专利名称:用于远程等离子体源辅助的含硅膜沉积的方法和装置的利记博彩app
技术领域:
本发明的实施例涉及用于形成太阳能电池的装置和方法。更具体地,本发明的实施例涉及用于形成在太阳能电池应用中使用的非晶和微晶硅层的装置和方法。
背景技术:
光伏(PV)器件或太阳能电池是将太阳光转换成直流(DC)电力的器件。通常的薄膜PV器件或薄膜太阳能电池具有一个或多个p-i-n结。每个p-i-n结包括p型层、本征型层以及η型层。当太阳能电池的p-i-n结暴露于(由来自光子的能量组成的)太阳光时,太阳光经由PV效应而被转换成电力。太阳能电池可以铺设成更大的太阳能阵列。通常,薄膜太阳能电池包括有源区或光电转换单元、以及被设置成前电极和/或 后电极的透明导电氧化物(TCO)膜。光电转换单元包括P型硅层、η型硅层、以及夹在P型硅层和η型硅层之间的本征型(i型)硅层。包括微晶硅膜(μ c-Si)、非晶硅膜(a-Si)、多晶硅膜(Poly-Si)等的多种类型的硅膜可以被用于形成光电转换单元的P型层、η型层和/或i型层。背侧电极可以包括一个或多个导电层。非晶硅膜和微晶硅膜目前都被用于形成太阳能电池。但是,在用于沉积这些膜的当前的生成设备和方法中存在问题。例如,在常规热化学气相沉积和等离子体增强化学气相沉积(PECVD)工艺中,硅和氢的低能气相结合导致形成聚合的硅与氢结构,这会导致产生颗粒、膜沉积不充分、以及在物理和电气上低劣并不稳定的沉积膜。因此,需要改进的用于沉积非晶和微晶硅膜的装置和方法。
发明内容
在本发明的一个实施例中,用于沉积含硅膜的方法包括远离处理室产生氢自由基;将氢自由基的流动引导至处理室的处理区域中,其中衬底设置在处理区域中;将含硅气体的流动引导至处理室的处理区域中;和在衬底上沉积硅膜。远程产生的氢自由基在到达处理区域之前不与含硅气体混合。在另一实施例中,用于沉积含硅膜的方法包括在远程等离子体源中建立氩气的流动;在远程等离子体源内激发出等离子体;在远程等离子体源中建立氢气的流动以使得形成氢自由基的流动;将氢自由基的流动传送到处理室的处理区域中,其中,衬底位于处理区域中;产生进入到处理室的处理区域中的含硅气体的流动;和在衬底上沉积硅膜。氢自由基在到达处理室的处理区域之前不与含硅气体混合。在本发明的另一实施例中,用于沉积含硅膜的装置包括处理室,其具有在处理室内限定出处理区域的多个壁、喷头以及衬底支撑件;含硅气体源,其经由设置成穿过喷头的多个第一气体通道而连接到处理区域;远程等离子体源,其连接到氢气源并构造成在远程等离子体源内产生多个氢自由基;视线管,其将远程等离子体源连接到处理室,其中视线管包括惰性材料;和供给管,其将视线管连接到处理区域以使得由供给管传送的氢自由基在进入处理区域之前不与含硅气体混合。
可以参照实施例对上文简要总结的本发明进行更具体地描述,以便于详细地理解本发明的上述特征,实施例中的一些在附图中示出。然而应当注意,附图仅示出了本发明的典型实施例并且因此不被认为是对本发明范围的限制,本发明可以允许有其他等效实施例。图I是可以部分地使用根据本发明的实施例的方法和装置形成的单结非晶硅太阳能电池的简化示意图。图2是可以部分地使用根据本发明的实施例的方法和装置形成的多结太阳能电池的另一实施例的示意图。图3是根据本发明的一个实施例的用于沉积非晶和微晶膜的处理室的示意性横截面图。图4是根据另一实施例的用于分别将来自远程等离子体源的氢自由基(hydrogen radical)和来自处理气体源的处理气体输送到处理室的处理区域中的喷头的示意性横截面图。图5是根据本发明的一个实施例的用于氢自由基产生的处理流的示意图。为便于理解,尽可能使用相同的附图标记来表示附图中共有的相同元件。可以想到一个实施例中公开的元件可以被有利地利用在其他实施例中,而不用专门详述。
