专利名称:半导体模块的利记博彩app
技术领域:
本发明涉及一种具备由树脂形成的模压部的半导体模块等。
背景技术:
一直以来,已知一种电力半导体模块,具备:电路基板,其由金属底板、高导热绝缘层和布线图案构成;电力半导体元件,其被接合于布线图案的元件搭载部;筒状外部端子连接体,其被设置在与电力半导体元件电连接的布线图案上,且插入连接有外部端子;贯穿孔,其被形成在金属底板上,并用于通过安装部件而将安装于金属底板的另一侧的表面上的冷却散热片固定于金属底板上;传递模压树脂体,其使金属底板的另一侧的表面和筒状外部端子连接体的上部露出,并形成有与贯穿孔连通且直径大于贯穿孔的直径的、安装部件的插入孔部,且以对金属底板的一侧和侧面及电力半导体元件进行覆盖的方式而被封闭(例如,参照专利文献I)。在先技术文献专利文献专利文献1:日本特开2010-129868号公报
发明内容
发明所要解决的课题可是,在具备由树脂形成的模压部的半导体模块中,虽然半导体模块自身的小型化很重要,但是除此之外,从安装时的组装性的观点来看,布线部件的端子从半导体模块内部的引出方式和半导体模块中的与周围部件(例如水道)结合的结合部的设定方法也很重要。因此,本发明的一个目的在于,提供安装时的组装性良好的半导体模块等。用于解决问题的方法根据本发明的一个方面,提供一种半导体模块,其特征在于,包括:半导体元件;布线部件,其与所述半导体元件相连接;冷却板,其为具有所述半导体元件侧的第一面、和与该第一面为相反侧的第二面的冷却板,且在第一方向上的端部处具有结合部;模压部,其通过在所述半导体元件、所述布线部件及所述冷却板上模压树脂而形成,所述冷却板的结合部从所述模压部中露出,并且,所述布线部件的端子以在与所述第一方向大致垂直的第二方向上延伸的方式而从所述模压部中露出。发明效果根据本发明,能够获得安装时的组装性良好的半导体模块等。
图1为表示本发明的一个实施例(实施例1)的半导体模块I的外观的立体图。图2为为了便于说明而分解地图示了图1的半导体模块I的主要部分要素的分解立体图。图3为沿着图1的半导体模块I的各条线的剖视图。图4为表示驱动基板90与半导体模块I的连接方法的一个示例的图,其中,(A)为从半导体模块I的上方观察时的透视图,(B)为沿着(A)中的A-A线的剖视图。图5为表示树脂模压部60的延长侧部62与冷却板50的侧面50b之间的紧贴方式的优选的多个示例的图。图6为表示半导体模块I的安装状态的一个示例的剖视图。图7为表示本发明的另一个实施例(实施例2)的半导体模块2的主要截面的图。图8为表示两个半导体模块2的安装状态的一个示例的剖视图。图9为表不本发明的另一个实施例(实施例3)的半导体模块3的下表面侧的俯视图。图10为从半导体模块3的下表面侧表示两个半导体模块3的安装状态的一个示例的俯视图。图11为表示本发明的另一个实施例(实施例4)的半导体模块4的主要截面的图。图12为从半导体模块4的下方观察时的半导体模块4的投影图。图13为表示本发明的另一个实施例(实施例5)的半导体模块5的主要截面的图。图14为表示能够在各实施例中共通地应用的、两个半导体模块的安装状态的一个示例的剖视图。图15为表示包括上述的各实施例的半导体模块I及半导体模块2等的、混合动力系统600的一个不例的不意图。
具体实施例方式以下,参照附图,对用于实施本发明的最佳方式进行说明。图1为,表示本发明的一个实施例(实施例1)的半导体模块I的外观的立体图,其中,(A)为从上方观察时的立体图,(B)为从下方观察时的立体图。并且,虽然上下方向根据搭载状态而不同,但是,在下文中,为了便于说明,将半导体模块I的冷却板侧设定为下方。另外,作为用语的定义,“中心侧”或者“中央侧”以半导体模块I的中心O (参照图1 (A))为基准。并且,中心O只要是大概的位置即可,并非必须严格限定的性质上的中心。图2为,为了便于说明而分解地图示了图1的半导体模块I的主要部分的要素的分解立体图。在图示的示例中,半导体模块I构成在混合动力汽车或者电动汽车中所使用的电机驱动用的逆变器。图3为,沿着图1的半导体模块I的各条线的剖视图,其中,(A)为沿着A-A线的剖视图,(B)为沿着B-B线的剖视图,(C)为沿着C-C线的剖视图,(D)为沿着D-D线的剖视图。作为主要的构成要素,半导体模块I包括半导体元件10、布线部件20、22、金属块30、绝缘薄膜40、冷却板50和树脂模压部60。
半导体元件10包括电力半导体元件,还可以包括例如IGBT (Insulated GateBipolar Transistor,绝缘栅双极性晶体管)、MOSFET (metal oxide semiconductorfield-effect transistor, MOS (金属氧化物半导体)场效应晶体管)等开关元件。并且,在图示的示例中,半导体模块I构成逆变器,半导体元件10可以为,构成在正极线和负极线之间相互并列配置的U相、V相、W相的各个上桥臂及各个下桥臂的、IGBT及二极管。布线部件20、22由金属板(引脚框架基材)加工构成。在图示的示例中,布线部件20为电源线用的布线部件(电源线用引脚)。另外,布线部件22具有针状的形态,且为信号传输用的布线部件(信号线用引脚)。