一种基于变容二极管内埋的基片集成波导连续移相器的制造方法

文档序号:7065533阅读:1369来源:国知局
一种基于变容二极管内埋的基片集成波导连续移相器的制造方法
【专利摘要】本发明涉及微波电路技术,特别是涉及相位连续可变的基片集成波导移相器。包括变容二极管、过渡结构、基片集成波导和外围电阻电容电感。通过在基片集成波导上沿电磁波传播方向加工两列共四个非金属化通孔,这四个非金属化通孔的中心构成一个长方形,长方形的中心与基片集成波导的物理中心重合;非金属化通孔中均内埋变容二极管,二极管正极接地,负极与一个固定容值电容C1连接,该固定容值电容C1的另一端接地;变容二极管的负极用细导线接出后,分别与扼流电感L1和限流电阻R1串联,同时与去耦电容C2并联接地。本发明结构简单,加工制作方便,相位随调谐电压连续可调,带宽较宽,传输损耗小,反射系数小,方便集成在电路中。
【专利说明】一种基于变容二极管内埋的基片集成波导连续移相器

【技术领域】
[0001]本发明专利涉及微波电路技术,特别是涉及相位连续可变的基片集成波导(Substrate Integrated Waveguide, SIff)移相器。
技术背景
[0002]基片集成波导(SIW)加工制作在介质基片上,其利用金属过孔实现类似于金属波导的电磁波传播特性,具有Q值高、传输损耗小、易于加工实现、体积小、成本低等优点,已经成为微波毫米波领域的研宄热点。移相器作为一种重要的微波元器件,常应用于相控阵技术、测试设备、信号的正交分解等方面,其主要功能是引入相移特性从而对微波信号的相位进行调整。
[0003]在相关的研宄报道中,主要采用三种方法实现基片集成波导移相器。2012年,K.Sellal基于内埋的PIN开关二极管实现了四位数字式基片集成波导步进移相器,参见文献 K.Sellal, L.Talbi, and Μ.Nedil, “Design and implementat1n of a controllablephase shifter using substrate integrated waveguide,,,IET Microw.AntennasPropag., vol.6, n0.9, pp.1090 - 1094, Apr.2012。
[0004]研宄者Tao Yang设计了 5种不同移相度数的基片集成波导移相器,利用微波开关选择需要的通道,参见文献 T.Yang, M.Ettorre, and R.Sauleau, “Novel phase shifterdesign based on substrate integrated waveguide technology,,,IEEE Microw.WirelessCompon.Lett.,vol.22,n0.10,pp.518 - 520,Oct.2012.以上两种移相器都可以看做是数字式的移相器。
[0005]研宄人员还研宄了基于终端反射式的连续调节模拟移相器,外部电压控制变容二极管的容值,从而改变反射端面复反射系数,实现输出信号的相位变化,参见文献Yan Ding, and Ke ffu, aVaractor-tuned substrate integrated waveguide phaseshifter, Microwave Symposium Digest, IEEE Mtt_s Internat1nal.1EEE, 2011:1-4.但是这种反射式移相器电路结构较复杂,并需要设计3dB耦合器。


【发明内容】

[0006]针对上述存在问题或不足,本发明提出了一种基于变容二极管内埋的基片集成波导连续移相器,包括变容二极管、过渡结构、基片集成波导和外围电阻电容电感,其特征是:在基片集成波导上沿电磁波传播方向加工两列共四个非金属化通孔,其中心构成一个长方形,长方形的中心与基片集成波导的物理中心重合;非金属化通孔中均内埋变容二极管,二极管正极接地,负极与一个固定容值电容Cl连接,Cl容值大于变容二极管容值100倍,该固定容值电容Cl的另一端接地;变容二极管的负极用细导线接出后,分别与扼流电感LI和限流电阻Rl串联,同时与去耦电容C2并联接地,单个变容二极管的电容可变范围为
0.23pF-l.46pF,等效串联电阻小于I Ω。
[0007]本发明的工作原理是:利用外部控制电压改变二极管的容值,导致基片集成波导内部的电场和磁场分布发生变化,迟滞或加快电磁场在基片集成波导中传播,从而实现移相功能。
[0008]本发明的有益结果是:结构简单,加工制作方便,可以利用现成的基片集成波导结构实现,不需要设计复杂的电路和结构形式。该移相器随调谐电压连续可调,带宽较宽,传输损耗小,反射系数小,方便集成在电路中。

【专利附图】

【附图说明】
[0009]图1是本发明实施例基片集成波导部分的俯视图;
[0010]图2是本发明实施例的单个变容二极管安装侧面示意图;
[0011]图3是本发明实施例的变容二极管电压与容值的关系;
[0012]图4是本发明实施例的变容二极管容值与相位的关系;
[0013]图5是本发明实施例的传输参数;
[0014]图6是本发明实施例的反射系数;
[0015]附图标记:微带线-1、过渡结构_2、SIW本体-3、金属化通孔-4、非金属化通孔-5。

