专利名称:一种双阳极短接的igbt器件的利记博彩app
技术领域:
本发明属于半导体功率器件技术领域,涉及绝缘栅双极型晶体管(IGBT)。
背景技术:
近年来,随着微电子技术的迅猛发展,社会对于电子电力中最具有优势的功率器件要求不断提高,而作为功率器件代表之一的绝缘栅双极性晶体管拥有的优势被广泛关注。绝缘栅双极性晶体管(IGBT)由双极性晶体管和功率金属氧化物半导体场效应晶体管组成,由于具有电压控制、导通压降低、输入阻抗高、驱动电路简单、安全工作区宽等特点, 被广泛应用于空调、逆变器、电磁炉等,以及要求快速低损耗的领域。传统的非穿通型(NPT) IGBT(结构如图1所示)具有高耐压特点,但其正向导通压降相对穿通型(PT)IGBT较高。为了降低正向导通压降,需要提高空穴发射效率,增强电导调制效应,故需把阳极P+区2的浓度和厚度提高。但此举会引入新的弊端,在关断过程中, N-漂移区内的电子要克服一定的势垒才能被集电极所抽取。而N-漂移区3内大部分电子空穴对只能通过复合才能消失,使得非穿通型IGBT功耗和电流拖尾都会增大。并且,非穿通型IGBT晶体管的实际关断损耗要比由通常所定义的关断损耗所得的计算值要大得多。 但是这种NPT型IGBT也具有其独特的优点呈现出电压正温度系数;在IGBT应用特别是并联使用的时候,具有很大的优势。为了改善NPT-IGBT关断性质,研究者们提出了很多新结构。文献(PA. Gough, M. R. Simpson, and V. Rumenik, “ Fast switching lateral insulated gate transistor, "in IEEE IEDM Tech. Dig, 1986,pp. 218-221)中提到利用阳极短路结构(Short-Anoded IGBT,如图2所示)实现正向导通压降和关断损耗的折衷,该器件结构的阳极区由并排的P+空穴发射区21和N+电子抽取区22构成,通过调整N+电子抽取区22和P+空穴发射区21的长度比例来得到器件导通压降和关断损耗的优化值。与传统的NPT型IGBT相比,这种阳极短路结构把P+阳极区的一部分替换成N+电子抽取区22。 在器件关断时,利用N+电子抽取区22作为电子抽取通道,电子能通过N+电子抽取区22被金属集电极1抽取,减小了关断时间。但是,该器件结构在解决了关断损耗问题的同时由于 P+空穴发射区的注入效率的降低,还带来了正向导通压降过大的问题。并且IGBT会经历 VDOMS导通到IGBT导通的过渡,这样会带来负阻现象,影响器件的正常工作。为了克服器件导通过程中的负阻现象,则阳极短路结构需要几倍NPT型IGBT元胞的大小,这样就会大大的降低硅片的有效使用面积。为了提高阳极短路P+空穴发射区的发射效率,有效的去除负阻现象,文献 (Green, D. W. ;Sweet, Μ. ;Vershinin, K. V. ;Hardikar, S. ;Narayanan, Ε.Μ.S Performance analysis of the segment npn anode LIGBT. IEEE Transactions on Electron Devices, 2005,vol. 52,issue 11,pp. 2482-2488)提出了一种 SA-NPN 结构(如图 3 所示),该结构在阳极短路结构基础上,在N+电子抽取区22上方引入一层P+基区23。由于P+基区23的增加,能够提高器件的空穴注入效率,降低正向导通压降。但是SA-NPN结构在关断的时候通过NPN晶体管进行电子抽取,抽取速度比阳极短路结构慢且有一定的拖尾电流,增加了关断时间,随之就会导致IGBT的关断损耗增加。
发明内容