布线部件20也可以通过焊料等而连接于所对应的半导体元件10的端子。在图示的示例中,布线部件20通过焊料层80而连接于所对应的半导体元件10。另外,布线部件22可以通过引线接合(铝细线)等而连接于所对应的半导体元件10的端子。例如,关于IGBT,布线部件20经由金属块30而被连接于IGBT的集电极。此夕卜,布线部件20连接于IGBT的发射极。布线部件22与IGBT的栅电极相连接。金属块30具备吸收并扩散热(瞬态热等)的散热装置功能。虽然金属块30只要是具有散热装置功能的材料则也可以由金属以外的材料构成,但是优选为,由铜等具有优良的热扩散性的金属形成。在金属块30的上表面上,通过焊料等而设置有半导体元件10。在图示的示例中,在金属块30的上表面上,通过焊料层82而设置有半导体元件10。金属块30主要吸收在半导体元件10的驱动时所产生的来自半导体元件10的热,并使之在内部扩散。 绝缘薄膜40例如由树脂薄膜构成,其能够在确保金属块30和冷却板50之间的电绝缘性的同时,实现从金属块30向冷却板50的较高的热传导。如图3等所示,绝缘薄膜40具有与金属块30的下表面相比而较大的外形。并且,绝缘薄膜40优选为,在不使用焊料或金属膜等的条件下直接将金属块30与冷却板50接合在一起。由此,与使用焊料的情况相比,能够降低热阻,并能够简化工序。另夕卜,在冷却板50侧,也不需要进行焊接用表面处理。例如,绝缘薄膜40由与后文所述的树脂模压部60相同的树脂材料(环氧树脂)构成,并利用后文所述的树脂模压部60的模压时的压力及温度,而与金属块30及冷却板50相接合。冷却板50由热传导性优良的材料形成,例如,可以由铝等的金属形成。冷却板50在下表面侧具有散热片54。关于散热片54的数量和排列方式,只要未特别提及(参照图11等的结构),则可采用任意的数量和排列方式。另外,散热片54的结构(形状和高度等)也可以是任意的结构。散热片54例如也可以通过平直散热片或针状散热片的交错配置等而实现。在半导体模块I的安装状态下,散热片54与冷却水或冷却空气这样的的冷却介质接触。通过这种方式,半导体元件10驱动时所产生的来自半导体元件10的热经由金属块30、绝缘薄膜40及冷却板50而从冷却板50的散热片54向冷却介质传递,从而实现了半导体元件10的冷却。并且,散热片54既可以与冷却板50 —体形成(例如,铝压铸),也可以通过焊接等而与冷却板50 —体化。冷却板50在一个方向(在本例中,为图1中的Y方向)上的两端部处包括结合部52。各个结合部52提供螺栓底座面,在螺栓底座面上,形成有螺栓插穿用的结合孔53。冷却板50可以结合于流道形成部件(水道、外壳等)100,所述流道形成部件100形成了使冷却介质流通的冷却介质流道(参照图6)。如图1等所示,冷却板50的结合部52被形成在,冷却板50的端部中的、与其他区域相比向Y方向突出的区域内。即,在图1所示的示例中,在两端部上分别形成有两处结合部52,在各端部中,两处结合部52被形成在X方向上的两侧的区域、且与两者之间的区域相比向Y方向突出的区域内。并且,虽然冷却板50的结合部52例如通过冲压加工而与冷却板50 —体形成,但是也可以独立于冷却板50而单独形成,并通过焊接等而被固定于冷却板50上。如图3等所示,树脂模压部60通过利用树脂来对半导体元件10、布线部件20、22、金属块30、绝缘薄膜40及冷却板50进行模压而形成。即,树脂模压部60为,面向冷却板50的上表面而将半导体模块I的主要构成要素(半导体元件10、布线部件20、22、金属块30及绝缘薄膜40)封闭在内部的部位。并且,所使用的树脂例如可以为环氧树脂。但是,关于布线部件20、22,与周围装置连接的连接用端子20a、22a及用于将这些端子引出至预定位置为止的附属部分(以下,包括附属部分在内,简称为端子20a、22a)从树脂模压部60中露出。另外,冷却板50的结合部52从树脂模压部60中露出。S卩,结合部52被设定在冷却板50中的、与紧贴在树脂模压部60上的紧贴区域相比靠(Y方向)侧方侧的位置上。并且,布线部件20、22的各端子20a、22a可以通过由树脂模压部60进行模压封闭后的引线截断及成形加工从而实现最终形状。在此,在本实施例中,如图1、图3 (A)及图3 (C)等所示,布线部件20、22的各个端子20a、22a从树脂模压部60中向X方向露出而延伸,相对于此,冷却板50的结合部52从树脂模压部60中向Y方向露出而延伸。S卩,布线部件20、22的各个端子20a、22a与冷却板50的结合部52之间成为,二者从树脂模压部60中露出的方向正交的关系。换言之,布线部件20、22的各个端子20a、22a在半导体模块I的X方向上的两侧面上从树脂模压部60中露出,冷却板50的结合部52在导体模块I的Y方向上的两侧面上从树脂模压部60中露出。根据这种结构,由于布线部件20、22的各个端子20a、22a不会在冷却板50的结合部52 (特别是结合孔53)的铅直方向上方延伸,因此,能够使冷却板50的结合部52从正上方与后文所述的流道形成部件(水道、外壳等)100 (参照图6)进行螺栓结合,从而螺栓结合的易操作性良好,并且,能够消除浪费的空间。