功率半导体器件及其制造方法
【专利摘要】本发明公开了一种功率半导体器件及其制造方法,所述功率半导体器件包括:基片、成核层、缓冲层、沟道层、势垒层、源极、漏极、栅极、及位于势垒层上的结终端结构,结终端结构从栅极靠近漏极一侧的边缘处向漏极方向延伸。由于结终端结构和其下势垒层之间的晶格常数差异引起的压电效应,使得势垒层与沟道层界面处的二维电子气被部分耗尽。结终端结构可以有效改善势垒层的电场分布,提升器件的击穿电压。
【专利说明】 功率半导体器件及其制造方法
【技术领域】
[0001]本发明涉及半导体【技术领域】,特别是涉及一种具有结终端结构的功率半导体器件及其制造方法。
【背景技术】
[0002]第三代半导体材料GaN具有高击穿场强(大于3MV/cm)、大禁带宽度(室温3.4eV),从而具有在高温高压下应用的前景。同时,由于II1-V化合物半导体具有强烈的自发极化和压电极化效应,在异质结的界面附近可以形成高电子浓度、高迁移率的二维电子气(2DEG)沟道。因此,GaN特别适用于高压、大电流、高温、高速、高功率器件的应用。
[0003]在实际的GaN高电子迁移率晶体管(HEMT)中耐压一般只能达到理论值的20?30%,这是因为靠近漏端的栅极边缘处在漏端施加高压下会出现电场集中的现象,所以在GaN HEMT中器件击穿通常发生在栅极靠近漏极一侧的边缘处。因此,提升器件的耐压能力通常从降低栅极漏端边缘处的电场峰值着手。
[0004]采用场板结构是降低电场峰值的一种常用方法。通常在栅极处先沉积一层绝缘介质层,再沉积一层金属场板,该场板与栅极或源极相连,具有一个固定电位,场板自身的等电位可以将栅边缘的电力线拉开,使得电势梯度变得平缓,将处于栅边缘处本来达到材料击穿极限的电场强度降低,而把峰值吸收到场板边缘,相当于扩大了耗尽区。因为电场的积分即为击穿电压,所以实际上击穿电压大得多。场板调制电场的最理想的结果是希望电场的分布图接近矩形,这样可以使电场强度对距离的积分面积最大,从而使得器件的击穿电压达到最大。
[0005]然而,场板结构会在靠近漏极边缘处引入新的电场尖峰。由于场板电极的边缘处同样存在电场聚集效应,场板边缘的介质击穿是器件击穿的另一条途径。因此在场板结构的实际使用过程中,还需考虑场板结构中绝缘介质自身的介电击穿。而介质层会引入电容,降低器件开关转换速度,增加功率损耗。因此,寻找新的场板技术以提升器件击穿电压是非常有必要的。
[0006]因此,针对上述技术问题,有必要提供一种具有结终端结构的功率半导体器件及其制造方法。
【发明内容】
[0007]有鉴于此,本发明提出了一种具有结终端结构的功率半导体器件及其制造方法。该结终端的材料为半导体,可以是AlGaN、Al含量渐变的AlGaN、InAlN, In含量渐变的ΙηΑ1Ν、η型GaN或p型GaN。该结终端从栅极靠近漏极一侧的边缘处向漏极方向延伸,并且其厚度沿漏极方向递减。
[0008]由于结终端材料的晶格常数大于势垒层材料的晶格常数,在结终端中引入压应力。在压电效应和自发极化效应的双重作用下,结终端中产生压电负电荷,产生的极化电场使势垒层与沟道层界面处的二维电子气的浓度降低。随着结终端厚度的变化,二维电子气的耗尽程度也是逐渐变化的,在结终端厚度大的地方,极化电场强度大,对二维电子气的耗尽程度最大,随着结终端厚度的减小,对二维电子气耗尽的程度减小。在整个势垒层沟道层界面处形成了结终端下耗尽程度渐变和其它部位保持高二维电子气浓度不变的结构。
[0009]对于采用此结终端结构的HEMT器件,当有外加电压加载到器件漏极上时,结终端可以对器件势垒层表面电场分布进行调节。由于结终端在靠近栅极边缘处的厚度最大,对二维电子气的耗尽最明显,故此处的电场峰值得到最大的抑制。同时由于结终端厚度在靠近漏极方向逐渐减小,使靠近漏极方向处的二维电子气耗尽程度逐渐减小,并最终恢复至没有耗尽时的二维电子浓度。因此终端边缘的电场线不会突然增加至很密集,不会在终端边缘引入新的电场尖峰。栅极和漏极之间势垒层表面电场在更大范围内平滑过渡,源漏极之间势垒层半导体承受的电压相近,提高了器件的击穿电压。
