管薄膜太阳能电池的背电极3,并用导线引出;(2)将纯化处理后的双壁碳纳米管置于去离子水中,此时碳纳米管呈团聚状,在其上滴加乙醇溶液,双壁碳纳米管铺展为厚度100nm的薄膜;(3)将铺展后的双壁碳纳米管薄膜再转移到硅片衬底2未制备背电极3的一侧表面上;(4)在红外灯下将双壁碳纳米管薄膜烤干,双壁碳纳米管薄膜则与硅片衬底紧密接触。以双壁碳纳米管薄膜作为太阳能电池的上电极,并用导线引出。
经实际测量,该碳纳米管薄膜太阳能电池的开路电压为0.45V,短路电流为0.5mA/cm2。
实施例2(1)使用银胶将铜网粘在硅片衬底2一侧表面,在红外灯下对铜网进行烘烤3小时,使其固化,作为碳纳米管薄膜太阳能电池的背电极3,并用导线引出;(2)将纯化处理后的单壁碳纳米管置于去离子水中,此时碳纳米管呈团聚状,在其上滴加丙酮溶液,单壁碳纳米管铺展为厚度50nm的薄膜;(3)将铺展为后单壁碳纳米管薄膜1在转移到硅片衬底2未制备背电极的一侧表面上;(4)将步骤(3)所得到的单壁碳纳米管薄膜和硅片衬底结合体置于干燥箱内,温度50℃保温3h,使单壁碳纳米管薄膜与硅片衬底紧密接触。以单壁碳纳米管薄膜作为太阳能电池的上电极,并用导线引出。
其测量结果与实施例1接近。
实施例3(1)将用丙酮擦拭干净的载玻片4放入中频交流磁控溅射镀膜机内。以氧化锌铝为靶材,使载玻片温度为250℃,本底真空为3.0×10-3Pa,氩气压力为0.8Pa,靶功率密度为3W/cm2,沉积时间70s。通过沉积得到厚度100nm左右的氧化锌铝薄膜5;(2)使用银胶将铜网粘在硅片衬底2一侧表面,在红外灯下对铜网进行烘烤3小时,使其固化,作为碳纳米管薄膜太阳能电池的背电极3,并用导线引出;(3)将制备的定壁碳纳米管超声1h,使其充分分散;(4)将充分分散的碳纳米管在转移到硅片衬底未制备背电极的一侧表面上,得到厚度为200nm的碳纳米管薄膜1;(5)在红外灯下将碳纳米管薄膜烤干,使碳纳米管薄膜1与硅片衬底2紧密接触;(6)将沉积在载玻片4上的氧化锌铝薄膜5与铺在硅片衬底2上的碳纳米管薄膜1紧密接触;(7)以氧化锌铝薄膜5作为碳纳米管薄膜太阳能电池的上电极,并用导线引出。
其测量结果与实施例1接近。
实施例4(1)将用乙醇擦拭干净的石英片4放入中频交流磁控溅射镀膜机内。以氧化铟锡为靶材,使石英片温度为350℃,本底真空为3.0×10-3Pa,氩气压力为1.0Pa,靶功率密度为3.5W/cm2,沉积时间60s。通过沉积得到厚度100nm左右的氧化铟锡薄膜5。
(2)在硅片衬底2的一侧使用真空蒸镀的方法沉积Ti/Pd/Ag,作为碳纳米管薄膜太阳能电池的背电极3,并用导线引出;
(3)将纯化处理后的双壁碳纳米管置于去离子水中,此时碳纳米管呈团聚状,在其上滴加乙醇溶液,双壁碳纳米管铺展为厚度100nm的薄膜1;(4)将铺展后的双壁碳纳米管薄膜1转移到硅片衬底2未蒸镀电极的一侧表面;(5)将步骤(4)所得到的双壁碳纳米管薄膜1和硅片衬底2结合体置于干燥箱内,温度50℃保温3h,使双壁碳纳米管薄膜1与硅片衬底2紧密接触;(6)将沉积在石英片4上的氧化铟锡薄膜5与铺在硅片衬底2上的碳纳米管薄膜1紧密接触;(7)以氧化铟锡薄膜5作为碳纳米管薄膜太阳能电池的上电极,并用导线引出。
其测量结果与实施例1接近。
