利用等离子体鞘层调变的工件图案化的利记博彩app

文档序号:6992305阅读:346来源:国知局
专利名称:利用等离子体鞘层调变的工件图案化的利记博彩app
技术领域
本发明是有关于制造工件,且特别是有关于利用绝缘调节器(insulatingmodifier)所聚焦起来的等离子体(plasma)来进行工件处理,从而制造工件。
背景技术
诸如半导体晶圆(semiconductor wafers)或太阳能电池(solar cells)等工件要想制造成成品通常需要经过多个工序。例如,除了在太阳能电池中形成P_n接面(junction)之外,还可在太阳能电池上沉积(deposited)多个材料层以提高性能或改善功效。也可对太阳能电池的表面进行表面纹理化(texturing)、清洁或在太阳能电池的表面上增加金属层。“黑硅”(Black silicon)可用在太阳能电池中,它是一种能够吸收大部分太阳能 光谱且实现高效太阳能电池的特殊的硅。之所以称之为“黑”是因为在观察者看来它是黑的,这要归因于所吸收的波长及其低反射率。黑硅的光吸收率很高是因为它具有特殊的表面纹理。图IA与图IB是一种黑硅或有纹理的硅(textured silicon)的影像。图IA是黑娃的扫描电子显微镜(scanning electron microscope, SEM)影像。图IA所示的纹理图案是通过对娃表面进行以飞孟托激光为主(femto laser-based)的氟化化学蚀刻(etching)而形成的。图IB是有纹理的硅工件的表面。使表面纹理化且使表面具有(例如)棱锥形纹理可增加光的收集。然而,由于被蚀刻的工件的晶体平面和特殊晶体平面的蚀刻速率,所以众所周知的湿式化学制程(wet chemistry processes)具有局限性。除了上述局限性之夕卜,湿式蚀刻(诸如使用氢氧化钾(KOH))或等离子体蚀刻还会产生随机的棱锥形图案。图2是一种选择性发射极太阳能电池(selective emitter solar cell)的横剖面图。在本特定实施例中,选择性发射极太阳能电池200具有位于基底(base)202上的n型基底201。在基底202附近具有n++区203。基底202的对面是p+层204和抗反射涂层(anti-reflective coating, ARC) 205。在一实例中,此抗反射涂层205可以是氮化娃(SiNx)。金属接头(contacts) 206配置在选择性发射极太阳能电池200中位于p++区207附近。n++区203、p++区207以及p+层204可藉由掺杂(doping)来形成。选择性发射极太阳能电池200的表面208可形成类似于图IA与图IB所示的纹理。在一实施例中,可在抗反射涂层205与p+层204之间使用氧化层。图3是一种交指型背面接触式(interdigitated back contact, IBC)太阳能电池的横剖面图。本特定实施例的交指型背面接触式太阳能电池300包括n型基底301、n+层302以及抗反射涂层205。在一实施例中,可在抗反射涂层205与n+层302之间使用氧化层。在n+层302的对面是交替配置的p+发射极303与n+背面场(back surface fields) 304o钝化层(passivating layer) 305界定了接触孔306。交替配置的n型接头307和p型接头308与p+发射极303和n+背面场304相接触。在图2 图3的实施例中,n型掺杂和p型掺杂可相互颠倒或进行改良。太阳能电池(诸如图2的选择性发射极太阳能电池200或图3的交指型背面接触式太阳能电池300)中的层的图案化(patterning)或特定区域的掺杂以及金属层或接头的形成可能会很昂贵。工序的复杂性或数量会增加持有成本和制造时间。若制造太阳能电池或其他工件所用的至少一部分制程是在同一个系统中进行,则能够提高产量且降低每个工件的成本。删除或简化工序也能提高产量和降低每个工件的成本。因此,本技术领域中需要一种制造工件的改良方法,且特别是利用绝缘调节器所聚焦起来的等离子体来进行工件处理从而制造工件的改良方法。

发明内容