具体实施例方式本发明的实施例一般地涉及用于在形成太阳能电池期间沉积非晶和微晶硅膜的改进装置和方法。在一个实施例中,提供方法和装置以用于产生氢自由基并将氢自由基直接引入到处理室的处理区域中以与含硅前驱体反应而在衬底上进行膜沉积。在一个实施例中,氢自由基通过远程等离子体源产生并经由视线路径(line of sight path)被直接引入到处理区域中,以使得氢自由基到达处理区域之前的能量损失最小化。视线路径可以包括由非反应性材料(例如电介质或陶瓷材料)形成的管。在某些构造中,期望对管加热以减少可能的能量传输到管并防止将氢自由基在被引入到处理区域中之前吸附到管的表面上。图I是可以部分地使用根据本发明的实施例的方法和装置形成的单结非晶硅太阳能电池100的简化示意图。单结太阳能电池100定向成朝着光源或太阳辐射101。太阳能电池100 —般地包括衬底102 (例如玻璃衬底、聚合物衬底、金属衬底或其他适合的衬底),薄膜形成于该衬底上。在一个实施例中,衬底102是尺寸为约2200mmX 2600mmX 3mm的玻璃衬底。太阳能电池100还包括形成于衬底102上的第一透明导电氧化物(TCO)层110(例如,氧化锌(ZnO)、氧化锡(SnO))、形成于第一 TCO层110上的第一 p_i_n结120、形成于第
一p-i-n结120上的第二 TCO层140、以及形成于第二 TCO层140上的后解除层150。在一个构造中,第一 p-i-n结120可以包括P型非晶硅层122、形成于p型非晶硅层122上的本征型非晶硅层124、以及形成于本征型非晶硅层124上的η型非晶硅层126。在一个示例中,P型非晶硅层122可以形成达到约60 A到约300 A之间的厚度,本征型非晶硅层124可以形成达到约1,500 A到约3,500 A之间的厚度,η型非晶硅层126可以形成达到约100 A到约500 A之间的厚度。后接触层150可以包括但不限于铝(Al)、银(Ag)、钛(Ti)、铬(Cr)、金(Au)、铜(Cu)、钼(Pt)、其合金或其组合。图2是太阳能电池200的实施例的示意图,太阳能电池200是定向成朝着光或太阳辐射101的多结太阳能电池。太阳能电池200包括衬底102(例如玻璃衬底、聚合物衬底、金属衬底或其他适合的衬底),薄膜形成于该衬底上。太阳能电池200还可以包括形成于衬底102上的第一透明导电氧化物(TCO)层210、形成于第一 TCO层210上的第一 p-i-n结220、形成于第一 p-i-n结220上的第二 p-i_n结230、形成于第二 p-i_n结230上的第
二TCO层240、以及形成于第二 TCO层240上的后解除层250。第一 p-i-n结220可以包括p型非晶硅层222、形成于p型非晶硅层222上的本征型非晶娃层224、以及形成于本征型非晶娃层224上的η型微晶娃层226。在一个不例中,P型非晶硅层222可以形成达到约60 A到约300 A之间的厚度,本征型非晶硅层224可以形成达到约1,500 A到约3,500 A之间的厚度,η型微晶半导体层226可以形成达到约100 A 到约400 A之间的厚度。第二 p-i-n结230可以包括P型微晶硅层232、形成于p型微晶硅层232上的本征型微晶娃层234、以及形成于本征型微晶娃层234上的η型非晶娃层236。在一个实施例中,在沉积本征型微晶硅层234之前,可以在P型微晶硅层232上形成本征微晶硅种子层233。在一个示例中,P型微晶硅层232形成达到约100 A到约400 A之间的厚度,本征型微晶硅层234可以形成达到约10,000 A到约30,000 A之间的厚度,η型非晶硅层236可以形成达到约100 A到约500 A之间的厚度。在一个实施例中,本征微晶硅种子层233可以形成达到约50 A到约500 A之间的厚度。后接触层250可以包括但不限于铝(Al)、银(Ag)、钛(Ti)、铬(Cr)、金(Au)、铜(Cu)、钼(Pt)、其合金或其组合。现有沉积各种非晶和微晶硅膜以形成太阳能电池100、200的方法包括将氢基气体(例如氢气(H2))和硅基气体(例如硅烷(SiH4))的混合物引入到等离子体增强化学气相沉积(PECVD)处理室的处理区域中,将气体混合物激发成等离子体,并在衬底102上沉积期望的膜。在该处理期间,两种类型的键形成并沉积在衬底上,即Si-H键和Si-H2键。