另外,如图4所示,在将布线部件22的各端子(信号端子)22a连接在驱动基板90上时,驱动基板90的X方向上的两端在上下方向上与布线部件22的各个端子(信号端子)22a的存在区域(信号端子区)相对置。因此,在灵活运用驱动基板90的中央部(在图中由W所指示的区域)时,设计的自由度将会提高(例如,在驱动基板90内,容易使高电压的电路块和低电压的电路块分开)。并且,冷却板50的结合部52的延伸方向及布线部件20、22的各个端子20a、22a的延伸方向只要在俯视观察时大致垂直即可,也可以在实质上未破坏上述效果的范围内从90度偏离。另外,冷却板50的结合部52的延伸方向及布线部件20、22的各个端子20a、22a的延伸方向并非必须要相对于树脂模压部60的所对应的侧面而大致垂直,此外,布线部件20、22的各个端子20a、22a还可以在从树脂模压部60中露出后具有在上下方向或Y方向上弯曲的部位。实质上,布线部件20、22的各个端子20a、22a只要位于与结合部52露出一侧的树脂模压部60的侧面不同的侧面一侧即可。
如在图3 (C)及图3 (D)中对比所示,树脂模压部60优选为,在露出布线部件20、22的端子20a、22a露出的侧部区域(图3 (C))内,具有与邻接于该侧部区域的侧部区域(图3D)相比向侧方突出的肋部66。肋部66在布线部件20、22的露出部付近,相对于布线部件20、22而在上下方向上延伸。S卩,肋部66以从上下方向对布线部件20、22的各个端子20a、22a的基部(相对于树脂模压部60而言的基部)进行覆盖的方式而被设置。肋部66仅对应于布线部件20、22的端子20a、22a露出的侧部区域而被设置。因此,如图1 (B)所示,在树脂模压部60的侧部中,肋部66之间成为凹状,而作为侧部整体则成为凹凸状。由此,能够增加在树脂模压部60的侧部处在Y方向上相邻的布线部件20、22的各端子20a、22a之间的沿面距离。另外,如图3 (C)所示,肋部66优选为,不仅在上下方向上被设置于布线部件20、22的露出位置处,还跨及树脂模压部60的侧部的高度方向上的较宽范围而被设置。由此,能够提高树脂模压部60的端部的强度和刚性。例如,朝向下方,肋部66可以延伸至冷却板50的上表面50c为止,或者,可以如图3 (C)所不,延伸至与冷却板50的下表面50a相同的平面为止。另外,朝向上方,肋部66可以超过布线部件20、22的各个端子20a、22a而延伸,例如,可以如图3 (C)所示,延伸至构成树脂模压部60的上表面的高度为止。如图3等所示,树脂模压部60实质上紧贴在布线部件20、22的大致整体(除上述的露出的端子20a、22a部分、及与半导体元件10连接的连接面之外)、半导体元件10的上表面(除布线部件20、22的设置部分之外)及侧面、金属块30的上表面(除半导体元件10等的设置部分之外)及侧面、绝缘薄膜40的上表面(除金属块30的设置部分之外)及侧面、及冷却板50的上表面上。另外,如图3 (B)所示,树脂模压部60优选为,具有延长侧部62,所述延长侧部62延伸至与冷却板50的下表面50a相同的平面为止,并紧贴在冷却板50的侧面50b上。由此,由于不仅能够使树脂模压部60紧贴在冷却板50的上表面50c上,还能够使树脂模压部60紧贴在冷却板50的侧面50b上,因此,能够有效地提高冷却板50与树脂模压部60之间的紧贴性。另外,能够防止因树脂模压部60的翘曲等而引起的树脂模压部60从冷却板50上的剥离。另外,在冷却板50的上表面50c中的与树脂模压部60紧贴的紧贴部处,能够省略表面处理(粗化、底漆涂布处理)。但是,根据需要,也可以维持所述的表面处理。并且,只要延长侧部62在上下方向上,至少从与冷却板50的侧面50b相比靠上方的位置延伸至与冷却板50的下表面50a相同的平面为止即可。在图3 (B)所示的示例中,延长侧部62与上述的肋部66同样地,在上下方向上跨树脂模压部60的整个侧部而被设置。并且,在图示的示例中,在存在肋部66的区域中,延长侧部62与肋部66成为一体的关系,并被构成于肋部66的内侧(树脂模压部60的中心侧)(参照图3 (D))。该延长侧部62优选为,为了提高紧密性,从而面对冷却板50中的较宽范围内的侧面50b而设置。例如,在图示的示例中,延长侧部62在冷却板50的Y方向上的端部处,面对结合部52以外的区域中的、冷却板50的侧面50b而设置。即,延长侧部62在冷却板50的Y方向上的两端部处,面对X方向上的两个结合部52之间的区域中的、冷却板50的侧面50b而设置。另外,延长侧部62在冷却板50的X方向上的两端部处,面对冷却板50的侧面50b而以跨及Y方向上的全长的方式而设置。即,延长侧部62在冷却板50的X方向上的两端部处,面对冷却板50的侧面50b的整个面而设置。由此,由于面对除冷却板50的结合部52以外的实质上全部的区域中的、冷却板50的侧面50b而设置有延长侧部62,因此,能够有效地提高冷却板50与树脂模压部60之间的紧贴性。图5为,表示树脂模压部60的延长侧部62与冷却板50的侧面50b之间的紧贴方式的优选的多个示例的图。并且,仅仅在图5中,从易于观察的观点出发,使树脂模压部60的阴影线与其他图不同。并且,图5表示相当于图3 (B)的截面。