[0010]为了实现上述目的,本发明实施例提供的技术方案如下:
[0011]一种功率半导体器件,所述功率半导体器件包括:
[0012]基片;
[0013]位于所述基片上的成核层;
[0014]位于所述成核层上的缓冲层;
[0015]位于所述缓冲层上的沟道层;
[0016]位于所述沟道层上的势垒层;
[0017]位于所述势垒层上的源极和漏极,以及位于所述势垒层上源极和漏极之间的栅极;
[0018]位于所述势垒层上的结终端结构,所述结终端结构从栅极靠近漏极一侧的边缘处向漏极方向延伸,所述结终端结构的晶格常数大于势垒层的晶格常数。
[0019]作为本发明的进一步改进,所述结终端结构的厚度从栅极向漏极方向递减。
[0020]作为本发明的进一步改进,所述结终端结构为直线型结终端结构、曲线型结终端结构或阶梯状结终端结构。
[0021]作为本发明的进一步改进,所述势垒层材料为AlGaN,所述结终端结构材料为AlGaN、Al含量渐变的AlGaN、η型GaN或p型GaN。
[0022]作为本发明的进一步改进,所述势垒层材料为InAIN,所述结终端结构材料为InAlN, In含量渐变的InAIN、η型GaN或p型GaN。
[0023]作为本发明的进一步改进,所述栅极下方的势垒层中形成有栅极沟槽,栅极沟槽内沉积有栅极金属。
[0024]作为本发明的进一步改进,所述栅极和结终端结构上全部或部分形成有栅极金属场板,栅极和结终端结构通过栅极金属场板相连接。
[0025]作为本发明的进一步改进,所述源极和结终端结构上全部或部分形成有源极金属场板,源极和结终端结构通过源极金属场板相连接,源极金属场板下方形成有空气桥和/或介质桥。
[0026]相应地,一种功率半导体器件的制造方法,所述方法包括:
[0027]S1、提供一基片;
[0028]S2、在所述基片上形成成核层;
[0029]S3、在所述成核层上形成缓冲层;
[0030]S4、在所述缓冲层上形成沟道层;
[0031]S5、在所述沟道层上形成势垒层;
[0032]S6、在所述势垒层上形成结终端结构,所述结终端结构的晶格常数大于势垒层的晶格常数;
[0033]S7、在所述势垒层上形成源极和漏极,在所述势垒层上源极和漏极之间形成栅极。
[0034]作为本发明的进一步改进,所述步骤S6中的结终端结构通过金属有机物化学气相沉积、溅射工艺、蒸发工艺、或化学涂布工艺形成。
[0035]作为本发明的进一步改进,所述步骤S6具体为:
[0036]在势垒层上沉积结终端层,并在结终端层上形成光刻胶层;
[0037]使用具有疏密点阵的掩膜版对结终端层上的光刻胶层进行光刻并显影,然后进行干法刻蚀,去除部分结终端层,形成结终端结构。
[0038]作为本发明的进一步改进,所述掩膜版从栅极向漏极方向曝光度逐渐增加。
[0039]作为本发明的进一步改进,所述步骤S6具体为:
[0040]在势垒层上沉积结终端层,并在结终端层上形成光刻胶层;
[0041]使用掩膜版对结终端层上的光刻胶层进行光刻并显影,然后进行干法刻蚀,去除部分结终%5层;
[0042]减小曝光窗口的宽度,重复上述步骤直至形成结终端结构。
[0043]作为本发明的进一步改进,所述结终端结构为直线型结终端结构、曲线型结终端结构、或阶梯状结终端结构。
[0044]本发明具有以下优点:
[0045]由于结终端结构和其下势垒层之间的晶格常数差异引起的压电效应,使得势垒层与沟道层界面处的二维电子气被部分耗尽;结终端结构可以有效改善势垒层的电场分布,提升器件的击穿电压。
【专利附图】
【附图说明】
[0046]为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
[0047]图1为本发明第一实施例中具有直线型结终端结构的HEMT的结构示意图;
[0048]图2a为图1中A_A’位置处的能带示意图,图2b为图1中B_B’位置处的能带示意图;
[0049]图3为本发明第一实施例中具有直线型结终端结构的HEMT的制备方法流程图;
[0050]图4为本发明第二实施例中具有阶梯状结终端结构的HEMT的结构示意图;