依照本发明的第一观点,提供一种处理工件的方法。此方法包括在工件表面附近产生带有等离子体鞘层(plasma sheath)的等离子体。对等离子体与等离子体鞘层之间的边界的形状进行调整,使得此形状的一部分不平行于工件表面。利用等离子体来移除工件表面的第一部分,此表面平行于一平面。沿着平行于此平面的方向来转动工件。利用等离子体来移除工件表面的第二部分。、
依照本发明的第二观点,提供一种制造工件的方法。此方法包括在工件表面的附近产生带有等离子体鞘层的等离子体。对等离子体与等离子体鞘层之间的边界的形状进行调整,使得此形状的一部分不平行于工件表面。利用等离子体来移除工件表面的一个区域,且对工件的此区域进行掺杂。依照本发明的第三观点,提供一种制造太阳能电池的方法。此方法包括对太阳能电池的表面的至少一个第一区域进行纹理化。将掺质(dopant)植入(implanted)到太阳能电池的表面。利用等离子体来移除太阳能电池的表面的至少一个第二区域。产生带有等离子体鞘层的等离子体,且对等离子体与等离子体鞘层之间的边界的形状进行调整,以使得此形状的一部分不平行于太阳能电池的表面。对太阳能电池的第二区域进行掺杂,且在第二区域上形成金属层。


为了更加了解本案,配合所附图式作参考,其并入本文中做为参考图IA与图IB是一种黑硅或有纹理的硅的影像。图2是一种选择性发射极太阳能电池的横剖面图。图3是一种交指型背面接触式太阳能电池的横剖面图。图4是一种具有绝缘调节器的等离子体处理装置的方块图。图5是依照本发明的一实施例的一种等离子体处理装置的方块图。图6是工件局部化蚀刻或溅镀的横剖面方块图。图7是第一实例的工件纹理化的横剖面侧视图。图8是第二实例的工件纹理化的横剖面图。图9A与图9B是对工件进行蚀刻或溅镀以形成棱锥体的立体透视图。图IOA至图IOC是制造工件的第一实施例。图IlA至 图IlG是形成太阳能电池的第一实施例。
具体实施方式
本说明书中阐述了与太阳能电池有关的实施例。然而,本说明书所述的实施例也可用于诸如半导体晶圆等其他工件。虽然具体揭露的是选择性发射极太阳能电池和交指型背面接触式太阳能电池,但本说明书所述的实施例也适用于任何其他太阳能电池设计。利用经绝缘调节器聚焦后的等离子体来进行工件处理可包括(例如)对工件进行蚀刻、溅镀(sputtering)、沉积、表面纹理化、局部掺杂或其他材料改性(material modification)。虽然本说明书是以蚀刻和溅镀作为移除工件上多个部位的机制来作具体描述,但也可以采用其他机制。因此,本发明不限于以下所述的特定实施例。图4是一种具有绝缘调节器的等离子体处理装置的方块图。用本技术领域中众所周知的方式来产生等离子体140。此等离子体140通常是离子和电子的准中性集合(quasi-neutral collection)。离子通常带正电荷,而电子则带负电荷。在大部分等离子体140中可具有(例如)约OV/cm的电场。在含有等离子体140的系统中,等离子体140中的离子102被吸引而前往工件100。这些离子102被吸引后带有足够的能量而能够植入到工件100中。等离子体140以工件100附近的一个称为等离子体鞘层242的区域为界。此等离子体鞘层242是一个比等离子体140含有较少电子的区域。如此一来,正负电荷之间的差使得等离子体鞘层242中产生鞘层电位(sheath potential)。因为含有较少 电子,所以从等离子体鞘层242发出的光不如等离子体140强烈,因而很少会发生激发松弛碰撞(excitation-relaxation collisions)。因此,等离子体鞘层242有时候被称为“暗区,,(dark space)。绝缘调节器101经配置以改变等离子体鞘层242内的电场,从而调整等离子体140与等离子体鞘层242之间的边界241的形状。如此一来,等离子体140中受到吸引而穿过等离子体鞘层242的离子102会以大范围的入射角来撞击工件100。这些离子102可能是活性的(reactive),也可能是非活性的(non_reactive)。此绝缘调节器101可称为(例如)聚焦板(focusing plate)或鞘层工程板(sheath engineering plate)。在图4的实施例中,绝缘调节器101包括一对板(panels) 212和214,它们之间界定了一个具有水平间距(G)的孔(aperture)。这对板212和214可以是绝缘体。在其他实施例中,绝缘调节器101可仅包括一个板,也可包括两个以上的板。板212和214可以是一对平面形薄板。在其他实施例中,板212和214可采用其他形状,诸如管状、楔形(wedge-shaped)和/或靠近孔的边缘呈斜面。板212和214亦可经定位以使得工件100的前表面所界定的平面151上方具有垂直间距(Z)。在一实施例中,此垂直间距(Z)可约为