发现H2键是不期望的,因为这些键在沉积的膜中形成颗粒或缺陷,导致低效低质量的键和膜沉积。因此,期望在沉积处理期间增加Si-H键形成并减少Si-H2形成。此外,期望减少硅聚合成长链聚合物,这也导致在沉积的膜中形成缺陷以及沉积的膜的不稳定性。本发明的实施例通过直接将氢自由基与硅基气体分开引入到处理室的处理区域中来实现这些结果,以使得氢自由基与硅基气体结合以在沉积处理期间产生与现有方法和装置相比显著更多的Si-H键。常规等离子体处理技术使用单一电容或电感耦合等离子体源以将能量传输到设置在处理室的处理区域中的处理气体(例如硅烷和氢气)的组合,相信使用常规等离子体处理技术不能有效地或充分地将RF功率耦合到处理气体混合物中的氢原子以产生期望百分比的反应性氢自由基来在沉积的硅层中形成与Si-H2键相比更有利的Si-H键。在一个示例中,相信单一电容耦合等离子体源(例如,设置在衬底上方的RF驱动喷头)只能将硅烷和氢气混合物中约10-20%的氢原子转换成氢自由基。因此,通过使用将能量传输到包括从远程等离子体源传输的氢自由基和从单独的气体源传输的含硅气体的处理气体混合物的电容或电感耦合等离子体源的组合,可以极大地改进沉积的膜质量和沉积的膜的电气特性。例如,本发明的实施例获得将大约30-70%的氢自由基传输到处理室,与之相对现有技术为10-20%。应当注意本文使用的术语“氢自由基”表示单一的、高反应性的、中性氢原子。图3是根据本发明的一个实施例的用于沉积非晶和微晶膜的处理室300的示意性横截面图。在一个实施例中,室300包括壁302、底部304、喷头310、和衬底支撑件330,这些部件共同限定处理区域306。处理区域306可经由阀308访问,以使得衬底102可以被传送进出室300。衬底支撑件330包括用于支撑衬底102的衬底接收表面332以及连接到举升系统336的杆334,举升系统336构造成升高和降低衬底支撑件330。遮蔽框架333可以可选地被放置在衬底102的边缘上。举升销338可移动地设置成穿过衬底支撑件330以使得衬底102移动到达和离开衬底接收表面332。衬底支撑件330还可以包括加热和/或冷却元件330以将衬底支撑件330保持在期望的温度。衬底支撑件330还可以包括接地带331以在衬底支撑件330的边缘上提供RF接地。喷头310在其边缘处通过悬挂件314连接到背板312。喷头310还可以通过一个或多个中心支撑件316连接到背板,以帮助防止中间下垂和/或控制喷头310的平直度/弯曲度。气体源320构造成供应处理气体(含硅气体)穿过气体供给管345。在一个实施 例中,气体供给管345是构造成将处理气体穿过喷头310中的多个气体通道311供给到处理区域306的环形管。氢气源390流体连接到远程等离子体源324 (例如电感耦合远程等离子体源)。远程等离子体源324还经过视线管347和中央供给管349而流体连接到处理区域306。视线管347将远程等离子体源324流体连接到中央供给管349。本文使用的术语“视线”是为了表示远程等离子体源324和处理室300之间的短距离以使得可能的氢自由基重组或吸附在管的表面上最小化。在一个实施例中,视线管347提供用于氢自由基的直接路径,其中没有任意尖锐弯曲。在一个实施例中,视线管347提供用于氢自由基的直接路径,其中没有任意弯曲。视线管347包括由惰性材料(例如,蓝宝石、石英或其他陶瓷材料)制成的管,以防止由远程等离子体源324提供的氢自由基被吸附和/或重组。此外,可以提供加热器套351,以进一步防止由远程等离子体源324提供的氢自由基在传送到处理区域306中之前被吸附和/或重组。视线管347和中央供给管349构造成为在远程等离子体源324中产生的氢自由基提供到达处理区域306中的直接的短路径。在一个实施例中,如图3所示,中央供给管349构造成将在远程等离子体源324中产生的氢自由基直接传送经过喷头310中的中央开口 353而到达处理区域306中。