随着技术的发展,如何得到IGBT器件的关断损耗和正向导通压降的折衷一直是业界研究的方向之一。为了得到一个有效的折衷,本发明针对上述技术现状提供一种双阳极短接的IGBT器件。该IGBT器件与同类IGBT器件相比,在相同的电流密度下具有更低的正向导通压降,在相同的导通压降下具有更短的关断时间,从而实现了器件导通压降和关断损耗的优化折衷。本发明技术方案如下一种双阳极短接的IGBT器件,如图4所示,包括阳极结构、漂移区结构和阴极结构。所述阳极结构为双阳极短接结构,包括第一 P+空穴发射层21、第二 P+空穴发射层23、 金属集电极I和二氧化硅阻挡层10 ;所述二氧化硅阻挡层10位于第一 P+空穴发射层21 背面;所述金属集电极I位于第一 P+空穴发射层21侧面和所述第二 P+空穴发射层23下方,且与第一 P+空穴发射层21和第二 P+空穴发射层23相接触;所述第二 P+空穴发射层 23位于N-漂移区3底部,与所述第一 P+空穴发射层21平行错开分布,第一 P+空穴发射层 21和第二 P+空穴发射层23之间形成电子沟道。本发明的实质是对现有IGBT器件的阳极结构进行了改进,提出了双阳极短接的 IGBT器件结构,其中双阳极短接的阳极结构可与不同的漂移区结构和阴极结构相搭配,形成不同类型的IGBT器件。比如1)所述阳极结构可以与PT型或NPT型漂移区结构相搭配,形成双阳极短接的PT型IGBT或双阳极短接的NPT型IGBT ;2)所述阳极结构可以与 Plannar型、Trench型或CSTBT型阴极结构相搭配,形成双阳极短接的Plannar型IGBT、双阳极短接的Trench型IGBT或双阳极短接的CSTBT型IGBT等等。本发明提供的双阳极短接的IGBT器件,阳极结构中的第二 P+空穴发射层23的长度Lp、厚度、形状可根据具体设计要求而相应变化;同理,金属化集电极9的长度、厚度、形状也可以随着第二 P+空穴发射层23的变化而变化。本发明的工作原理本发明提供的双阳极短接的IGBT器件,可以更好的折衷绝缘栅双极型晶体管导通压降与关断损耗之间的矛盾关系,获得较小的正向导通压降和较小的关断损耗,现以图4 为例,说明本发明的工作原理。图4所示为本发明提出的双阳极短接的Plannar NPT型IGBT器件,该器件是在传统的NPT型IGBT的基础上,结合阳极短路型IGBT和SA-NPN型IGBT的一种新结构。在器件正向导通时,通过双P+空穴发射层(21和23)的引入大大的提高了空穴的注入效率,使整个N-漂移区3的电子和空穴浓度增加,优化漂移区载流子浓度分布。数据表明,与阳极短路型Short-Anoded IGBT和SA-NPN型IGBT相比,图4所示的双阳极短接的Plannar NPT 型IGBT器件的正向导通压降分别降低了 23%、13%。由于第二 P+空穴发射层23的引入, 阻止了电子直接流向金属集电极1,使电子空穴对在N-漂移区3处堆积,再次增强了器件体内的电导调制能力,因此大大降低了器件正向导通压降(如图9所示)。通过延长第二 P+空穴发射层23的长度Lp,可增加空穴的注入效率,从而有效地消除NDR区(如图10所示)。其温度特性也得到了明显改善,即使在零下40摄氏度下,这种双阳极短接的Plannar NPT型IGBT器件也没有NDR现象,且呈现出正的温度特性(如图11所示)。在器件正向阻断时,由两个P+空穴发射层(21和23)之间的N-区域形成一个电子快速抽取的通道, 使得关断时间大大的降低。二氧化硅阻挡层10的引入,使得电子在第一 P+空穴发射层21 上方堆积。与SA-NPN型,阳极短路型Short-Anoded IGBT相比,图4所示的双阳极短接的 Plannar NPT型IGBT器件的关断时间分别降低22%、17%,有效减少IGBT器件的关断损耗 (如图12、13所示)。综上所述,本发明的实质是对现有IGBT器件的阳极结构进行了改进,提出了双阳极短接的IGBT器件;所述双阳极短接的IGBT器件,在阳极结构中增加了一层与第一 P+空穴发射层21平行错开分布的第二 P+空穴发射层23,两个P+空穴发射层采用金属集电极短接,形成双阳极短接的阳极结构。