[0051]图5为本发明第二实施例中具有阶梯状结终端结构的HEMT的制备方法流程图;
[0052]图6a、6b为本发明第二实施例中具有阶梯状结终端结构的HEMT的另一制备方法流程图;
[0053]图7所示为本发明第三实施例中具有曲线型结终端结构的HEMT的结构示意图;
[0054]图8所示为本发明第四实施例中具有曲线型结终端结构的HEMT的结构示意图;
[0055]图9所示为本发明第五实施例中具有栅极金属场板和结终端结构的HEMT的结构示意图;
[0056]图10所示为本发明第六实施例中具有源极金属场板和结终端结构的HEMT的结构示意图。
[0057]图11为本发明第七实施例中具有直线型结终端结构的HEMT的结构示意图。
【具体实施方式】
[0058]以下将结合附图所示的【具体实施方式】对本发明进行详细描述。但这些实施方式并不限制本发明,本领域的普通技术人员根据这些实施方式所作出的结构、方法、或功能上的变换均包含在本发明的保护范围内。
[0059]此外,在不同的实施例中可能使用重复的标号或标示。这些重复仅为了简单清楚地叙述本发明,不代表所讨论的不同实施例或结构之间具有任何关联性。
[0060]本发明公开了一种功率半导体器件,包括:
[0061]基片;
[0062]位于基片上的成核层;
[0063]位于成核层上的缓冲层;
[0064]位于缓冲层上的沟道层;
[0065]位于沟道层上的势垒层;
[0066]位于势垒层上的源极和漏极,以及位于势垒层上源极和漏极之间的栅极;
[0067]位于势垒层上的结终端结构,结终端结构从栅极靠近漏极一侧的边缘处向漏极方向延伸,结终端结构的晶格常数大于势垒层的晶格常数。
[0068]本发明还公开了一种功率半导体器件的制造方法,包括:
[0069]S1、提供一基片;
[0070]S2、在基片上形成成核层;
[0071]S3、在成核层上形成缓冲层;
[0072]S4、在缓冲层上形成沟道层;
[0073]S5、在沟道层上形成势垒层;
[0074]S6、在势垒层上形成结终端结构,结终端结构的晶格常数大于势垒层的晶格常数;
[0075]S7、在势垒层上形成源极和漏极,在势垒层上源极和漏极之间形成栅极。
[0076]实施例一
[0077]参图1所示为本发明第一实施例中具有直线型结终端结构的HEMT的结构示意图。
[0078]该HEMT具体包括:
[0079]基片12,基片可以是硅、蓝宝石、碳化硅或其他材料;
[0080]在基片12上外延生长的氮化物成核层13和缓冲层14,成核层13包括GaN或AlN或其他氮化物,起到匹配基片材料和高质量外延氮化镓层的作用,影响上方由氮化镓/铝镓氮构成的异质结的晶体质量、表面形貌以及电学性质等参数;
[0081]在缓冲层14上生长的沟道层15,沟道层15包含非掺杂GaN层;
[0082]在沟道层15上生长的势垒层16,势垒层16包含AlGaN或其他氮化物,沟道层15和势垒层16—起组成半导体异质结结构,在二者界面处形成高浓度二维电子气,并在GaN沟道层的异质结界面处产生导电沟道;
[0083]在势垒层16之上为源极17和漏极20,源极17和漏极20与势垒层16形成欧姆接触,该欧姆金属的材质可以为金属N1、T1、Al、Au等金属中的一种或多种的组合;源极17和漏极20之间的势垒层16之上为栅极18,栅极18与势垒层16形成肖特基接触;
[0084]在栅极18靠近漏极边缘处为结终端结构19,结终端结构19的厚度从栅极边缘处向漏极处递减,本实施例中结终端结构19的材料为AlGaN,且其中的Al含量小于势垒层AlGaN中的Al含量。
[0085]由于结终端AlGaN中Al含量小于势垒层AlGaN中的Al含量,故结终端AlGaN的晶格常数大于势垒层AlGaN的晶格常数,在二者界面处引入了压应力。由于AlGaN的压电极化系数很大,故产生的极化电场很强,AlGaN中还存在着自发极化效应,在压电效应和自发极化效应的双重作用下,结终端AlGaN中产生压电负电荷,对其下势垒层和沟道层界面二维电子气具有耗尽作用。