I.Omm 至 10. Omnin可利用不同的机制来吸引等离子体140中的离子102穿过等离子体鞘层242。在一实例中,对工件100施加偏压(biased)来吸引等离子体140中的离子102穿过等离子体鞘层242。在另一实例中,用来产生等离子体140的等离子体源和围绕等离子体140的墙被施加以正向偏压,且工件100可接地。在一特定实施例中,偏压可采用脉冲形式。另一实例是利用电场或磁场来吸引等离子体140中的离子102前往工件100。有利之处在于,绝缘调节器101可改变等离子体鞘层242内的电场,以调整等离子体140与等离子体鞘层242之间的边界241的形状。在一实例中,等离子体140与等离子体鞘层242之间的边界241可相对于平面151而呈凸形。例如,当对工件100施加偏压时,离子102受到吸引而穿越等离子体鞘层242,并以大范围的入射角穿过板212与214之间的孔。例如,沿轨迹路径(trajectory path) 271而行的离子可以相对于平面151呈+ 0 °的角度来撞击工件100。沿轨迹路径270而行的离子可以相对于同一平面151呈大约0°的角度来撞击工件100。沿轨迹路径269而行的离子可以相对于平面151呈-0 °的角度来撞击工件100。因此,入射角的范围可介于以0°为中心的+ 0°与-e°之间。另外,有些离子轨迹路径(诸如轨迹路径269和271)可相互交叉。根据多个因素(包括但不限于板212与板214之间的水平间距(G)、板212和214在平面151上方的垂直间距(Z)、板212和214的介电常数或等离子体140的其他制程参数),入射角(0)的范围可介于以0°为中心的+60°与-60。之间。图5是依照本发明的一实施例的一种等离子体处理装置的方块图。系统500包括等离子体源501、绝缘调节器101以及处理室(process chamber)502。气体源504连接至等离子体源501。等离子体源501或系统500的其他元件也可连接至泵,诸如涡轮泵(turbopump)。用来产生等离子体140的等离子体源501可以是(例如)射频(RadioFreqency)等离子体源、感应稱合等离子体(inductively-coupled plasma, ICP)源、间接加热阴极(indirectly heated cathode, IHC)、电容f禹合等离子体(capacitively-coupled plasma,CCP)源、螺旋(helicon)等离子体源、微波等离子体源或本技术领域中普通技术人员所知的其他等离子体源。处理室502、等离子体源501或平台503可接地。绝缘调节器101是用来使离子506聚焦以便对工件100进行植入、蚀刻或溅镀。从等离子体源501中提取等离子体140且使等离子体140进入到离子506中可采用连续方式(直流(direct current,DC))也可采用脉冲方式。在一实例中,可对等离子体源501施加偏压。可选择的是,系统500中的射频偏压可采用脉冲方式,也可不采用脉冲方式。绝缘调节器101具有至少一个孔507,但也可具有多个孔507。增加一个以上的孔507可提高系统500的产量。因此,绝缘调节器101设计并不限于图5所示的设计。一个或多个工件100 (可以是太阳能电池或半导体晶圆)排列在位于处理室502中的平台503上。平台503可利用静电夹持(clamping)、机械夹持或静电夹持与机械夹持的结合来固定工件100。可利用平台503来扫描工件100。在图5的实施例中,平台503可沿着方向505来实施扫描。然而,平台503也可根据想要在工件100上形成的植入、蚀刻或溅镀图案来实施1D、2D或3D扫描。在另一实施例中,绝缘调节器101相对于工件100而移动(translate)。可使用各种装载及卸载机构将工件100放置在平台503上。