为了进一步提高树脂模压部60的延长侧部62与冷却板50的侧面50b之间的紧贴性,如图5所示,也可以在冷却板50的下表面50a上形成有薄壁部51。如图5所示,薄壁部51被形成在冷却板50的下表面50a中的侧面50b侧。S卩,薄壁部51通过使冷却板50的端部处的下表面50a薄壁化而形成。树脂模压部60的延长侧部62在薄壁部51处覆盖冷却板50的下表面50a。此时,树脂模压部60的延长侧部62的、在薄壁部51处对冷却板50的下表面50a进行覆盖的部分被设定为,与冷却板50中的、冷却板50的中心侧的下表面50a实质上成为同一平面这样的厚度。薄壁部51被设置于,冷却板50的侧面50b中的、设置有树脂模压部60的延长侧部62的范围内。即,薄壁部51对不存在延长侧部62的结合部52以外的区域中的、冷却板50的侧面50b而设置。薄壁部51优选为,对应于延长侧部62,从而对应于冷却板50的除结合部52以外的实质上全部区域中的、冷却板50的侧面50b而设置。薄壁部51可以通过蚀刻、冲压、机械加工、压铸用的模具的形状等的任意方法而形成。更具体而言,在图5中的(A)所示的示例中,薄壁部51通过以固定厚度ta使冷却板50的端部处的下表面50a薄壁化而形成。在图5中的(B)所示的示例中,薄壁部51通过以可变厚度使冷却板50的端部处的下表面50a薄壁化而形成。薄壁化的厚度从冷却板50的端部的边缘部趋向中心侧,从第一厚度ta起经过厚于该第一厚度ta的第二厚度tb而变化为第一厚度ta。并且,代替此方式,也可以从第一厚度&起经过厚于该第一厚度ta的第二厚度tb而变化为第三厚度(0以上、且与冷却板50厚度相比而较薄的厚度)。在图5中的(C)所示的示例中,薄壁部51通过以可变厚度使冷却板50的端部处的下表面50a薄壁化而形成。薄壁化的厚度从冷却板50的端部的边缘部趋向中心侧,从第一厚度ta起逐渐变化为厚度O。并且,代替此方式,薄壁化的厚度也可以从冷却板50的端部的边缘部趋向中心侧,从第一厚度&起逐渐变化至第四厚度(大于0且薄于第一厚度ta的厚度)。在图5中的(D)所示的示例中,薄壁部51通过以可变厚度使冷却板50的端部处的下表面50a薄壁化而形成。薄壁化的厚度从冷却板50的端部的边缘部趋向中心侧,从第一厚度ta起逐渐变化至与该第一厚度&相比而较厚的第二厚度tb。在图5所示的任意一个示例中,树脂模压部60的延长侧部62均通过在薄壁部51处弯入至冷却板50的下表面50a侧(从下方侧覆盖薄壁部51)为止,从而能够以从上下包围冷却板50的端部的方式而紧贴在冷却板50的端部上,由此能够提高树脂模压部60与冷却板50之间的紧贴性。并且,图5所示的各个示例毕竟只不过是具有代表性的多个示例。另外,图5所示的各个示例还能够进行任意的组合。对于薄壁部51的形状,只要为树脂模压部60的延长侧部62能够在与冷却板50中的、冷却板50的中心侧的下表面50a实质上成为同一平面的范围内,从冷却板50的侧面50b弯入至冷却板50的下表面50a侧为止的形状即可。图6为,表示半导体模块I的安装状态的一个示例的剖视图。在图6中,利用沿着图1的A-A线截断的截面(相当于图3 (A)的截面)来图示了半导体模块I的安装状态。如图6所示,半导体模块I被结合在流道形成部件(水道、外壳等)100上,所述流道形成部件100形成了使冷却介质(在本示例中,为水)流通的冷却介质流道102。更具体而言,半导体模块I以冷却板50的下表面50a侧、即散热片54侧面向冷却介质流道102的朝向,通过螺栓110而被结合在流道形成部件100上。为了这个目的,在流道形成部件100上,与螺栓110的结合位置(即,冷却板50的结合部52上的结合孔53的位置)相对应地形成有螺纹孔106。螺栓110穿过冷却板50的结合部52上的结合孔53而拧进流道形成部件100的螺纹孔106中。并且,如图6所示,冷却介质流道102通过冷却板50的下表面50a和流道形成部件100协调工作而形成。另外,在冷却板50的下表面50a和流道形成部件100之间,设置有用于对冷却板50的下表面50a与流道形成部件100之间进行密封的密封材料120。即,为了防止冷却介质从流道形成部件100的冷却介质流道102内的泄漏,使密封材料120被设置在流道形成部件100的密封部108与冷却板50的下表面50a的密封部55之间。冷却板50的下表面50a的密封部55可以跨及冷却板50的外周部的全周而被设置(但是,在冷却介质流道102的入口和出口上,也可以根据需要而实现其他方式的密封)。同样,流道形成部件100的密封部108以与冷却板50的下表面50a的密封部55相对应的方式而设置。密封部55及密封部108优选为,被设定于与金属块30的侧部相比靠侧方侧、且与树脂模压部60的侧部相比靠中心侧的位置处。由此,能够有效地确保密封区域,并且,能够实现半导体模块I在Y方向上的小型化,还能够防止树脂模压部60暴露于水等的冷却介质中的情况。另外,由于密封部55被设定于与螺栓110的结合位置(结合部52)相比靠冷却板50的中心侧的位置处,因此,能够使螺栓110的结合位置(结合部52)从密封区域(密封部55)远离。在图示的示例中,密封部108以从对冷却板50的结合部52进行支承的支承面109起向下方设定高低差的方式而形成。