[0086]对于半导体结终端结构,厚度较大处的结终端部分还有更多的压电负电荷,对二维电子气的耗尽作用更强,如图2a A-A’处的能带示意图所示。而厚度较小的结终端处的二维电子气的耗尽程度较小,如图2b B-B’处的能带示意图所示,相比较于图A-A’位置处的能带图,费米能级上移,费米能级更接近于GaN导带底部,因此此处的二维电子气浓度更大。从厚度最小的结终端处到厚度最大的结终端处,其下的二维电子气浓度逐渐减小。结终端厚度最大处,即栅极靠近漏极处的二维电子气耗尽程度最大,故结终端对此处电场峰值的降低作用最为明显。同时,随着结终端厚度的减小,对二维电子气耗尽的作用减小,既保持了低的沟道导通电阻,又满足了调制电场强度的要求。
[0087]本实施例中HEMT的制造方法具体为:首先提供一基片,在基片上依次生长成核层、缓冲层、GaN沟道层、AlGaN势垒层,并在势垒层上形成源极和漏极、以及位于源极和漏极之间的栅极,最后在势垒层上形成AlGaN结终端结构。
[0088]下面着重叙述该结终端结构的制造方法。
[0089]首先在AlGaN势垒层上沉积一层AlGaN结终端层;
[0090]在结终端层上使用光刻胶做光刻工艺,使用特殊设计的掩膜版对结终端区域进行光刻,此掩膜版通过调整遮光点阵的疏密程度,形成结终端从栅极到远离栅极逐步增加曝光度的掩膜设计,显影后形成厚度从栅极向漏极方向递减的光刻胶层,如图3所示;
[0091]然后进行干法刻蚀工艺对光刻区域进行刻蚀,通过优化光刻胶和AlGaN结终端层的刻蚀选择比(如1:1),在势垒层上形成符合要求的具有斜面区域的直线型结终端结构,如图1所示。再形成器件的栅极、源极和漏极,最后还可增加一层钝化层,钝化层可以是氮化硅、氧化铝、氧化铪等。钝化后的HEMT可以降低器件的表面态密度,抑制HEMT的电流崩塌效应。
[0092]本实施方式中的结终端结构也可以是成分由结终端和势垒层界面处向结终端表面呈梯度渐变的AlGaN(Al含量在结终端和势垒层界面处最大,但小于势垒层中Al含量)、η型GaN或ρ型GaN等。
[0093]在本实施方式中,势垒层16也可以为InAIN,对应的结终端结构可以是ΙηΑ1Ν(Ιη含量大于势垒层中In含量)、成分由结终端和势垒层界面处向结终端表面呈梯度逐渐增加的InAlN(结终端中的In含量始终大于势垒层中In含量)、η型GaN、或ρ型GaN等。
[0094]实施例二
[0095]参图4所示为本发明第二实施例中具有阶梯状结终端结构的HEMT的结构示意图。
[0096]本实施方式中结终端结构19为阶梯状结构,其余与第一实施例相同。该结终端可以是AlGaN,其中的Al含量小于势垒层中的Al含量。该结终端结构与第一实施例中所起的作用相同,其对势垒层AlGaN和沟道层GaN界面处二维电子气的耗尽也是渐变的,从而对电场的调制也是渐变的。
[0097]本实施方式中的结终端结构也可以是成分由结终端和势垒层界面处向结终端表面呈梯度渐变的AlGaN(Al含量在结终端和势垒层界面处最大,但小于势垒层中Al含量)、η型GaN或ρ型GaN等。
[0098]在本实施方式中,势垒层16也可以为InAIN,对应的结终端结构可以是ΙηΑ1Ν(Ιη含量大于势垒层中In含量)、成分由结终端和势垒层界面处向结终端表面呈梯度逐渐增加的InAlN(结终端中的In含量始终大于势垒层中In含量)、η型GaN、或ρ型GaN等。
[0099]该结终端结构在制备方法上较第一实施例中厚度平滑变化的结构更为简单。实施例二中结终端结构的制备方法如图5所示,先在势垒层16上沉积一层AlGaN结终端层19 ;
[0100]然后在结终端层上使用光刻胶21做光刻工艺,在曝光时,通过调整光刻掩膜版上遮光点阵的疏密程度,使其透过的光从靠近结终端栅极处向漏极处递减,从而使光刻胶的曝光程度递减,在经过显影后,光刻胶形成阶梯状结构;
[0101]然后进行干法刻蚀工艺对光刻区域进行刻蚀,通过优化光刻胶和AlGaN结终端层的刻蚀选择比(如1:1),在势垒层上形成符合要求的具有阶梯状的结终端结构。再形成器件的栅极、源极和漏极,最后还可增加一层钝化层。