权利要求
1.一种基于碳纳米管薄膜的太阳能电池,依次含有背电极(3)、硅片衬底(2)、光电转换材料以及上电极,其特征在于所述的光电转换材料采用碳纳米管薄膜(1),该碳纳米管薄膜同时作为上电极。
2.按照权利要求
1所述的一种基于碳纳米管薄膜的太阳能电池,其特征在于所述的碳纳米管薄膜(1)为单壁碳纳米管、双壁碳纳米管或定向碳纳米管薄膜,其厚度为50~200nm。
3.一种基于碳纳米管薄膜的太阳能电池,依次含有背电极(3)、硅片衬底(2)、光电转换材料以及上电极,其特征在于所述的光电转换材料采用碳纳米管薄膜(1),在所述的碳纳米管薄膜(1)的上面设有透明导电薄膜(5),在透明导电薄膜(5)上面设有透明材料基底(4),所述的透明导电薄膜(5)作为上电极。
4.按照权利要求
3所述的基于碳纳米管薄膜的太阳能电池,其特征在于所述的透明导电薄膜(5)为氧化锌铝或氧化铟锡。
5.按照权利要求
3或4所述的一种基于碳纳米管薄膜的太阳能电池,其特征在于所述的碳纳米管薄膜(1)为单壁碳纳米管、双壁碳纳米管或定向碳纳米管薄膜,其厚度为50~200nm。
6.一种如权利要求
1所述的基于碳纳米管薄膜的太阳能电池的制备方法,其特征在于该方法包括如下步骤1)使用银胶将铜网粘在硅片衬底一侧表面上,待银胶固化,以铜网作为碳纳米管薄膜太阳能电池的背电极;或在硅片衬底一侧表面蒸镀Ti/Pd/Ag金属薄膜,以Ti/Pd/Ag金属薄膜作为碳纳米管薄膜太阳能电池的背电极;2)将纯化处理后铺展为薄膜的碳纳米管,转移到硅片衬底的另一侧表面上,使碳纳米管薄膜与硅片衬底紧密接触,碳纳米管薄膜作为光电转换材料,同时作为上电极。
7.一种如权利要求
3所述的基于碳纳米管薄膜的太阳能电池的制备方法,其特征在于该方法包括如下步骤1)在透明材料的基底的一侧沉积透明导电薄膜;2)使用银胶将铜网粘在硅片衬底一侧表面上,待银胶固化,以铜网作为碳纳米管薄膜太阳能电池的背电极;或在硅片衬底一侧表面蒸镀Ti/Pd/Ag金属薄膜,以Ti/Pd/Ag金属薄膜作为碳纳米管薄膜太阳能电池的背电极;3)将纯化处理后铺展的碳纳米管薄膜,转移到硅片衬底的另一侧表面上;将已沉积在透明材料上的透明导电薄膜与碳纳米管薄膜紧密接触;4)以透明导电薄膜作为碳纳米管薄膜太阳能电池的上电极,用导线引出。
专利摘要
基于碳纳米管薄膜的太阳能电池及其制备方法,属于太阳能电池及纳米材料应用技术领域
。本发明的技术特点是采用碳纳米管薄膜为光电转换材料,碳纳米管薄膜同时作为上电极;或在碳纳米管薄膜上设有透明导电薄膜,碳纳米管薄膜作为光电转换材料,透明导电薄膜作为上电极。本发明以碳纳米管薄膜作为太阳能电池的光电转换材料,不仅进一步提高了其光电转换效率和使用寿命,而且电池的制备方法简单,制造成本低廉。
文档编号H01L31/0224GK1996620SQ200610169827
公开日2007年7月11日 申请日期2006年12月29日
发明者贾怡, 韦进全, 舒勤科, 王昆林, 庄大明, 张弓, 刘文今, 骆建彬, 王志诚, 吴德海 申请人:清华大学导出引文BiBTeX, EndNote, RefMan
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1