在一实例中,平台503可经配置以对工件100进行背面气体冷却。在进行植入、蚀刻或溅镀之前或其过程中,可利用平台503或其他装置对工件100加热或冷却至各种温度。图6是对工件进行局部蚀刻或溅镀的横剖面方块图。工件100被放置在平台503上,平台503可沿着方向505来实施扫描。当离子506离开绝缘调节器101的孔507之后,对工件100进行蚀刻或溅镀。图6中的离子506是对工件100的第一区域600进行蚀刻或溅镀。此蚀刻或溅镀制程会移除工件100的第一区域600中的部分。当工件100沿着方向505而移动时,第二区域602和第三区域603也会被蚀刻或溅镀。例如,表面601不会被蚀刻或溅镀。除了图6所示的图案外,工件100上也可蚀刻或溅镀其他各种图案。形成不被蚀刻或溅镀的表面601可包括对工件100的移动进行调节、调节施加在平台503或工件100上的偏压、更改脉冲宽度或频率或者更改离子506的参数。在另一实例中,工件100沿着x、y或z方向相对于绝缘调节器101而移动,以形成表面601。此表面601可用来形成(例如)太阳能电池中的接头。离子506的焦点可定位在工件100的表面附近、工件100的表面上或工件100的表面下方。图7是第一实例的工件纹理化的横剖面侧视图。离子506穿过绝缘调节器101的孔507,且对工件100进行蚀刻或溅镀。此蚀刻或溅镀制程导致工件100中形成凹槽(groove) 700。在一实例中,可通过离子506的溅镀作用来形成凹槽700,其中离子506是强行移除工件100的一部分来形成凹槽700。离子506也可通过化学反应以化学方式来形成凹槽700。在一实例中,此化学反应利用氟离子(F)来与工件100产生会除气(outgas)的挥发性(volatile)四氟化硅(SiF4)分子。也可利用其他化学反应和机制,本实施例并不限于产生四氟化硅分子。本实施例中的凹槽700呈V形,但也可以是其他形状,诸如半圆形或圆顶形(dome)。离子506的焦点701在绝缘调节器101与工件100之间。因此,离子506在焦点 701处相互交叉。一部分离子506以一定的角度撞击工件100。在一实例中,大部分离子506不会垂直于工件100的表面703而撞击工件100。调整绝缘调节器101与工件100的表面703之间的距离会影响焦点701的位置。图8是第二实例的工件纹理化的横剖面图。在本实施例中,焦点702位于工件100中或位于工件100的表面703下方。此焦点702表明一部分离子506会以一定的角度来撞击工件100,但不会垂直于工件100的表面703。调整绝缘调节器101与工件100的表面703之间的距离会影响焦点702的位置。在图7 图8的实施例中,离子506可以是(例如)氢⑶、氮(N)、氦(He)、其他稀有气体、氟(F)、其他惰性气体或本技术领域中普通技术人员所知的其他物种。利用诸如氦气等惰性气体或稀有气体,可在工件100的围绕凹槽700的表面中形成空腔(cavities)。在工件100中围绕凹槽700而形成充满惰性气体或稀有气体的气泡(pockets)或“纳米孔”(nanovoids)。在退火过程中,这些气泡的尺寸会因(例如)奥氏熟化(Ostwaldripening)或其他机制而增大。较大的气泡会捕集(trap)光,且增加工件100对光的吸收。工件100可以是(例如)单晶体(singlecrystal)、聚晶体(polycrystalline)或多晶体(multicrystalline),在图4 图11的实施例中可以是娃(Si)或其他材料。图9A 图9B是对工件进行蚀刻或溅镀以形成棱锥体的立体透视图。工件100的多个部位藉由蚀刻或溅镀而形成了一系列凹槽700。此蚀刻或溅镀制程可使用类似于图7 图8的离子和绝缘调节器。每个凹槽700的形成需要执行一次蚀刻或溅镀步骤。如图9A所示在工件100中形成凹槽700之后,将工件100旋转。在此例中,工件是相对于绝缘调节器或平行于工件100的表面的平面而旋转或移动90°,但其他旋转量或移动量也是可以的。旋转后,再次对工件100的多个部位进行蚀刻或溅镀。在形成另一系列凹槽的过程中,图9A所示的凹槽700的多个部位被蚀刻或溅镀掉。这样就形成了一系列棱锥体900,并产生棱锥形凹槽901。这些棱锥形凹槽901只不过是两个V形凹槽700相互迭加而形成的。