[0102]与第一实施例中厚度连续变化的结终端相比,本实施例中光刻掩膜版对分辨率的要求低,因此更容易设计。
[0103]参图6a、6b所示为本发明第二实施例中具有阶梯状结终端结构的HEMT的另一种制备方法流程图。
[0104]本实施例中通过多次光刻来完成,首先在结终端层19上涂光刻胶21,然后经过曝光、显影后再经过刻蚀,去除部分GaN结终端层,使其形成图6a所示的结构。重复以上过程,并减小曝光窗口的宽度,形成图6b的结构。重复以上过程,形成图4所示的具有阶梯状结终端结构的HEMT器件。
[0105]实施例三
[0106]参图7所示为本发明第三实施例中具有曲线型结终端结构的HEMT的结构示意图。
[0107]与第一实施例相比,本实施例的不同之处在于结终端为上凸曲线形状的结终端结构。曲线型结终端可以通过调整曲线的曲率来调整电场分布,相比直线型结终端通过倾斜角度来优化电场分布,增加了优化电场分布的方法,可以更好的改善器件特性。
[0108]在制造方法上与第一实施例类似,通过设计掩膜版上的遮光点阵疏密程度,先形成上凸曲线的光刻胶,然后通过刻蚀,形成上凸曲线形状的结终端结构。
[0109]实施例四
[0110]参图8所示为本发明第四实施例中具有曲线型结终端结构的HEMT的结构示意图。
[0111]与第三实施例相比,本实施例的不同之处在于结终端为下凹曲线形状的结终端结构。该曲线型结终端可以通过调整曲线的曲率来调整电场分布,相比直线型结终端通过倾斜角度来优化电场分布,增加了优化电场分布的方法,可以更好的改善器件特性。
[0112]在制造方法上与第三实施例类似,通过设计掩膜版上的遮光点阵疏密程度,先形成下凹曲线的光刻胶,然后通过刻蚀,形成下凹曲线形状的结终端结构。
[0113]实施例五
[0114]参图9所示为本发明第五实施例中具有栅极金属场板和结终端结构的HEMT的结构示意图。
[0115]与第一实施例相比,本实施例在结终端结构19之上引入了栅极金属场板21。该栅极金属场板的材料可以与栅极金属相同,也可以是其他与栅极形成欧姆接触的金属。在结终端结构和栅极金属场板的共同作用下,该结构可以更进一步地抑制栅极靠近漏极端的电场尖峰,从而提高器件的击穿电压。且该结构中,栅极金属场板下没有绝缘介质层,结构简单,容易实现。
[0116]实施例六
[0117]参图10所示为本发明第六实施例中具有源极金属场板和结终端结构的HEMT的结构示意图。
[0118]与第一实施例相比,本实施例在结终端结构19之上引入了源极金属场板22。在该结构中,源极与结终端结构通过具有空气桥的源极金属场板相连接,形成源极金属场板。该源极金属场板的材料可以与源极金属相同,也可以是其他与源极形成欧姆接触的金属。在结终端和源极金属场板的共同作用下,该结构可以更进一步地抑制栅极靠近漏极端的电场尖峰,从而提高器件的击穿电压。
[0119]进一步地,本实施方式中源极金属场板22下方还可以全部或部分形成绝缘介质层,源极金属场板形成介质桥或介质桥与空气桥的组合,同样可以抑制栅极靠近漏极端的电场尖峰,提高器件的击穿电压。
[0120]实施例七
[0121]参图11所示为本发明第七实施例中具有直线型结终端结构的HEMT的结构示意图。
[0122]与第一实施例相比,本实施例的不同之处在于栅极18之下形成沟槽,栅极金属沉积在沟槽中,同时形成栅极金属结终端结构。当栅极下的二维电子气耗尽时可以获得增强型器件,栅结终端结构可以进一步降低栅极边缘的电场峰值,使器件的耐压能力增强。
[0123]同样地,在实施例二、实施例三、实施例四、实施例五、实施例六、实施例七中均可增加栅极凹槽,在此不一一列出。
[0124]以上虽然通过一些示例性的实施例对本发明的结终端结构及其在GaN基功率半导体器件中的应用与制造方法进行了详细的描述,但是以上这些实施例并不是穷举的,本领域技术人员可以在本发明的精神和范围内实现各种变化。如结终端结构并不限于上述实施例中的直线型、曲线型和阶梯状三种情况,其他形状或结构的结终端结构同样属于本发明所保护的范围;相应地,其制造方法中结终端结构的制备并不限于上述实施例中的疏密点阵光刻、多次光刻的方法,其他能够制备本发明中结终端结构的方法均属于本发明所保护的范围。
