具有接触阻挡层的稀释的iii-v族氮化物中间带太阳能电池的利记博彩app

文档序号:6990172阅读:206来源:国知局
专利名称:具有接触阻挡层的稀释的iii-v族氮化物中间带太阳能电池的利记博彩app
技术领域
本公开涉及太阳能电池,且更具体地,涉及具有接触阻挡层的稀释的III-V族氮化物中间带太阳能电池,该阻挡层用于改进太阳能电池性能。
背景技术
太阳能或光伏电池是具有P-N结的半导体器件,其直接将太阳光的辐射能转换为电能。太阳光转换为电能涉及三个主要过程太阳光吸收到半导体材料中;在太阳能电池中建立电压的正和负电荷的发生和分离;以及电荷通过连接到半导体材料的端子收集和转移。用于电荷分离的单个耗尽区通常存在于每个太阳能电池的P-N结中。基于单一半导体材料的当前传统太阳能电池具有约31%的固有效率限。该效率限的主要原因是半导体具有特定能量间隙,其仅能吸收光子能量在0. 4到^V范围内部分的太阳能光谱。能量低于半导体带隙的光不能被吸收和转换为电功率。能量在带隙以上的光将被吸收,但建立的电子-空穴对快速以热形式失去其在带隙以上的多余能量。因此,该能量不能用于转换为电能。具有较高效率的太阳能电池可用由具有不同带隙的半导体制成的太阳能电池叠层(stack)实现,称为“多结”、“阶梯(cascade)”、或“级联(tandem) ”太阳能电池。多结太阳能电池是通过串联多个(如,两个、三个、四个、等等)P_N结太阳能电池制成的,因而实现比单个P-N结太阳能电池更有效的太阳能电池。级联电池通常在顶部电池中用较高带隙材料形成从而转换较高能量光子,同时允许较低能量光子向下传递到太阳能电池叠层中较低带隙材料。选择电池叠层中太阳能电池的带隙从而最大化太阳能转换效率,其中隧道结用来串联电池,以便电池的电压累加。这样的多结电池要求无数层材料形成在复杂的多结叠层结构中。

发明内容
本公开涉及太阳能电池,更特别地,涉及具有用于改善太阳能电池性能的接触阻挡层的稀释III-V族氮化物中间带太阳能电池。根据一个或更多实施例,提供的中间带(I带)太阳能电池(IBSC)包括至少一个基于稀释的III-V氮化物材料的P-N结,和设置在P-N结相对表面的接触阻挡层对。接触阻挡层通过阻挡P-N结中I带中电荷输运提供P-N结中间带的电绝缘,而不影响P-N结中电子和空穴的收集效率。在一个或更多实施例中,IBSC是在衬底上形成的或作为较大、多结级联电池内太阳能电池。
根据一个或更多实施例,用于IBSC的稀释的III-V族氮化物P-N结材料包括 GaNAs层,且接触阻挡层是与所需带隙的GaNAs层匹配的晶格。在一个或更多实施例中,接触阻挡层包括AKktAs或其他III-V三元合金中至少一种。在一个或更多实施例中,调谐 AlGaAs接触阻挡层的成分,以便其导带与GaNAs吸收层的上子能带对齐。通过以该方式分离GaNAs吸收层的I带,并有效阻挡中间带与相邻层接触,I带仅用作吸收较低能量光子的 “垫脚石(st印ping stone)”并增加器件的短路电流(Isc)。IBSC的开路电压(Vqc)由GaNAs 的最大带隙决定。在一个或更多实施例中,IBSC的P-N结吸收层可进一步具有成分分级的氮浓度,从而为更有效的电荷收集提供电场。本发明的许多其他特征和实施例可从附图及下面的详细说明中显然看出。


本发明的上述特征和目的可参考下面的说明结合附图更明显看出,其中相似标识号表示相似元件,且其中图1是方框图,其表示根据本公开一个或更多实施例的中间带太阳能电池 (IBSC)。图2是根据本公开的一个或更多实施例,图示图1中示出的IBSC的一个实施例的计算的能带图。图3是根据本公开的一个或更多实施例,图示图1中示出的IBSC的一个实施例的计算的载流子分布。图4是根据本公开一个或更多实施例的方框图,其表示中间带太阳能电池(IBSC) 的测试结构。图5是根据本公开一个或更多实施例,图示图4中示出的IBSC的一个实施例的IX 阳光和IOX阳光下测量的电流密度。图6是根据本公开一个或更多实施例,图示图4中示出的IBSC的一个实施例测量的外部量子效率(EQE)读数。图7A是根据本公开一个或更多实施例具有ρ型吸收层的中间带太阳能电池 (IBSC)的方框图。图7B是根据本公开一个或更多实施例图示图7A中示出的IBSC的一个实施例的计算的能带图。图8A是根据本公开的一个或更多实施例具有分级成分的中间带太阳能电池(分级IBSC)的方框图。图8B是根据本公开的一个或更多实施例图示图8A中示出的分级IBSC的一个实施例的计算的能带图。