在由该高低差而形成的、冷却板50的下表面50a的密封部55与密封部108之间的间隙中,以弹性地压溃的状态而配置有密封材料120。密封材料120例如为截面呈大致圆形的橡胶垫片,但只要是在密封部55及密封部108之间实现密封的材料,则也可以以任意的材料、截面而形成。密封材料120具有与密封部55及密封部108相对应的形状、外形,在密封部55及密封部108跨及冷却板50的外周部的全周而被设置的情况下,密封材料120也可以具备与冷却板50的外周部相对应的环状的外形。并且,关于密封部55与密封部108的关系(间隙等),只要与密封材料120协调工作而在密封部55与密封部108之间实现必要的密封,则可以是任意的关系。图7为,表示本发明的另一个实施例(实施例2)的半导体模块2的主要截面的图。图7与沿着图1的A-A线截断的截面(相当于图3 (A)的截面)相对应。本实施例的半导体模块2的特征在于冷却板501的结构,关于其他结构,可以与上述的实施例1的半导体模块I相同。以下,主要对冷却板501的特征性结构进行说明。冷却板501在一个方向(在本示例中,为图1中的Y方向)上的两端部处包括结合部521。结合部521的结构除以下说明的板厚的特征以外,可以与上述的实施例1的冷却板50的结合部52相同。另外,各个端部上的结合部521优选为,除以下说明的板厚的特征以夕卜,被设定为关于冷却板501的X方向而对称(在图的左右方向上对称)。如图7所示,冷却板501的结合部521以与冷却板501的中央部(为与端部相比靠中心侧的部位,在图示的示例中,为结合部521以外的部分)的板厚相比而较薄的板厚被形成。冷却板501的结合部521优选为,以冷却板501的中央部的板厚的一半的板厚而形成。另外,Y方向上的一侧(在本示例中,为左侧)的端部上的、冷却板501的结合部521被形成为,与冷却板501的上表面50c成为同一平面,另一方面,Y方向上的另一侧(在本示例中,为右侧)的端部上的、冷却板501的结合部521被形成为,与冷却板501的下表面50a成为同一平面。换言之,在Y方向上的一侧(在本示例中,为左侧)的端部上的、冷却板501的结合部521中,冷却板501的下表面50a侧被薄壁化,另一方面,在Y方向上的另一侧(在本例中,为右侧)的端部上的、冷却板501的结合部521中,冷却板501的上表面50c侧被薄壁化。此时,被薄壁化的厚度可以为冷却板501的中央部的板厚的一半。图8为,表示两个半导体模块2的安装状态的一个示例的剖视图。在图8中,利用沿着图1的A-A线截断的截面(相当于图3 (A)的截面)而图示了半导体模块I的安装状态。如图8所示,优选为,在Y方向上并排安装两个以上的半导体模块2。此时,如图8所示,对于在Y方向上相互邻接的半导体模块2的彼此,使各自的对方侧端部的冷却板501的结合部521相互上下重叠,并通过螺栓110而被拧合在一起。各个半导体模块2使邻接侧的冷却板501的结合部521重叠在一起,并通过贯穿双方的结合部521的螺栓110而被结合在流道形成部件(水道、外壳等)100上。并且,如上所述,上下相互重叠的、各个半导体模块2的冷却板501的结合部521中,一方的结合部521与冷却板501的上表面50c成为同一平面,另一方的结合部521与冷却板501的下表面50a成为同一平面,并且,当以冷却板501的中央部的板厚的一半的板厚而形成时,也不会出现安装状态下的各半导体模块2的高度不同的情况。根据本实施例的半导体模块2,在通过上述的实施例1的半导体模块I而获得的效果的基础上,还可以额外获得以下的效果。即,根据本实施例的半导体模块2,当在Y方向上并排安装两个以上的半导体模块2的情况下,能够将各结合部521重叠在一起而进行安装。由此,当在Y方向上并排安装两个以上的半导体模块2的情况下,能够利用在Y方向上距离较短的空间而有效地进行安装。即,能够实现Y方向上的空间节省化(作为模块整体的小型化)。另外,通过将各个结合部521重叠并拧合在一起,能够减少所需的螺栓110的个数。另外,虽然优选为,如上文所述那样,在Y方向上并排安装两个以上半导体模块2,但也可以如图6所示的半导体模块I的安装状态那样,将半导体模块2单个结合在流道形成部件(水道、外壳等)100上。图9为,表不本发明的另一个实施例(实施例3)的半导体模块3的下表面侧的俯视图。本实施例的半导体模块3的特征在于冷却板502的结构,关于其他结构,也可以与上述的实施例1的半导体模块I相同。以下,主要对冷却板502的特征性结构进行说明。冷却板502在一个方向(在本示例中,为图1中的Y方向)上的两端部处包括结合部522。如图9所示,结合部522被形成在冷却板502的端部中的、与其他区域相比向Y方向突出的区域内。在本实施例中,冷却板502的Y方向上的一侧(在本示例中,为左侧)的端部上的结合部522形成有两处,两处的结合部522被形成在X方向上的两侧的区域、且与二者之间的区域相比向Y方向突出的区域内。S卩,冷却板502的Y方向上的一侧(在本示例中,为左侧)的端部的形状形成从中心侧向Y方向观察时两侧突出的凹型,且在X方向上的两侧处分别设定有结合部522。另外,冷却板502的Y方向上的另一侧(在本例中,为右侧)的端部上的结合部522仅形成有一处,并被形成在X方向上的中央、且X方向上的与其两侧的区域相比向Y方向突出的区域内。