[0125]综上所述,与现有技术相比本发明具有以下优点:
[0126]由于结终端结构和其下势垒层之间的晶格常数差异引起的压电效应,使得势垒层与沟道层界面处的二维电子气被部分耗尽;
[0127]结终端结构可以有效改善势垒层的电场分布,提升器件的击穿电压。
[0128]对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
[0129]此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
【权利要求】
1.一种功率半导体器件,其特征在于,所述功率半导体器件包括: 基片; 位于所述基片上的成核层; 位于所述成核层上的缓冲层; 位于所述缓冲层上的沟道层; 位于所述沟道层上的势垒层; 位于所述势垒层上的源极和漏极,以及位于所述势垒层上源极和漏极之间的栅极; 位于所述势垒层上的结终端结构,所述结终端结构从栅极靠近漏极一侧的边缘处向漏极方向延伸,所述结终端结构的晶格常数大于势垒层的晶格常数。
2.根据权利要求1所述的功率半导体器件,其特征在于,所述结终端结构的厚度从栅极向漏极方向递减。
3.根据权利要求2所述的功率半导体器件,其特征在于,所述结终端结构为直线型结终端结构、曲线型结终端结构或阶梯状结终端结构。
4.根据权利要求1所述的功率半导体器件,其特征在于,所述势垒层材料为八,所述结终端结构材料为八1(?队八1含量渐变的八1(?队II型&^或?型(^抓。
5.根据权利要求1所述的功率半导体器件,其特征在于,所述势垒层材料为1“故,所述结终端结构材料为队III含量渐变的队II型&^或?型
6.根据权利要求1所述的功率半导体器件,其特征在于,所述栅极下方的势垒层中形成有栅极沟槽,栅极沟槽内沉积有栅极金属。
7.根据权利要求1所述的功率半导体器件,其特征在于,所述栅极和结终端结构上全部或部分形成有栅极金属场板,栅极和结终端结构通过栅极金属场板相连接。
8.根据权利要求1所述的功率半导体器件,其特征在于,所述源极和结终端结构上全部或部分形成有源极金属场板,源极和结终端结构通过源极金属场板相连接,源极金属场板下方形成有空气桥和/或介质桥。
9.一种如权利要求1所述的功率半导体器件的制造方法,其特征在于,所述方法包括: 31、提供一基片; 32、在所述基片上形成成核层; 33、在所述成核层上形成缓冲层; 34、在所述缓冲层上形成沟道层; 35、在所述沟道层上形成势垒层; 36、在所述势垒层上形成结终端结构,所述结终端结构的晶格常数大于势垒层的晶格常数; 37、在所述势垒层上形成源极和漏极,在所述势垒层上源极和漏极之间形成栅极。
10.根据权利要求9所述的方法,其特征在于,所述步骤36中的结终端结构通过金属有机物化学气相沉积、溅射工艺、蒸发工艺、或化学涂布工艺形成。
11.根据权利要求9所述的方法,其特征在于,所述步骤36具体为: 在势垒层上沉积结终端层,并在结终端层上形成光刻胶层; 使用具有疏密点阵的掩膜版对结终端层上的光刻胶层进行光刻并显影,然后进行干法刻蚀,去除部分结终端层,形成结终端结构。
12.根据权利要求11所述的方法,其特征在于,所述掩膜版从栅极向漏极方向曝光度逐渐增加。
13.根据权利要求9所述的方法,其特征在于,所述步骤36具体为: 在势垒层上沉积结终端层,并在结终端层上形成光刻胶层; 使用掩膜版对结终端层上的光刻胶层进行光刻并显影,然后进行干法刻蚀,去除部分结终端层; 减小曝光窗口的宽度,重复上述步骤直至形成结终端结构。
14.根据权利要求9所述的方法,其特征在于,所述结终端结构为直线型结终端结构、曲线型结终端结构、或阶梯状结终端结构。
【文档编号】H01L29/778GK104377241SQ201410521547
【公开日】2015年2月25日 申请日期:2014年9月30日 优先权日:2014年9月30日
【发明者】裴轶, 李元, 吴传佳 申请人:苏州捷芯威半导体有限公司