具体实施例方式总之,本公开旨在光伏器件,太阳能电池或中间带太阳能电池(IBSC),该中间带太阳能电池通过使用具有多重带隙的单一半导体实现改善的太阳能转换效率。在包括这类中间带的半导体中,宽带隙半导体的带隙中额外的一个或更多带用作从价带到导带转移电子的“垫脚石”,该导带具有能量小于带隙的两个或更多光子。该IBSC概念仅要求单P/N结,但中间带必须与电荷收集接触电绝缘。理论模型预测具有一个中间带的器件的功率转换效率为63%,具有两个中间带的器件的转换效率为72%。更特别地,本公开旨在稀释的III-V组氮化物中间带太阳能电池(IBSC),其具有提供改善的太阳能电池性能的接触阻挡层。替换III-V组半导体合金(如GaAsUnGaAs、或 GaAsP)中少量氮会将合金导带分成较高的导带(E。)和较低子带,或中间带(I带)。利用光伏器件、太阳能电池或包括稀释III-V组氮化物层和接触阻挡层的IBSC,本公开的IBSC能够最大化太阳能电池性能,增加IBSC内电压和电流,并可防止电子和空穴通过IBSC的I带中导电逸出材料层。下面参考前面的附图讨论本公开的某些实施例,其中相似标识号指相似元件。利用IBSC,可采用单P-N结,因而通过显著简化太阳能电池设计,相对更复杂的多结太阳能电池降低生产成本。进一步,通过利用依次优化三个或更多能量带的材料制造 IBSC,IBSC可相对传统单P-N结太阳能电池实现更高的功率转换效率。传统上,发现多带半导体吸收层和电绝缘吸收层中I带是有挑战的。使用InAs量子点(QD)迷你带概念和稀释的III-V氮化物的IBSC测试器件导致低开路电压(Vre)读数,如0. 3-0. ^V。传统IBSC中发生的这些较低Vre读数,要么是由于不理想的带分离(如在InAs QD概念中),要么由于电子和空穴通过I带中传导连续离开IBSC层,这是由于具有相邻层的IBSC中吸收层中I带电绝缘不足导致的。本发明人在高度失配合金(HMA)中使用能带反交叉(band anticrosssing) 概念解决了围绕IBSC的电绝缘问题,其使得能够使用II-VI和III-V族半导体合金,这些半导体合金具有适用于IBSC应用的多带结构。现在参考图1,其示出根据本公开一个或更多实施例的中间带太阳能电池 (IBSC) 100的方框图。IBSC 100包括由太阳能电池中常用的任何衬底材料形成的底部衬底层102。例如,衬底层102可包括锗(Ge)或砷化镓(GaAs),并可包括特定应用所需的η型材料。IBSC 100包括两层稀释的III-V族氮化物材料106和108,其包括具有多个能级带的用于IBSC 100的单P-N结,其中η型材料在P-N结的一侧形成,而ρ型材料在P-N结的另一侧形成。在一个或更多实施例中,P-N结层106和108包括各层GaNAs。在图1所示的特定实施例中,层106形成为n-GaNAs,层108形成为p-GaNAs,但应该理解这些ρ型和η型层的顺序在不同应用中可逆反(如,参看图8)。GaNAsP-N结层106和108也可称为feiNAs 吸收层106和108。在一个或更多实施例中,GaNAs吸收层106和108内的氮浓度范围在 0. 5-5%之间。具有与GaNAs类似多带特性的其他III-V氮化物也可用作I带吸收器,例如但不限于AlGaNAs和GaNAsP。