在一个实施例中,处理室300还包括清洁气体远程等离子体源395,清洁气体远程等离子体源395流体连接到位于喷头310后方的气体室397,并且还经过形成于喷头310中的气体通道311而连接到处理区域306。清洁气体远程等离子体源395连接到清洁气体源396,清洁气体源396能够将清洁气体传送到清洁气体远程等离子体源395,以使得能够形成具有能量的清洁气体以在沉积处理之间清洁喷头310和其他腔室组件的表面。通常的清洁气体包括含卤素气体(例如NF3、F2、Cl2、或其他气体),这些气体用于在沉积处理之前的时间段中去除形成于腔室组件上的部分的沉积材料。应理解,如图3所示,尽管一般需要定位清洁气体远程等离子体源395的出口 398以确保喷头310和腔室组件的表面可以在腔室清洁处理期间被有效地清洁,但是根据本发明的实施例这一般不是在沉积处理期间传输供使用的氢自由基的有利位置。如图3所示,出口 398的位置一般不利于将氢自由基引入到处理区域306中,因为很可能通过形成的氢自由基和从处理气体源320传输的前驱体气体的反应而在气体室397中形成气相颗粒,这将在喷头310后方和内部提供不期望的沉积。图4是根据另一实施例的用于分别将来自远程等离子体源324的氢自由基和来自处理气体源320的处理气体输送到处理室300的处理区域306中的喷头410的示意性横截面图。在本实施例中,中央供给管349流体连接到喷头410内的内部区域405。内部区域405转而流体连接到多个通道412,多个通道412将喷头410的内部区域405流体连接到处理室300的处理区域306。在此构造中,氢自由基被从远程等离子体源324传送经过视线管347和中央供给管349而进入到喷头410的内部区域405中。从这里,氢自由基穿过多个通道412被平均地分配到处理区域306中。同时,处理气体(例如硅烷)被从气体源320传送经过气体供给管345并经过喷头410中的多个气体通道311而进入到处理区域306中。RF功率源322耦接到背板312和/或喷头310、410,以向喷头310、410提供RF功率,以使得在喷头310、410与衬底支撑件330或室壁302之间产生电场。因此,在处理区域306中产生电容耦合等离子体以用于在衬底102上沉积膜。真空泵309也经由节流阀380连接到处理室300以将处理区域306控制在期望的压力下。 不考虑具体实施例,气体源320、远程等离子体源324和喷头310、410构造成使得在远程等离子体源324中产生的氢自由基只在处理区域306中被引导到处理气体,以防止在处理室300的其他区域中不期望的混合和不期望的沉积。此外,氢自由基被直接传送到处理区域306中以使得氢原子在与设置在处理区域306中的处理气体混合之前的重组或能量损失最小化。因此,使不期望的Si-H2键最小化,并且使期望的Si-H键最大化,以提供更有效的硅膜沉积。在一个实施例中,氢自由基在一个或多个远程等离子体源(例如图3和图4所示的远程等离子体源324)内产生。在一个实施例中,氢自由基从直接连接到处理区域306的单一远程等离子体源产生。在另一实施例中,氢自由基从各自直接连接到处理区域306的多个远程等离子体源产生。在一个实施例中,多个远程等离子体源324沿着喷头310、410均匀地间隔开,以使得通过控制来自均匀间隔开的远程等离子体源324中每一者的气体流率和远程等离子体源功率,可以将均匀的氢自由基流动传送至处理区域306中。在另一实施例中,多个远程等离子体源324沿着喷头310间隔开呈期望的图案并以期望的方式受到控制,以将非均匀的氢自由基流动提供至处理区域306中以改善沉积处理结果的某些方面。在一个实施例中,根据在处理室300中处理的衬底102的尺寸,一个或多个远程等离子体源可以具有从约IOkW到约40kW或更大的额定功率输出。在一个实施例中,使用约14W/cm2到约18W/cm2之间的RF功率。图5示出工艺步骤500的示例,工艺步骤500用于例如在开始沉积处理时开始在远程等离子体源324中形成氢自由基。在一个实施例中,首先在框510处建立到远程等离子体源324的氩气流率。在一个实施例中,氩气流率设置在约400sCCm/L到约750sCCm/L之间。