S卩,冷却板502的Y方向上的另一侧(在本示例中,为右侧)的端部的形状呈从中心侧向Y方向观察时中央突出的凸型,在X方向上的中央的区域中,设定有唯一的结合部522。树脂模压部60的Y方向上的侧部在Y方向上位于,与结合部522的最侧方的位置相比靠中心侧的位置处。在图示的示例中,树脂模压部60的Y方向上的侧部中,除了延长侧部62以外,在Y方向上不从冷却板502的侧面50b向侧方延伸。并且,在图示的示例中,延长侧部62在凸型侧的端部(图9中的右侧的端部)处,被设定在X方向上的、结合部522的两侧。图10为,从半导体模块3的下表面侧表示两个半导体模块3的安装状态的一个示例的俯视图。如图10所示,优选为,在Y方向上排列安装两个以上的半导体模块3。此时,如图10的虚线框T部内所示,对于在Y方向上相互邻接的半导体模块3的彼此,以冷却板502的凸型的端部上的、中央区域的结合部522,进入到冷却板502的凹型的端部上的、X方向上的中央的区域(凹区域)中的方式而被安装。即,对于在Y方向上相互邻接的半导体模块3的彼此,以使各自的两处的结合部522与一处的结合部522在Y方向上对置,并使两处的结合部522与一处的结合部522在X方向上相互不同的方式(即,两处的结合部522与一处结合部522在Y方向上搭接的方式)而被安装。根据本实施例的半导体模块3,在通过上述的实施例1的半导体模块I而获得的效果的基础上,还能够额外获得以下这种效果。即,根据本实施例的半导体模块3,在Y方向上并排安装有两个以上的半导体模块3的情况下,能够使各个半导体模块3的结合部522在Y方向上搭接而进行安装。由此,当在Y方向上并排安装两个以上的半导体模块3的情况下,能够利用在Y方向上距离较短的空间而有效地进行安装。S卩,能够实现Y方向上的空间节省化(作为模块整体的小型化)。并且,在本实施例3中,冷却板502的一侧端部的结合部522与另一侧端部的结合部522的关系只要为在X方向上相对于彼此而发生了偏移,便能够获得上述的效果,而并不限定于上述的示例。另外,关于冷却板502的一个端部上的结合部522的数量,也可以是根据需要的任意数量,在冷却板502的两端部上,既可以是相同的数量,也可以是不同的数量。并且,虽然优选为,如上文所述那样在Y方向上并排安装两个以上的半导体模块3,但也可以如图6所示的半导体模块I的安装状态那样,将半导体模块3单个结合在流道形成部件(水道、外壳等)100上。图11为,表不本发明的另一个实施例(实施例4)的半导体模块4的主要截面的图。图11与沿着图1的C-C线截断的截面(相当于图3 (C)的截面)相对应。图12为,从半导体模块4的下方观察时的半导体模块4的投影图,并图示了散热片543的形成区域。本实施例的半导体模块4的特征在于冷却板503的结构,关于其他结构,可以与上述的实施例1的半导体模块I相同。以下,主要对冷却板503的特征性结构进行说明。冷却板503除散热片543的形成区域不同之外,实质上可以与上述的实施例1的冷却板50的结构相同。如图11及图12所示,散热片543被形成在与金属块30的侧部相比靠中心侧的位置处。即,散热片543被形成为,金属块30的侧部在投影图中延伸至与散热片543的形成区域相比靠侧方的位置处。根据本实施例的半导体模块4,在通过上述的实施例1的半导体模块I而获得的效果的基础上,还能够额外获得以下这种效果。即,根据本实施例的半导体模块4,通过使金属块30的侧部在投影图中延伸至与散热片543的形成区域相比靠侧方的位置处,从而容易对半导体模块4进行检查(例如超声波探伤检查等)。即,通过例如超声波探伤装置(SAT:Scanning Acoustic Tomograph)而对半导体模块4的内部(树脂模压部60内部的各构成要素之间的接合状态等)进行检查时,需要使超声波从半导体模块4的下表面侧入射,但是,当在半导体模块4的下表面侧存在散热片543时,超声波将被散热片543反射,从而无法获得精度良好的检查结果。相对于此,根据本实施例的半导体模块4,能够利用未形成有散热片543的区PU P2、P3 (参照图11),而精度良好地对半导体模块4进行超声波探伤检查。并且,具体的检查对象例如可以包括,金属块30与绝缘薄膜40之间有无剥离、绝缘薄膜40与冷却板503之间有无剥离等。图13为,表示本发明的另一个实施例(实施例5)的半导体模块5的主要截面的图。图13与沿着图1的A-A线截断的截面(相当于图3 (A)的截面)相对应。本实施例的半导体模块5的特征在于冷却板504的结构,关于其他结构,可以与上述的实施例1的半导体模块I相同。以下,主要对冷却板504的特征性结构进行说明。冷却板504包括金属板部504a、和冷却板部504b。金属板部504a除在下表面侧不具有散热片54之外,也可以与上述的实施例1的冷却板50的结构实质上相同。但是,金属板部504a也可以由与上述的实施例1的冷却板50的板厚不同的板形成。并且,金属板部504a具备与上述的实施例1的冷却板50的各结合部52相同的结合部524a。另外,结合部524a提供螺栓底座面,在螺栓底座面上,形成有螺栓插穿用的结合孔534a。