在一个或更多实施例中,铟(In)可加入层106和108中至少一个,以便形成 GaInNAs层106或feJnNAs层108,以便改善材料的晶格匹配参数,这改善材料的整体质量并减少基于材料的缺陷,这些缺陷可在日常使用和测试中发生,并对IBSC 100的效率有害。在一个或更多实施例中,选择层106和108中氮(N)对铟(In)的比为1 3,以便产生最优结果并补偿由于化合物中存在氮引起的氮诱导的晶格参数收缩。在一个或更多实施例中,一对接触阻挡层104和110设置在IBSC 100中P-N结的相对表面上,以便第一接触阻挡层104在邻近n-GaNAs层106的衬底层102上形成,且第二接触阻挡层110在p-GaNAs层108上形成。虽然图1中示出一对接触阻挡层104和110,但可进一步理解,在某些实施例中IBSC 100可仅形成有邻近η型层106和108的接触阻挡层 104和110之一。因此,至少一个接触阻挡层(即,104或110)是邻近η型层106和108形成的,但在某些实施例中,另一个接触阻挡层(即,104或110)可进一步邻近ρ型层106和 108形成。接触阻挡层104和110可由任何材料形成,其通过阻挡层106和108之间GaNAs P-N结的中间带中电荷输运提供GaNAs P-N结的中间带的电气绝缘,而不影响GaNAs P-N结的空穴收集效率。在一个或更多实施例中,接触阻挡层104和110是匹配到GaNAs层106和108的所需较高带隙的晶格。在一个或更多实施例中,接触阻挡层包括至少一种AKiaAs材料。当暴露于太阳辐射后,空穴和电子在GaNAs P-N结层106和108中形成时,空穴和电子通过层 106和108的价带和较高导带跨过层106和108之间的P-N结,从而在IBSC 100中产生最终电流。接触阻挡层104和110电绝缘I带并阻挡电子通过I带进入IBSC 100的邻近层。 在一个或更多实施例中,GaNAs P-N结层106和108以及AlGaAs接触阻挡层104和110的成分可调谐,从而将接触阻挡层104和110的导带与GaNAs P-N结层106和108的较高导带对齐。通过以该方式绝缘GaNAs P-N结层106和108的I带,并有效阻挡I带与IBSC 100 的邻近层接触,实现取决于吸收层较大带隙的增加的开路电压(Vre)。可利用绝缘的I带进一步增加光电流,从而吸收能量在GaNAs P-N结层106和108的带隙以下的光子。在一个或更多实施例中,如图1所示,η型AlGaAs阻挡层104在GaAs衬底层102 上形成。N型feiNAs层106在n-AlGaAs阻挡层104上形成,这里n_AlGaAs阻挡层104与其邻近层晶格匹配以便最大化所用材料的整体质量,这进而最小化任何基于材料的缺陷,这些缺陷可在日常使用和测试中发生,并对IBSC 100的效率有害。P型GaNAs层108是在η 型GaNAs层106上形成的。P+GiiyAs层112是在p+AlGaAs层110上形成的,以便保护AlGaAs 层免被氧化。对于任意实施例中描述的阻挡层104和110,适当的η型或ρ型层(ialnP或本领域技术人员已知的具有类似阻挡特征的任何其他材料层可互换使用取代AWaAs。在图1的IBSC 100中,底部阻挡层104允许电子通过较高的导带,但阻挡空穴,同时顶部阻挡层110允许空穴通过但阻挡电子通过I带或导带。当响应暴露于太阳辐射而释放时,电子希望从第一 P-N结层106通过第一阻挡层104到达底部衬底层102,因此第一阻挡层104促进该过程。类似地,当响应太阳辐射释放时,空穴希望从第二 P-N结层108到保护层112,以便顶部阻挡层110促进该过程。如图2中能带图的图形表示中进一步讨论,阻挡层104和110使得能够电绝缘GaNAs吸收层106和108的中间带,这进而最大化电压和通过整个IBSC 100的电流,并因此优化IBSC 100的整体效率。下面参考图2,其示出为图1中IBSC 100的一个特定实施例计算的能带图的图形表示。