所述双阳极短接的阳极结构一方面大大提高了空穴的注入效率,另一方面使整个N-漂移区的电子和空穴浓度大大增加,优化了漂移区载流子浓度分布。这使得本发明提出的双阳极短接的IGBT器件比各种同类型的IGBT器件具有更低的正向导通压降。同时由于第二 P+空穴发射层23的引入,能够阻止电子直接流向金属集电极1,进一步加强了器件体内的电导调制能力,这样就更进一步地降低了器件正向导通压降。另外,通过适当延长第二 P+空穴发射层23的长度Lp,可增加空穴的注入效率,从而有效消除NDR区、改善器件的温度特性;双阳极短接的阳极结构还能使得IGBT器件的关断时间大大的降低,从而有效减少IGBT器件的关断损耗。
图
图
图
图
图
图
图
图
图
I是常规的NPT型IGBT器件结构示意图。
2是阳极短路型Short-Anoded IGBT器件结构示意图。
3是SA-NPN型IGBT器件结构示意图。
4是本发明提出的双阳极短接的Plannar NPT型IGBT器件结构示意图。
5是Trench FS IGBT器件结构示意图。
6是本发明提供的双阳极短接的Trench型IGBT器件结构示意图。
7是CSTBT型IGBT器件结构示意图。
8是双阳极短接的CSTBT型IGBT器件结构示意图。
I至图8中,I为金属集电极,3为N-漂移区,4为P-基区,5为P+阴极接触区, 6为N+源区,7为金属发射极,8为多晶硅栅极,10是二氧化硅阻挡层,13是N+电场截止区, 14是载流子储存层,18是栅氧化层,19是多晶硅栅电极与金属发射极之间的绝缘层,21是第一 P+空穴发射层,22是N+电子抽取区,23是第二 P+空穴发射层。图9是SA-NPN型、阳极短路型Short-Anoded IGBT和本发明提出的双阳极短接的 IGBT器件的I-V曲线仿真测试图。图10是本发明提出的双阳极短接的IGBT器件通过改变Lp的长度而得到的正向导通的I-V曲线仿真测试图。图11是阳极短路型Short-Anoded IGBT和本发明提出的双阳极短接的IGBT器件在25°C和_40°C I-V曲线仿真测试图。图12是SA-NPN型、阳极短路型Short-Anoded IGBT和本发明提出的双阳极短接的IGBT器件关断时间的曲线仿真测试图。图13是SA-NPN型、阳极短路型Short-Anoded IGBT和本发明提出的双阳极短接的IGBT器件关断损耗的曲线仿真测试图。
具体实施例方式采用本发明的一种双阳极短接平面型绝缘栅双极型晶体管,可以更好的折衷绝缘栅双极型晶体管导通压降与关断损耗之间的矛盾关系。随着半导体技术的发展,采用本发明还可以制作更多的高耐压器件。一、双阳极短接的Plannar NPT型IGBT器件如图4所示,器件包括阳极结构、漂移区结构和阴极结构。所述阳极结构为双阳极短接结构,包括第一 P+空穴发射层21、第二 P+空穴发射层23、金属集电极I和二氧化硅阻挡层10 ;所述二氧化硅阻挡层10位于第一 P+空穴发射层21背面;所述金属集电极I位于第一 P+空穴发射层21侧面和所述第二 P+空穴发射层23下方,且与第一 P+空穴发射层21 和第二 P+空穴发射层23相接触;所述第二 P+空穴发射层23位于N-漂移区3底部,与所述第一 P+空穴发射层21平行错开分布,第一 P+空穴发射层21和第二 P+空穴发射层23 之间形成电子沟道。所述漂移区结构为N-漂移区3。所述阴极结构包括P-基区4,P+阴极接触区5,N+源区6,金属发射极7和多晶硅栅极8 ;所述P-基区4和P+阴极接触区5位于N-漂移区3顶部一侧,并对所述N+源区6形成半包围形状;所述金属化发射极7位于器件顶层一侧,并于所述P+阴极接触区5和N+源区6相接触;所述多晶硅栅极8位于器件顶层另一侧,并于所述N+源区6、P-基区4和N-漂移区3相接触。