在框520,氩气在远程等离子体源内被激发成等离子体,并且处理室300中的节流阀380被打开。然后,在框530,以约O. 4sccm/L/s到约40sccm/L/s之间的流率将氢气供应到远程等离子体源324。氢气的流率可以连续地升高而达到约40sCCm/L到约205sCCm/L之间的稳态流动。在框540,氩气的流动的流率从约O. 4sccm/L/s降低到约17sCCm/L/s,直到氩气的流动达到期望点以使得在远程等离子体源324的出口处存在氢自由基的稳定流为止。在一个实施例中,IS气的流动例如当在从约O. ITorr到约ITorr的处理室压力下使用时下降到零。在另一实施例中,氩气的流动例如当在高于约IT0rr的处理室压力下使用时持续处于低流率仅用于维持产生氢自由基。在一个实施例中,当在衬底102上所执行的沉积处理期间处理室300的处理区域306中的成分和/或压力变化时,期望调节输送到远程等离子体源324中的等离子体产生区域的压力、气体流率和/或气体的比率(例如载气(例如氩气)与氢的比率),以防止在该处产生的等离子体消失。下面提供根据本发明的用于使用图3和图4的处理室300来形成图I和图2的太阳能电池100和200中包含的非晶和微晶硅层的沉积方法的示例。向处理室300提供表面积为10,OOOcm2或更大的衬底,优选为40,OOOcm2或更大,更加优选地为55,OOOcm2或更大。在一个实施例中,设置加热和/或冷却元件339以在沉积期间提供约400摄氏度或更低的衬底支撑温度,优选为约150摄氏度至约400摄氏度之间。设置在衬底接收表面332上的衬底102的上表面与喷头310、410在沉积期间的间距可以在约200mil到约I, OOOmil 之间。 为沉积硅膜,一般通过气体源320来提供硅基气体。使得的硅基气体包括但不限于硅烷(SiH4)、乙硅烷(Si2H6)、四氟化硅(SiF4)、四氯化硅(SiCl4)、二氯甲硅烷(SiH2Cl2)及其组合。P型层的P型掺杂剂可以各自包括第III族元素,例如硼或铝。含硼来源的示例包括三甲基硼(TMB)、乙硼烷(B2H6)和类似化合物。η型硅层的η型掺杂剂可以各自包括第V族元素,例如磷、砷或锑。含磷来源的示例包括磷化氢和类似化合物。通常利用载气(例如氢、氩、氦和其他适合的化合物)来提供掺杂剂。下面举例说明根据本发明的实施例可以用于在图3和图4所示的一个或多个处理室300中形成串联电池(例如图2中所示的太阳能电池200)的工艺步骤的示例。在一个实施例中,在一个处理室300中接收上面沉积有前TCO层110的衬底102。通过从气体源320以约lsccm/L到约10sccm/L之间的流率提供娃烧气体并使该娃烧气体经过气体供给管345并经过喷头310、410中的多个气体通道311而进入到处理区域306中,可以在衬底102上形成P型非晶硅层122。同时,根据上文参照图5提供的描述在远程等离子体源324中产生的氢自由基被提供经过视线管347、中央供给管349以及喷头310、410而进入到处理区域306中。可以以约O. 005sccm/L到约O. 05sccm/L之间的流率与硅烷一起提供三甲基硼。也可以以约lsccm/L到约15sCCm/L之间的流率提供甲烷。可以向喷头310、410提供约15mW/cm2到约200mW/cm2之间的RF功率以在处理区域306 (图3)中在衬底102的表面上方形成等离子体。在衬底102上方形成的等离子体包括被输送经过喷头310、410的硅烷气体和从远程等离子体源324输送的氢自由基。处理室300的压力可以被维持在约O. ITorr到约20Torr之间,优选在约ITorr到约4Torr之间。然后,衬底102可以被传送到与处理室300类似地构造的另一处理室中,以在p型非晶娃层122上沉积本征型非晶娃层124。在一个实施例中,娃烧气体被从气体源320以约O. 5sccm/L到约7sccm/L之间的流率提供,经过气体供给管345并经过喷头310、410中的多个气体通道311而到达处理区域306中。