在该代表性例子中,具有45%的Al且掺杂浓度为 hl017cnr3的IOOnm n-AlGaAs 阻挡层104在n+GaAs衬底层102上形成。Te掺杂浓度为MlO17CnT3的400nm的η型GaNAs 层106在n-AlGaAs阻挡层104上形成,且Si掺杂浓度为lxl018cnT3的IOOnm的ρ型feiNAs 层108在η型GaNAs层106上形成。然后50nm p+Al0.75Ga0.25As阻挡层110在ρ型GaNAs层 108上形成。最后,20nm厚的p+GaAs层112在PiAla75GEta25As阻挡层110上形成从而防止该层被氧化。图2中计算的能带图示出导带(Ec)212、中间带(I带)214、和价带(Ev)216的示图。计算的能带图的χ轴表示与图1中结构表面的距离,单位为微米,而y轴表示相对费米能级测量的能量测量读数,单位为eV(电子伏)。导带(E。) 212表示具有用于电子传导的空态的能带,且导带(Ec) 212的斜率可揭示电子流动或电荷输运通过IBSC 100的速率。类似地,价带(Ev)216表示填充有电子或具有空穴传导的空态的能带,且价带(Εν)216的斜率可揭示空穴流动或电荷输运通过IBSC的速率。如图2中所示,曲线212和216的斜率示出电子从表面被排斥,而空穴被汲取到表面。I带曲线214表示中间带,该中间带是作为N态和 GaAs导带(Ε。)212之间反交叉相互作用的结果形成的。图2中I带在两侧都完全绝缘并用作低能光子吸收的“垫脚石”。再参考图1,在一个或更多实施例中,IBSC 100可形成有保护层112,如p+GaAs等, 其沉积在接触阻挡层110的顶部以便提供在其他层之上的保护性覆层从而防止第二阻挡层Iio氧化,特别是在第二阻挡层110由AlxGayAs形成时。层112也可用作低阻接触。根据用于所需操作特征的IBSC 100不同层的所需构型,保护层112通常包括η型或ρ型GaAs。 在一个或更多实施例中,保护层112可选用已知沉积技术沉积,其厚度比IBSC 100的其他层薄。现在参考图3,其示出根据本公开一个或更多实施例的图1中IBSC 100的载流子浓度分布的图形表示。图3中载流子浓度分布曲线具有表示与表面距离的χ轴,单位为 ym,和载流子浓度的y轴,单位为(cm—3)。载流子浓度分布曲线示出电子312的载流子浓度曲线和空穴314的载流子浓度曲线。如图3中这些曲线所示,空穴浓度在靠近表面处最高,由空穴曲线314中活性示出,在有顶部阻挡层110时,其中顶部阻挡层110让空穴通过但阻挡电子。然后与表面远离处,空穴和电子的浓度在ρ/η结耗尽区中变得非常小,该耗尽区从0. 1 μ m延伸到0. 18 μ m。IBSC结构100的η型侧更深处,空穴浓度小到可以忽略,且曲线312表示电子浓度。厚度范围在层106(图1)中0. 18到0.32 μ m之间的中间带电子被阻挡层104与后接触电绝缘。仅从中间带212(图2、激发到上能带214的电子可转移到衬底并由后接触收集。因此,图3中载流子浓度分布曲线示出阻挡层功能适当地并有效地用作电子和空穴的阻挡器(blocker),其电绝缘改善IBSC 100的电流、电压和整体功率转换效率的I带。现在参考图4,其示出根据本公开一个或更多实施例,具有金属接触414和416 并暴露于太阳光401的IBSC 300的测试设备结构的方框图。IBSC 400包括在n+GaAs衬底层402上形成的90nm的η Al0.44Ga0.56As阻挡层404、在η AlGaAs阻挡层404上形成的 400nm η 型 feiNAs 层 406、在 η 型 feiNAs 层 406 上形成的 IOOnm ρ+ 型 feiNAs 层 408。50nm p++Al0.45Ga0.55As阻挡层410在GaNAs层408上形成,最后20nm p+GaAs保护性接触层412 在AlGaAs阻挡层410上形成。