可对凹槽700与凹槽901的几何形状或棱锥体900的斜面、形状、均匀性或尺寸进行调整,以使得撞击棱锥体900的大部分光能够折射到工件100中。从棱锥体900的墙壁上反射回来的光入射到相邻的墙壁上,并将折射到工件100中。如此一来,用于(例如)太阳能电池或测光感测器(light-detecting sensors)的工件100的陷光性(light trapping)便得以改良。凹槽700和凹槽901的形成与工件100的晶格(lattice)中的硅(Si)或其他原子的方位无关。对蚀刻或溅镀凹槽700和凹槽901所用的离子的角扩展度(angularspread)进行调整,可形成精确的棱锥体900。藉由改变蚀刻或溅镀凹槽700和凹槽901所用的离子的焦点或角度,可调整凹槽700和凹槽901的深度和宽度。要在工件表面上形成棱锥体,每批棱锥体可执行湿式化学制程20多分钟。可利用经绝缘调节器调节后的等离子体在不到3分钟之内在一个整体为125_的工件100上形成纹理,以形成棱锥体900。此外,棱锥体900或其他凹槽的形成是利用聚焦的离子,而不是液态化学品。这与湿式化学制程相比可减少金属污染。再者,利用本说明书所揭露的实施例,棱锥体900可更加均匀统一。图IOA 图IOC是制造工件的第一实施例。离子1001 (可使用类似于图6 图8的绝缘调节器)对工件100的区域1004进行蚀刻或溅镀。此离子1001可以是(例如)氢(H)、氮(N)、氦(He)、其他稀有气体、氟(F)、其他惰性气体或本技术领域中普通技术人员所知的其他物种。可针对个别工件100来调节区域1004被蚀刻或溅镀的深度。对区域1004、进行蚀刻或溅镀可利用多个步骤来形成V形凹槽1003,但是也可形成单个凹槽或有纹理的区域。图IOA所示的实施例中的表面1005也经蚀刻或溅镀而形成了类似于图9A 图9B的棱锥形。虽然可利用等离子体和绝缘调节器来进行蚀刻或溅镀,但是也可采用其他蚀刻法来在表面1005上形成纹理。在图IOB中,将掺质1002植入到工件100中。这些掺质1002可以是(例如)硼(B)、砷(As)、磷(P)、镓(Ga)、铝(Al)或本技术领域中普通技术人员所知的其他掺质。用掺质1002来进行掺杂可在区域1004中形成掺杂区1006。在一实例中,掺质1002是利用等离子体和绝缘调节器而聚焦在区域1004中。在另一实例中,工件100的表面1005上可具有氧化层和抗反射涂层,且可利用等离子体掺杂离子植入机(implanter)、束线式(beam-line)离子植入机或用绝缘调节器101修改等离子体鞘层的方式来将掺质1002植入。氧化层和抗反射涂层是用作遮罩(mask),防止掺质1002被植入到区域1004以外的区域中。也可使用其他的掺杂方法(诸如用含有掺质的糊剂(paste)来实施激光掺杂,对含有掺质的糊剂进行加热,或将掺质放在炉子里进行气体扩散)来形成掺杂区1006,位于表面1005上的氧化层或抗反射涂层可有可无。在图IOC中,在区域1004中配置金属层1007,这样可在太阳能电池中形成金属接头。掺杂区1006有助于金属层1007的电荷收集。此金属层1007可利用(例如)丝网印刷法(screen printing)、喷墨制程(inkjet process)、电镀法(electroplating)或能够铺设金属层1007的其他制程来形成。金属层1007对准(aligned)掺杂区1006。若用电镀法来形成金属层1007,则无需执行微影(lithography)步骤或清洁步骤。在一特定实施例中,图IOA的蚀刻或溅镀制程与图IOB的掺杂制程至少一部分是同步的。在本实施例中,离子1001与掺质1002可合并到被绝缘调节器聚焦后的单一等离子体中。离子1001进行蚀刻或溅镀的同时,掺质1002实施掺杂,且形成掺杂区1006。例如,掺杂与蚀刻或溅镀至少一部分同步进行所用的离子1001与掺质1002可包括三氟化硼(BF3)与三氟化氮(NF3)、三氟化硼(BF3)与氦气(He)、磷⑵与三氟化氮(NF3)、三氟化氮(NF3)、二氧化硫(SO2)与硼(B)、三氟化氮(NF3)、二氧化硫(SO2)与磷⑵或者乙硼烷(B2H6)与氦气(He)、氢气(H2)或氩气(Ar)。