同时,根据上文参照图5提供的描述在远程等离子体源324中产生的氢自由基被提供经过视线管347、中央供给管349以及喷头310、410而进入到处理区域306中。可以向喷头310、410提供约15mW/cm2到约250mW/cm2之间的RF功率以将能量传输给处理区域306中的硅烷和氢自由基混合物。处理室300的压力可以被维持在约O. 5Torr到约5Torr之间。然后,在衬底102仍然处于处理室300中时,在本征型非晶硅层124上沉积η型微晶硅层126。在一个实施例中,硅烷气体被从气体源320以约O. lsccm/L到约0.8sCCm/L之间(例如约O. 35sccm/L)的流率提供,经过气体供给管345并经过喷头310、410中的多个气体通道311而到达处理区域306中。同时,根据上文参照图5提供的描述在远程等离子体源324中产生的氢自由基被提供经过视线管347、中央供给管349以及喷头310、410而进入到处理区域306中。可以以约O. 0005sccm/L到约O. 06sccm/L之间的流率与娃烧一起提供磷化氢。可以向喷头310、410提供约100mW/cm2到约900mW/cm2之间的RF功率以将能量传输给处理区域306中的硅烷和氢自由基混合物。处理室300的压力可以被维持在约ITorr到约IOOTorr之间,优选在约3Torr到约20Torr之间。然后,衬底102被移动到另一处理室300以在η型微晶娃层126上沉积ρ型微晶硅层132。在一个实施例中,硅烷气体被从气体源320以约O. lsccm/L到约O. 8sccm/L之间的流率提供,经过气体供给管345并经过喷头310、410中的多个气体通道311而到达处 理区域306中。同时,根据上文参照图5提供的描述在远程等离子体源324中产生的氢自由基被提供经过视线管347、中央供给管349以及喷头310、410而进入到处理区域306中。可以以约O. 0002sccm/L到约O. 0016sccm/L之间的流率与硅烷一起提供三甲基硼。可以向喷头310、410提供约50mW/cm2到约700mW/cm2之间的RF功率以将能量传输给处理区域306中的硅烷和氢自由基混合物。处理室300的压力可以被维持在约ITorr到约IOOTorr之间,优选在约3Torr到约20Torr之间。然后,衬底102被传送到另一处理室300中以在ρ型微晶娃层132上沉积本征型微晶硅种子层133。在一个实施例中,硅烷气体经过从约20秒到约300秒(例如在约40秒到约240秒之间)的时间段而逐渐从零点提高到第二设定点(例如在约2. 8sccm/L到约5. 6sCCm/L之间)。提高的硅烷流被从气体源320提供,经过气体供给管345并经过喷头310、410中的多个气体通道311而到达处理区域306中。同时,根据上文参照图5提供的描述在远程等离子体源324中产生的氢自由基被提供经过视线管347、中央供给管349以及喷头310、410而进入到处理区域306中。RF功率也可以与硅烷流类似地从约O瓦特/cm2提高到约2瓦特/cm2,以将能量传输给处理区域306中的硅烷和氢自由基混合物。处理室300的压力可以被维持在约ITorr到约12Torr之间。认为在形成本征型微晶硅种子层133中硅烷流的逐渐提高有助于硅原子均匀地粘附和分布在衬底102的表面上,从而形成具有期望的膜特性的本征型微晶硅种子层133。硅原子在衬底102的表面上的均匀粘附提供良好的成核位置,以用于后来的原子在该位置上成核。形成于衬底102上的均匀成核位置提高后续形成于衬底102上的膜的结晶性。因此,到处理区域306中的硅烷流的逐渐提高使得解离的硅原子能够具有充足的时间来被逐渐吸收在衬底102的表面上,从而提供具有均匀分布硅原子的表面,该表面提供成核位置,这促进后续沉积的层的改进的结晶性。然后,在处理室300中在本征型微晶硅种子层133上沉积本征型微晶硅层134。硅烷气体被从气体源320以约O. lsccm/L到约O. 8sccm/L之间的流率提供,经过气体供给管345并经过喷头310、410中的多个气体通道311而到达处理区域306中。