二、双阳极短接的Trench型IGBT器件如图6所示,器件包括阳极结构、漂移区结构和阴极结构。所述阳极结构为双阳极短接结构,包括第一 P+空穴发射层21、第二 P+空穴发射层23、金属集电极I和二氧化硅阻挡层10 ;所述二氧化硅阻挡层10位于第一 P+空穴发射层21背面;所述金属集电极I位于第一 P+空穴发射层21侧面和所述第二 P+空穴发射层23下方,且与第一 P+空穴发射层21 和第二 P+空穴发射层23相接触;所述第二 P+空穴发射层23位于N-漂移区3底部,与所述第一 P+空穴发射层21平行错开分布,第一 P+空穴发射层21和第二 P+空穴发射层23 之间形成电子沟道。所述漂移区结构为N-漂移区3。所述阴极结构包括P-基区4,P+阴极接触区5,N+源区6,金属发射极7和多晶硅栅极8 ;所述P+阴极接触区5和N+源区6并排分布与N-漂移区3顶部,并与位于器件顶层的所述金属化发射极7相接触;所述多晶硅栅极8为沟槽型栅极,位于所述N+源区6之间,并向下穿过所述P-基区4延伸入N-漂移区3中;多晶硅栅极8的侧面和底面具有栅氧化层18,多晶硅栅极8的顶面与金属化发射极7之间具有绝缘层19 ;所述P-基区4位于N-漂移区3中,其上表面与所述P+阴极接触区5和N+源区6相接触。三、双阳极短接的CSTBT型IGBT器件如图8所示,器件包括阳极结构、漂移区结构和阴极结构。所述阳极结构为双阳极短接结构,包括第一 P+空穴发射层21、第二 P+空穴发射层23、金属集电极I和二氧化硅阻挡层10 ;所述二氧化硅阻挡层10位于第一 P+空穴发射层21背面;所述金属集电极I位于第一 P+空穴发射层21侧面和所述第二 P+空穴发射层23下方,且与第一 P+空穴发射层21和第二 P+空穴发射层23相接触;所述第二 P+空穴发射层23位于N-漂移区3底部,与所述第一 P+空穴发射层21平行错开分布,第一 P+空穴发射层21和第二 P+空穴发射层23 之间形成电子沟道。所述漂移区结构为N-漂移区3。所述阴极结构包括P-基区4,P+阴极接触区5,N+源区6,金属发射极7和多晶硅栅极8 ;所述P+阴极接触区5和N+源区6并排分布与N-漂移区3顶部,并与位于器件顶层的所述金属化发射极7相接触;所述多晶硅栅极8为沟槽型栅极,位于所述N+源区6之间,并向下穿过所述P-基区4延伸入N-漂移区3中;多晶硅栅极8的侧面和底面具有栅氧化层18,多晶硅栅极8的顶面与金属化发射极7之间具有绝缘层19 ;所述P-基区4位于N-漂移区3中,其上表面与所述P+阴极接触区5和N+源区6相接触。本发明提供的双阳极短接的IGBT器件,除上述三种具体类型之外,将双阳极短接的阳极结构与其他漂移区结构和阴极结构进行不同的组合搭配,还可以得到更多的双阳极短接的IGBT器件。比如1)所述阳极结构可以与PT型或NPT型漂移区结构相搭配,形成双阳极短接的PT型IGBT或双阳极短接的NPT型IGBT ;2)所述阳极结构可以与Plannar型、 Trench型或CSTBT型阴极结构相搭配,形成双阳极短接的Plannar型IGBT、双阳极短接的 Trench型IGBT或双阳极短接的CSTBT型IGBT等等,在此不再——例举。本发明不加详细说明,本领域技术人员就应当知道,所述双阳极短接的阳极结构中,第二 P+空穴发射层23的长度、厚度、形状可根据需要进行设计,而金属化集电极9的长度、厚度、形状可随着第二P+空穴发射层23的变化而变化;另外,制备器件的半导体材料除硅外,还可采用碳化硅、砷化镓或氮化镓,器件中电极和金属连线可以是铝、铜或者其它合适的金属或合金。
权利要求