关于金属板部504a与树脂模压部60之间的关系,也可以与上述的实施例1的冷却板50的结构实质上相同。冷却板部504b为,外形与金属板部504a大致相同的板材,并在下表面侧具有散热片544。当对半导体模块5进行安装时,散热片544与冷却水或冷却空气这样的冷却介质接触。通过这种方式,半导体元件10驱动时所产生的来自半导体元件10的热将经由金属块30、绝缘薄膜40及冷却板504,而从冷却板504的散热片544向冷却介质传递,从而实现了半导体元件10的冷却。在金属板部504a与冷却板部504b之间,优选为,涂布有润滑油70。润滑油70可以为具有热传导性的润滑油。由此,即使在因翘曲等而使冷却板部504b和金属板部504a之间的间隙扩大了的情况下,也能够经由润滑油70而放热。冷却板部504b在与金属板部504a的结合部524a相对应的位置处具备结合部524b。结合部524b在与金属板部504a上的螺栓插穿用的结合孔534a相对应的位置处具有同样的螺栓插穿用的结合孔534b。冷却板部504b与金属板部504a —起,被结合在流道形成部件(水道、外壳等)100 (参照图6)上。
根据本实施例的半导体模块5,在通过上述的实施例1的半导体模块I而获得的效果的基础上,还能够额外获得以下的效果。即,根据本实施例的半导体模块5,通过以将冷却板504主要分成两个部件(金属板部504a及冷却板部504b)的方式来构成冷却板504,从而容易对半导体模块5进行检查(例如超声波探伤检查等)。即,当对半导体模块5的内部(树脂模压部60内部的各构成要素之间的接合状态等)进行超声波探伤检查时,需要使超声波从半导体模块5的下表面侧入射,但当在半导体模块5的下表面侧存在散热片544时,超声波将被散热片544反射,从而无法获得精度良好的检查结果。相对于此,根据本实施例的半导体模块5,能够通过拆除具有散热片544的冷却板部504b或者在安装冷却板部504b之前,精度良好地对半导体模块5进行超声波探伤检查。并且,具体的检查对象例如可以包括,半导体元件10与焊料层82之间有无剥离、焊料层82内部有无空隙、焊料层82与金属块30之间有无剥离、金属块30与绝缘薄膜40之间有无剥离、绝缘薄膜40与金属板部504a之间有无剥离等。图14为,表示能够在上述的各实施例中共通地应用的、两个半导体模块的安装状态的一个示例的剖视图。在图14中,作为一个示例而图示了使用两个半导体模块2的示例。在图14中,利用沿着图1的A-A线截断的截面(相当于图3 (A)的截面)而图示了半导体模块I的安装状态。如图14所示,两个半导体模块2以散热片54侧在上下方向上相互对置的关系而被设置。此时,如图14所示,上下的半导体模块2通过共用的螺栓110及螺母111而被结合在流道形成部件(水道、外壳等)100上。即,对上下的半导体模块2的相互对置的冷却板501的结合部521,使用共用的螺栓110及螺母111,从而将上下的半导体模块2结合在流道形成部件100上。由此,能够减少结合所需的螺栓110等的个数。并且,如图14所示,当两个半导体模块2以散热片54侧在上下方向上相互对置的关系而被设置时,冷却介质流道102在上下方向上,由上下的半导体模块2的冷却板502 (散热片54侧的面)划分形成。图15为,表示包括上述的各实施例的半导体模块1、半导体模块2等的混合动力系统600的一个示例的示意图。在图示的示例中,混合动力系统600包括电池602、逆变器610和电动发电机620、622。上述的各实施例的半导体模块1、半导体模块2等也可以作为IPM (Intel I igentPower Modul e,智能化动力模块)612而被实现。IPM612被搭载于逆变器610内部,根据来自ECU614的信号,通过PWM (Pulse Width Modulation,脉冲宽度调制)控制而在交流(DC)与直流(AC)之间进行转换。并且,在图示的示例中,在逆变器610内部,追加了 DC/DC升压转换器616。以上,虽然对本发明的优选的实施例进行了详细说明,但是,本发明不限于上述的实施例,在不脱离本发明的范围的情况下,能够对上述的实施例加以各种各样的变形及置换。例如,在上述的实施例中,虽然半导体模块I中的半导体元件10构成了 U相、V相、W相的各上桥臂及各下桥臂的总计六个桥臂,但是,安装于半导体模块I内的桥臂数是任意的。当半导体模块I例如具体化为用于对两个电机(参照图15)进行驱动的逆变器时,半导体元件10也可以构成第一电机用的U相、V相、W相的各个上桥臂及各个下桥臂、第二电机用的U相、V相、W相的各个上桥臂及各个下桥臂。另外,关于一个桥臂,也可以并排安装有多个半导体元件10。另外,半导体模块I可以包括其他结构(例如,电机驱动用的DC/DC升压转换器的元件的一部分),另外,半导体模块I也可以同时包括半导体元件10和其他元件(电容器、电抗器等)。另外,半导体模块I只要是需要冷却结构的模块,则可以是任意的模块,而并不限定于构成逆变器的半导体模块。另外,半导体模块I并不限于作为车辆用的逆变器,也可以作为在其他用途(铁路、空调、电梯、冰箱等)中所使用的逆变器而被实现。另外,在上述的实施例1中,当在Y方向上配置有多个半导体模块I时,相互邻接的半导体模块I也可以以相对于彼此而在X方向上偏移的方式而被互相错开(交错)配置。