同时,根据上文参照图5提供的描述在远程等离子体源324中产生的氢自由基被提供经过视线管347、中央供给管349以及喷头310、410而进入到处理区域306中。可以向喷头310、410提供约300mW/cm2或更大(优选为600mW/cm2或更大)的RF功率以将能量传输给处理区域306中的硅烷和氢自由基混合物。处理室300的压力可以被维持在约ITorr到约IOOTorr之间,优选在约3Torr到约20Torr之间。最后,在衬底仍然位于处理室300中时,在衬底201上的本征型微晶硅层124上沉积η型非晶娃层126。在一个实施例中,可以通过首先以第一娃烧流率沉积可选的第一 η型非晶硅层、然后以低于第一硅烷流率的第二硅烷流率在第一可选的η型非晶硅层上沉积第二 η型非晶硅层,来沉积η型非晶硅层136。可以通过从气体源320以约lsccm/L到约10sccm/L之间(例如约5. 5sccm/L)的流率提供娃烧气体并使该娃烧气体经过气体供给管345并经过喷头310、410中的多个气体通道311而进入到处理区域306中,来沉积第一可选的η型非晶硅层。同时,根据上文参照图5提供的描述在远程等离子体源324中产生的氢自由基被提供经过视线管347、中央供给管349以及喷头310、410而进入到处理区域306·中。可以以约O. 0005sccm/L到约O. 0015sccm/L之间(例如O. 0095sccm/L)的流率与硅烷一起提供磷化氢。可以向喷头310、410提供约25mW/cm2到约250mW/cm2之间的RF功率以将能量传输给处理区域306中的硅烷和氢自由基混合物。处理室300的压力可以被维持在约O. ITorr到约20Torr之间,优选在约O. 5Torr到约4Torr之间。第二 η型非晶硅层沉积可以包括从气体源320以约O. lsccm/L到约5sCCm/L之间(例如约O. 5sccm/L到约3sccm/L之间(例如约1.42sccm/L))的流率提供娃烧气体并使该硅烷气体经过气体供给管345并经过喷头310、410中的多个气体通道311而进入到处理区域306中。同时,根据上文参照图5提供的描述在远程等离子体源324中产生的氢自由基被提供经过视线管347、中央供给管349以及喷头310、410而进入到处理区域306中。可以以约 O. 01sccm/L 到约 O. 075sccm/L 之间(例如约 O. 015sccm/L 到约 O. 03sccm/L 之间(例如约O. 023sccm/L))的流率提供磷化氢。可以向喷头310、410提供约25mW/cm2到约250mW/cm2之间(例如60mW/cm2)的RF功率以将能量传输给处理区域306中的硅烷和氢自由基混合物。处理室300的压力可以被维持在约O. ITorr到约20Torr之间,优选在约O. 5Torr到约4Torr之间,例如约I. 5Torr0因此,根据本发明的实施例可以通过在远程等离子体源中产生氢自由基并将氢自由基直接传输到处理室的处理区域中以与含硅气体结合来提供在太阳能电池中每个含硅层。直接就爱那个氢自由基提供到处理区域中以与含硅气体反应会产生超过现有技术沉积方法的改进的键合结构、沉积效率和沉积膜稳定性。尽管上文涉及本发明的实施例,但是在不脱离本发明的基本范围的情况下可以获得本发明的其他和进一步的实施例。
权利要求
1.一种用于沉积含硅膜的方法,其包括 远离处理室产生氢自由基; 将所述氢自由基的流动引导至所述处理室的处理区域中,其中,衬底设置在所述处理区域中;和 将含硅气体的流动引导至所述处理室的所述处理区域中,其中,所述氢自由基在到达所述处理室的所述处理区域之前不与所述含硅气体混合。
2.根据权利要求I所述的方法,还包括与所述氢自由基一起将氩等离子体的流动传送到所述处理区域。
3.根据权利要求I所述的方法,其中,在远程等离子体源中产生所述氢自由基。
4.根据权利要求3所述的方法,还包括将所述氢自由基从所述远程等离子体源经过包括惰性材料的视线管而传送到所述处理室。