当然,离子1001与掺质1002的其他组合也是可以的。离子1001可以是(例如)氢(H)、氮(N)、氦(He)、其他稀有气体、氟(F)、其他惰性气体或本技术领域中普通技术人员所知的其他物种。掺质1002可以是(例如)硼(B)、砷(As)、磷(P)、镓(Ga)、铝(Al)或本技术领域中普通技术人员所知的其他掺质。图IlA 图IlG是形成太阳能电池的第一实施例。图IlA显示为工件100,它可以是硅(Si)基板。在图IlB中,工件100上形成了纹理。此纹理化制程形成了有纹理的表面区域1101和无纹理的表面区域1102。有纹理的表面区域1101可以是一些棱锥体,且可如图9A 图9B所示利用聚焦的等离子体、等离子体蚀刻法、局部化等离子体溅镀法、化学蚀刻法或激光式纹理化来形成。在图IlC中,用掺质11 04对工件100进行掺杂,且形成第一掺杂区1112。这些掺质1104可以是(例如)硼(B)、砷(As)、磷(P)、镓(Ga)、铝(Al)或本技术领域中普通技术人员所知的其他掺质。掺质1104可经植入或扩散而进入工件100。在图IlD中,工件100上面可增加一层氧化层1106和抗反射涂层1107。氧化层1106可在含氧的炉子内形成,且抗反射涂层1107(可以是氮化硅(SiNx))可沉积在工件100上。在形成氧化层1106和抗反射涂层1107的过程中,第一掺杂区1112可被活化(activated)。在图IlE中,对工件100的至少一个区域1109进行蚀刻或溅镀。蚀刻或溅镀一个以上的区域1109也是可以的。对区域1109执行此蚀刻或溅镀制程将会使工件100以及抗反射涂层1107、氧化层1106及第一掺杂区1112的一部分被移除,不过其他蚀刻深度或溅镀深度也是可以的。图IlE所示的蚀刻或溅镀制程使用离子1108,此离子1108可以是氢(H)、氮(N)、氦(He)、其他稀有气体、其他惰性气体、氟或本技术领域中普通技术人员所知的其他物种。在一实例中,使用离子1108以类似于图6 图8的方式来对区域1109进行蚀刻或溅镀。此蚀刻或溅镀制程可利用多个步骤来形成V形凹槽1113,但也可形成单个凹槽或有纹理的区域。抗反射涂层1106的厚度可以仅约为400A 800A,可以被离子1108蚀刻掉或溅镀掉。然后,如图IlF所示,对区域1109进行掺杂。掺质1110可以是硼(B)、砷(As)、磷(P)、镓(Ga)、铝(Al)或本技术领域中普通技术人员所知的其他掺质。使用(例如)等离子体掺杂式或束线式离子植入机,用绝缘调节器101来修改等离子体鞘层,或者藉由掺质扩散,就能将掺质1110植入。氧化层1106和抗反射涂层1107可用作遮罩,以便只形成第二掺杂区1111。由于氧化层1106和抗反射涂层1107的存在,所以掺质1110不会植入到工件100的其他区域中。然后,如图IlG所示,在区域1109中第二掺杂区1111上形成金属层1112。此金属层1112可以是太阳能电池中的接头,且第二掺杂区1111有助于电荷收集。金属层1112可利用(例如)丝网印刷法、喷墨制程或电镀法来形成。金属层1112对准第二掺杂区1111。若利用电镀法来形成金属层1112,则无需执行微影步骤或清洁步骤。与图IOA 图IOC图相同的是,离子1108和掺质1110的植入、蚀刻或溅镀制程可至少一部分同步进行。本发明并不限于本说明书所述的特定实施例所界定的范围。实际上,对于所属技术领域中普通技术人员而言,根据以上的阐述和附图,不仅能掌握本说明书所述的实施例,而且本发明的其他实施例和对本发明的改进也将变得明显易懂。因此,这些其他实施例和改进应在本发明的范围内。此外,本说明书中是以特定的实施方式在特定的环境下根据特定的用途来阐述本发明,但是本技术领域中普通技术人员应当理解的是,本发明的效用并不限于此,本发明可以在多种环境下以有利的方式来实施且具有多种用途。因此,本发明的保护范围与精神当视后附的权利要求所界定者为准。
权利要求
1.一种处理工件的方法,包括 在工件的表面附近产生具有等离子体鞘层的等离子体; 对所述等离子体与所述等离子体鞘层之间的边界的形状进行调整,以使所述形状的一部分不平行于所述工件的所述表面; 利用所述等离子体来移除所述工件的所述表面的第一部分,所述表面平行于一平面; 沿着平行于所述平面的方向来旋转所述工件;以及 利用所述等离子体来移除所述工件的所述表面的第二部分。