即,可以通过在相互邻接的两个半导体模块I中的一个半导体模块I的结合部52之间的空出的区域(Y方向上的端部上的凹区域)内放入另一个半导体模块I的结合部52之一的方式,而在Y方向上配置多个半导体模块I。此时,也如图10所示的半导体模块3的安装状态的情况那样,当在Y方向上并排安装两个以上的半导体模块I时,能够利用在Y方向上距离较短的空间而有效地进行安装,从而能够实现Y方向上的空间节省化(作为模块整体的小型化)。符号说明1、2、3、4、5半导体模块10半导体元件20布线部件20a 端子22布线部件22a 端子30金属块40绝缘薄膜50、501、502、503、504 冷却板50a冷却板的下表面50b冷却板的侧面50c冷却板的上表面51薄壁部52、521、522、524a、524b 结合部53结合孔54、543 散热片55密封部60树脂模压部62延长侧部66 肋部70润滑油80焊料层82焊料层90驱动基板
100流道形成部件102冷却介质流道110 螺栓120密封材料504a金属板部504b冷却板部600混合动力系统602 电池610逆变器612 IPM616 DC/DC升压换流器620,622 电动发电机
权利要求
1.一种半导体模块,其特征在于,包括: 半导体元件; 布线部件,其与所述半导体元件相连接; 冷却板,其为具有所述半导体元件侧的第一面、和与该第一面为相反侧的第二面的冷却板,且在第一方向上的端部处具有结合部; 模压部,其通过在所述半导体元件、所述布线部件及所述冷却板上模压树脂而形成,所述冷却板的结合部从所述模压部中露出,并且,所述布线部件的端子以在与所述第一方向大致垂直的第二方向上延伸的方式而从所述模压部中露出。
2.如权利要求1所述的半导体模块,其中, 所述布线部件使用弓I脚框架而构成。
3.如权利要求1所述的半导体模块,其中, 所述模压部在所述冷却板中的不存在所述结合部的区域内具有延长侧部,所述延长侧部延伸至与所述冷却板的第二面相同的平面为止,并紧贴在所述冷却板的侧面上。
4.如权利要求3所述的半导体模块,其中, 所述冷却板的第二面具 有被薄壁化了的薄壁部, 所述模压部的延长侧部在所述薄壁部处覆盖所述冷却板的第二面。
5.如权利要求1所述的半导体模块,其中, 在所述冷却板的第二面中的与所述结合部相比靠中心侧的位置处,设置有所述冷却板的第二面与冷却用介质的流道之间的密封部。
6.如权利要求1所述的半导体模块,其中, 在所述半导体元件和所述冷却板的半导体元件侧的第一面之间,还包括散热装置部,并且,在所述散热装置部和所述冷却板的半导体元件侧的第一面之间,还包括绝缘材料, 所述散热装置部及所述绝缘材料被配置在所述模压部内。
7.如权利要求1所述的半导体模块,其中, 所述模压部在所述布线部件的端子露出的侧部区域内,具有与邻接于该侧部区域的侧部区域相比向侧方突出的肋部。
8.如权利要求1所述的半导体模块,其中, 所述冷却板的结合部在所述第一方向上分别被设置在两侧的端部上, 所述冷却板的结合部被形成于,所述冷却板的端部中的、与其他区域相比向所述第一方向突出的区域内, 所述模压部在所述第一方向上被设置于与所述冷却板的结合部相比靠所述冷却板的中心侧的位置处, 所述冷却板中的一侧的端部上的结合部被形成在,相对于另一侧的端部上的结合部而在所述第二方向上偏移了的位置处。
9.如权利要求1所述的半导体模块,其中, 所述冷却板的结合部在所述第一方向上分别被设置在两侧的端部上, 所述冷却板的结合部被形成为,与所述冷却板的中央部的板厚相比而较薄, 所述第一方向上的所述冷却板的一侧的端部上的结合部与所述冷却板的半导体元件侧的第一面成为同一平面,所述第一方向上的所述冷却板的另一侧的端部上的结合部与所述冷却板的第二面成为同一平面。
10.如权利要求6所述的半导体模块,其中, 所述冷却板在所述第二面上具有散热片, 所述绝缘材料具有与所述散热装置部的端部相比向侧方延伸的端部, 所述冷却板部的散热片被形成在与所述散热装置部的端部相比靠中心侧的位置处。
11.一种混合动力系统,其包括权利要求1至10中的任意一项所述的半导体模块。
全文摘要
半导体模块(1、2、3、4、5)包括半导体元件(10);布线部件(20、22),其与半导体元件相连接;冷却板(50、501、502、503、504),其为具有半导体元件侧的第一面、和与该第一面为相反侧的第二面的冷却板(50、501、502、503、504),且在第一方向(Y)上的端部处具有结合部(52、521、522、524a+524b);模压部(60),其通过在半导体元件(10)、布线部件(20、22)及冷却板上模压树脂而形成,冷却板的结合部(52、521、522、524a+524b)从模压部中露出,并且,布线部件的端子以在与第一方向(Y方向)大致垂直的第二方向(X方向)上延伸的方式而从模压部中露出。
文档编号H01L25/07GK103081098SQ20108006890
公开日2013年5月1日 申请日期2010年9月2日 优先权日2010年9月2日
发明者门口卓矢, 铃木祥和, 加地雅哉, 中岛清文, 三好达也, 川岛崇功, 奥村知巳 申请人:丰田自动车株式会社