5.根据权利要求4所述的方法,还包括在将所述氢自由基从所述远程等离子体源传送到所述处理室期间加热所述视线管。
6.根据权利要求4所述的方法,其中,由所述处理室的衬底支撑件、喷头和壁来限定所述处理区域。
7.根据权利要求6所述的方法,还包括将所述含硅气体从气体源经过设置成穿过所述喷头的多个第一气体通道而传送到所述处理区域。
8.根据权利要求7所述的方法,还包括将所述氢自由基从所述视线管经过所述喷头的中央开口而传送到所述处理区域中。
9.根据权利要求7所述的方法,还包括将所述氢自由基从所述视线管经过所述喷头的内部区域和所述喷头中的多个第二气体通道而传送到所述处理区域中,所述多个第二气体通道将所述喷头的所述内部区域与所述处理室的所述处理区域连接。
10.一种用于沉积含硅膜的方法,其包括 在远程等离子体源中建立氩气的流动; 在所述远程等离子体源内激发出等离子体; 在所述远程等离子体源中建立氢气的流动以使得形成氢自由基的流动; 将所述氢自由基的流动传送到处理室的处理区域中,其中,衬底位于所述处理区域中;和 产生进入到所述处理室的所述处理区域中的含硅气体的流动,其中,所述氢自由基在到达所述处理室的所述处理区域之前不与所述含硅气体混合。
11.根据权利要求10所述的方法,其中,在建立氢气的流动期间增加氢气流动。
12.根据权利要求11所述的方法,还包括在建立所述氢气的流动之后降低氩气的流动。
13.根据权利要求12所述的方法,还包括将所述氢自由基从所述远程等离子体源经过包括惰性材料的视线管而传送到所述处理室的所述处理区域。
14.根据权利要求13所述的方法,其中,由所述处理室的衬底支撑件、喷头和壁来限定所述处理区域。
15.根据权利要求14所述的方法,还包括将所述含硅气体从气体源经过设置成穿过所述喷头的多个第一气体通道而传送到所述处理区域。
16.根据权利要求15所述的方法,还包括将所述氢自由基从所述视线管经过所述喷头的中央开口而传送到所述处理区域中。
17.根据权利要求15所述的方法,还包括将所述氢自由基从所述视线管经过所述喷头的内部区域和所述喷头中的多个第二气体通道而传送到所述处理区域中,所述多个第二气体通道将所述喷头的所述内部区域与所述处理室的所述处理区域连接。
18.一种用于沉积含硅膜的装置,其包括 处理室,其具有在所述处理室内限定出处理区域的多个壁、喷头以及衬底支撑件; 含硅气体源,其经由设置成穿过所述喷头的多个第一气体通道而连接到所述处理区域; 远程等离子体源,其连接到氢气源并构造成在所述远程等离子体源内产生多个氢自由基; 管,其将所述远程等离子体源连接到所述处理室,其中所述管包括惰性材料;和供给管,其将所述管连接到所述处理区域以使得由所述供给管传送的所述氢自由基在进入所述处理区域之前不与含硅气体混合。
19.根据权利要求18所述的装置,其中,所述喷头具有中央开口,所述中央开口流体连接到所述供给管并构造成将所述氢自由基直接引导至所述处理区域中。
20.根据权利要求18所述的装置,其中,所述喷头具有内部区域和多个第二气体通道,所述内部区域流体连接到所述供给管并构造成接收所述氢自由基,所述多个第二气体通道设置在所述喷头中并将所述喷头的所述内部区域与所述处理室的所述处理区域流体连接。
全文摘要
本发明提供用于在形成太阳能电池期间沉积非晶和微晶硅膜的装置和方法。在一个实施例中,提供方法和装置以产生氢自由基并将氢自由基直接引导至处理室的处理区域中以与含硅前驱体反应而在衬底上进行膜沉积。在一个实施例中,氢自由基由远程等离子体源产生并被直接引导经过视线路径到达处理区域中,以使得氢自由基在到达处理区域之前的能量损失最小化。
文档编号H01L21/205GK102892922SQ201080065504
公开日2013年1月23日 申请日期2010年3月17日 优先权日2010年3月17日
发明者安纳马莱·拉克师马纳, 方俊, 唐建设, 达斯廷·W·霍, 福兰斯马尔·斯楚弥特, 艾伦·曹, 汤姆·周, 布赖恩·西-元·施赫, 哈里·K·波奈卡恩提, 克里斯·埃博斯帕希尔, 原铮 申请人:应用材料公司