1.一种双阳极短接的IGBT器件,包括阳极结构、漂移区结构和阴极结构;其特征在于, 所述阳极结构为双阳极短接结构,包括第一 P+空穴发射层(21)、第二 P+空穴发射层(23)、 金属集电极(1)和二氧化硅阻挡层(10);所述二氧化硅阻挡层(10)位于第一 P+空穴发射层背面;所述金属集电极(1)位于第一 P+空穴发射层侧面和所述第二 P+空穴发射层下方,且与第一 P+空穴发射层和第二 P+空穴发射层相接触;所述第二 P+空穴发射层位于N-漂移区C3)底部,与所述第一 P+空穴发射层平行错开分布,第一 P+空穴发射层和第二 P+空穴发射层之间形成电子沟道。
2.根据权利要求1所述双阳极短接的IGBT器件,其特征在于,所述漂移区结构为PT型或NPT型漂移区结构;所述阴极结构Plarmar型、Trench型或CSTBT型阴极结构。
3.根据权利要求1所述双阳极短接的IGBT器件,其特征在于,所述漂移区结构为N-漂移区⑶;所述阴极结构包括P-基区G),P+阴极接触区(5),N+源区(6),金属发射极(7) 和多晶硅栅极⑶;所述P-基区⑷和P+阴极接触区(5)位于N-漂移区(3)顶部一侧, 并对所述N+源区(6)形成半包围形状;所述金属化发射极(7)位于器件顶层一侧,并于所述P+阴极接触区(5)和N+源区(6)相接触;所述多晶硅栅极⑶位于器件顶层另一侧,并于所述N+源区(6)、P-基区(4)和N-漂移区(3)相接触。
4.根据权利要求1所述双阳极短接的IGBT器件,其特征在于,所述漂移区结构为N-漂移区⑶;所述阴极结构包括P-基区G),P+阴极接触区(5),N+源区(6),金属发射极(7) 和多晶硅栅极⑶;所述P+阴极接触区(5)和N+源区(6)并排分布与N-漂移区(3)顶部, 并与位于器件顶层的所述金属化发射极(7)相接触;所述多晶硅栅极(8)为沟槽型栅极,位于所述N+源区(6)之间,并向下穿过所述P-基区⑷延伸入N-漂移区(3)中;多晶硅栅极(8)的侧面和底面具有栅氧化层(18),多晶硅栅极(8)的顶面与金属化发射极(7)之间具有绝缘层(19);所述P-基区(4)位于N-漂移区C3)中,其上表面与所述P+阴极接触区 (5)和N+源区(6)相接触。
5.根据权利要求1所述双阳极短接的IGBT器件,其特征在于,所述漂移区结构为N-漂移区⑶;所述阴极结构包括P-基区G),P+阴极接触区(5),N+源区(6),金属发射极(7) 和多晶硅栅极⑶;所述P+阴极接触区(5)和N+源区(6)并排分布与N-漂移区(3)顶部, 并与位于器件顶层的所述金属化发射极(7)相接触;所述多晶硅栅极(8)为沟槽型栅极,位于所述N+源区(6)之间,并向下穿过所述P-基区⑷延伸入N-漂移区(3)中;多晶硅栅极(8)的侧面和底面具有栅氧化层(18),多晶硅栅极(8)的顶面与金属化发射极(7)之间具有绝缘层(19);所述P-基区(4)位于N-漂移区(3)中,其上表面与所述P+阴极接触区 (5)和N+源区(6)相接触。
全文摘要
一种双阳极短接的IGBT器件,属于半导体功率器件技术领域。器件的阳极结构为双阳极短接结构,包括第一、第二P+空穴发射层、金属集电极和二氧化硅阻挡层;二氧化硅阻挡层位于第一P+空穴发射层背面;金属集电极位于第一P+空穴发射层侧面和第二P+空穴发射层下方,且与两个P+空穴发射层相接触;第二P+空穴发射层位于N-漂移区底部,与第一P+空穴发射层平行错开分布,第一、第二P+空穴发射层之间形成电子沟道。本发明通过对IGBT器件的阳极结构进行改进,提高了空穴的注入效率,优化了漂移区载流子浓度分布,加强了器件体内的电导调制能力,有效消除了NDR区,有效减少IGBT器件的关断损耗,最终实现了器件导通压降和关断损耗的一种优化折衷。
文档编号H01L29/417GK102544084SQ201210068388
公开日2012年7月4日 申请日期2012年3月15日 优先权日2012年3月15日
发明者安俊杰, 张波, 李泽宏, 陈伟中 申请人:电子科技大学