【具体实施方式】
[0016]基于变容二极管内埋的基片集成波导连续移相器中的连续移相器实现在RT/Duroid 4003c的介质基片,该基片相对介电常数为3.38,损耗角正切为0.0027,厚度为
1.524mm。加工四个非金属化圆形通孔,这四个非金属化圆形通孔的圆心构成一个长方形,长方形的中心与基片集成波导的物理中心重合。非金属化通孔中内埋圆柱型变容二极管(圆形通孔直径比变容二极管直径大0.15mm±0.025mm),单个变容二极管的电容可变范围为0.23pF-l.46pF,等效串联电阻小于I Ω。
[0017]图2示出了变容二极管的安装方法,将变容二极管的正极用焊锡接地,负极与一个固定容值电容Cl相连(Cl取InF),该固定容值电容Cl的另一端接地。Cl的作用是在隔离直流的同时,减少对整个电路并联等效电容值的影响。变容二极管的负端用细导线接出后,分别与扼流电感LI和限流电阻Rl串联,与去耦电容C2并联到地。
[0018]本发明中的连续移相器在专业的电磁场仿真软件中实现,采用Ansoft公司的高频结构仿真软件(High Frequency Structure Simulator, HFSS)进行建模仿真,参数定义如下:Wm为微带线宽度,Ltaper为微带到SIW过渡结构的长度,Wtaper为过渡结构的最大宽度,Wsiw为SIW结构中金属化通孔的垂直距离,Lsiw为SIW结构的总长度,Svp为金属化通孔的孔间距,Dvp为金属化通孔的直径,Wl为非金属化通孔与同侧基片集成波导的通孔的行距,W2为电磁波传播垂直方向相邻非金属化通孔的孔距,W3为非金属化通孔与同侧基片集成波导电磁波传播方向的边的距离,W4为电磁波传播方向相邻非金属化通孔的孔距。
[0019]经过优化后,获得的最佳参数尺寸,具体如下:Wm = 3.409mm, Ltaper =23mm, Wtaper = 1mmj Wsiw = 50.432mm, Lsiw = 70mm, Svp = 1.6mm, Dvp = 0.8mm, Wl =29.1mm,W2 = 11.8mm,W3 = 17.915mm,W4 = 14.6mm。
[0020]图3给出了变容二极管的反向电压与容值之间的关系,可以看出电压与容值是成反比的。图4示出了移相器仿真的相位图,图5示出了移相器仿真的传输特性图,图6示出了移相器仿真的反射系数图。
[0021]从仿真结果可以看出,当对应的变容二极管容值范围为0.2pF-l.6pF时,该移相器可以在1.8-2.8GHz的频率范围内进行相位调节,相对带宽为43.5%,电压调节范围为0-30V,移相范围大于32°,传输参数优于-0.85dB,反射系数优于-10dB。
【权利要求】
1.一种基于变容二极管内埋的基片集成波导连续移相器,包括变容二极管、过渡结构、基片集成波导和外围电阻电容电感,其特征在于:在基片集成波导上沿电磁波传播方向加工两列共四个非金属化通孔,其中心构成一个长方形,长方形的中心与基片集成波导的物理中心重合;非金属化通孔中均内埋变容二极管,二极管正极接地,负极与一个固定容值电容Cl连接,Cl容值大于变容二极管容值100倍,该固定容值电容Cl的另一端接地;变容二极管的负极用细导线接出后,分别与扼流电感LI和限流电阻Rl串联,同时与去耦电容C2并联接地,单个变容二极管的电容可变范围为0.23pF-l.46pF,等效串联电阻小于I Ω。
2.如权利要求1所述基于变容二极管内埋的基片集成波导连续移相器,其特征在于:介质基片为RT/Duroid 4003c,相对介电常数为3.38,损耗角正切为0.0027,厚度为1.524_,选用非金属化圆形通孔和圆柱型变容二极管,Cl取InF ;
参数尺寸为:Wm = 3.409mm, Ltaper = 23mm, Wtaper = 10mm, Wsiw = 50.432mm, Lsiw =70mm,Svp = 1.6mm,Dvp = 0.8mm,Wl = 29.1mm,W2 = 11.8mm,W3 = 17.915mm,W4 = 14.6mm ; 其中Wm为微带线宽度,Ltaper为微带到SIW过渡结构的长度,Wtaper为过渡结构的最大宽度,Wsiw为SIW结构中金属化通孔的垂直距离,Lsiw为SIW结构的总长度,Svp为金属化通孔的孔间距,Dvp为金属化通孔的直径,Wl为非金属化通孔与同侧基片集成波导的通孔的行距,W2为电磁波传播垂直方向相邻非金属化通孔的孔距,W3为非金属化通孔与同侧基片集成波导电磁波传播方向的边的距离,W4为电磁波传播方向相邻非金属化通孔的孔距。
【文档编号】H01P1/185GK104518262SQ201410802374
【公开日】2015年4月15日 申请日期:2014年12月22日 优先权日:2014年12月22日
【发明者】彭浩, 江鹏, 杨涛 申请人:电子科技大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1