2.如权利要求I所述的处理工件的方法,其中当所述第一部分被移除之后,所述工件在所述部位界定了 V形凹槽,且其中当所述第二部分被移除之后,所述工件在所述部位界定了棱锥形凹槽。
3.如权利要求I所述的处理工件的方法,其中所述工件是太阳能电池。
4.如权利要求I所述的处理工件的方法,其中所述工件包括硅。
5.如权利要求I所述的处理工件的方法,其中移除所述第一部分和移除所述第二部分是利用从稀有气体、氢、氮以及氟所组成的群组中挑选的物种来实施。
6.如权利要求I所述的处理工件的方法,其中所述旋转包括将所述工件移动90°。
7.如权利要求I所述的处理工件的方法,其中由所述等离子体来形成的离子具有焦点,所述焦点可介于所述等离子体鞘层与所述工件的所述表面之间或位于所述工件的所述表面下方。
8.—种制造工件的方法,包括 在工件的表面附近产生具有等离子体鞘层的等离子体; 对所述等离子体与所述等离子体鞘层之间的边界的形状进行调整,使得所述形状的一部分不平行于所述工件的所述表面; 利用所述等离子体来移除所述工件的所述表面的一个区域;以及 对所述工件的所述区域进行掺杂。
9.如权利要求8所述的制造工件的方法,其中所述工件是太阳能电池。
10.如权利要求9所述的制造工件的方法,其中所述太阳能电池的所述表面上具有氧化层和抗反射涂层,且所述移除蚀刻掉或溅镀掉位于所述表面的所述区域上的所述氧化层和所述抗反射涂层。
11.如权利要求8所述的制造工件的方法,其中所述移除和所述掺杂是至少一部分同步的。
12.如权利要求11所述的制造工件的方法,其中所述移除和所述掺杂是利用第一物种和第二物种来实施,所述第一物种选自硼和磷所组成的群组,且所述第二物种选自氦和氟所组成的群组。
13.如权利要求8所述的制造工件的方法,其中所述移除是利用从稀有气体、氢、氮以及氟所组成的群组中挑选的物种来执行。
14.一种制造太阳能电池的方法,包括 对太阳能电池的表面的至少第一区域进行纹理化处理; 将掺质植入到所述太阳能电池的所述表面中; 产生具有等离子体鞘层的等离子体,且对所述等离子体与所述等离子体鞘层之间的边界的形状进行调整,以使得所述形状的一部分不平行于所述太阳能电池的所述表面,以利用所述等离子体来移除所述太阳能电池的所述表面的至少一个第二区域; 对所述太阳能电池的所述第二区域进行掺杂;以及 在所述第二区域上形成金属层。
15.如权利要求14所述的制造太阳能电池的方法,其中所述纹理化处理包括化学蚀亥IJ、等离子体蚀刻、激光式纹理化或使用等离子体来进行纹理化,其中所述等离子体与等离子体鞘层之间的所述边界的所述形状被修改,以使得所述形状的一部分不平行于所述太阳能电池的所述表面。
16.如权利要求14所述的制造太阳能电池的方法,还包括在所述太阳能电池的所述表面上沉积抗反射涂层以及形成氧化层。
17.如权利要求16所述的制造太阳能电池的方法,其中移除所述至少一个第二区域包括移除所述至少一个第二区域上的所述抗反射涂层和所述氧化层。
18.如权利要求14所述的制造太阳能电池的方法,其中所述植入在所述太阳能电池中形成第一掺杂区,且其中移除所述至少一个第二区域包括移除所述至少一个第二区域中的所述第一掺杂区。
19.如权利要求14所述的制造太阳能电池的方法,其中所述移除是利用从稀有气体、氢、氮以及氟所组成的群组中挑选的物种来执行。
全文摘要
工件纹理化或制造工件的方法。例如,此工件可以是太阳能电池。此纹理化可包括利用等离子体来进行蚀刻或局部溅镀,其中要利用绝缘调节器来修改等离子体与等离子体鞘层之间的边界的形状。在两次执行蚀刻或溅镀步骤之间可旋转工件以形成棱锥体。也可利用离子来对工件的多个区域进行蚀刻或溅镀,然后实施掺杂,其中离子是由经绝缘调节器调整后的等离子体来形成的。可在这些掺杂区上形成金属层。
文档编号H01L31/0236GK102742019SQ201080062756
公开日2012年10月17日 申请日期2010年12月17日 优先权日2009年12月23日
发明者卢多维克·葛特, 迪帕克·瑞曼帕 申请人:瓦里安半导体设备公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1