偏置接触(bias contact) 414在保护层412上形成, 其中hSn接地接触416在部分衬底层302上形成。偏置接触414用作电压或电压源接触, 且接地接触416用作接地电压接触。在该特殊实施例中,偏置接触414可包括InZn(锌化铟),且接地接触416可包括锡化铟),同时理解其他欧姆接触金属化为提供类似所需特征的ρ型和η型GaAs可用于IBSC 400的各层和元件。现在参考图5,其图示了根据本公开的一个或更多实施例,黑暗和Ix以及IOx太阳辐照下,图4中IBSC 400的电流-电压I-V特征测量。图5中I-V特征图示出偏置电压 (单位V),χ轴,和电流密度(单位mA/cm2),y轴。曲线512示出图4中IBSC 400在Ix太阳光AM 1.5的I-V特征,而曲线514示出IBSC 400与太阳之间被遮蔽时(S卩,黑暗)的I-V特征。类似地,曲线516示出图4中IBSC 400曝光在IOx太阳AMI. 5时的I-V特征,而曲线518示出IBSC 400与太阳之间被遮蔽时(即,黑暗)的I-V特征。如图5中清楚看出, 当IBSC 400为给定偏压暴露于太阳光时,电流急剧增加,因而表明IBSC 400适当工作,因为其将光子转换为电子和电流。I,Ix和IOx太阳光辐照条件下零电流的电压分别为0. 75 和0.8eV。Vtj。的这些值比文献中报告的未阻挡结构的高很多(0.3-0.4eV)。现在参考图6,其图示出根据本公开的一个或更多实施例的图4中IBSC 400的外部量子效率(EQE)读数。图6中EQE曲线示出激发单色光的能量,χ轴,单位为eV,和光伏响应EQE,y轴,百分比(% )。EQE曲线612示出利用上面讨论的阻挡层有效阻挡中间带。 高EQE值仅在激发光达到GaNAs层的价带和较高导带之间能量分离时实现, 。在一个或更多实施例中,在至少一个或两个IBSC 800的P-N结的GaNxAs吸收层的氮浓度X可以是分级的,以便改善IBSC 700的性能,如图8A所示。GaNAs层808和810 (相应于GaNAs吸收层106和108)中任一个或两者可从GaNxAs层808或810 —部分中较高氮浓度X, 0. 02到同一 GaNxAs层808或810中另一部分806中较低氮浓度x, 0. 005。例如,在GaNAs层808内,N浓度从GaNatll8As层808或810之间界面附近χ = 0. 018减小到 GaN0.005As层808和阻挡层804之间界面附近的χ = 0. 005。在一个或更多实施例中,GaNAs 层808和810最接近其结的部分具有最高氮浓度。通过成分分级GaNAs层808和810中至少一个,建立附加电势(additional potential),其驱动电子趋向n_GaAs衬底802,因而增加电池电流。进一步,GaNAs层808和810的成分分级在其表面提供较大带隙,因而可能形成更好的空穴导电接触。这些与成分分级关联的优点将进一步增加该类型太阳能电池的太阳能功率转换效率。下面参考图8B,其图示出根据本发明一个或更多实施例的图8A中IBSC 800计算的能带图。图8B中计算的能带图包括导带(Ε。)822、中间带(I带)拟4、和价带(Εν)^6的能量曲线。从这些能带图可以看出,衬底和上接触层的中间带824与导带(Ε。)有效绝缘。 当比较图8Β中示出的分级结构的能带图和图2中示出的非分级结构的能带图时,可以从图 8中能带图中看出,分级结构的导带(Ε。)822和价带(Εν)^6在吸收层中的斜率比非分级结构的相应导带(Ε。)212和价带(Εν)214的斜率高,因而表明在分级结构中建立附加电势,其驱动电子远离ρ-η结。根据一个或更多实施例中,提供的中间带太阳能(IBSC)利用稀释的III-V族氮化物中间带材料和接触阻挡层,以便改善太阳能电池性能。特别地,本公开的总体优点包括能够增加开路电压值,增加通过绝缘的I带增加的光吸收产生的光电流,因此最终能够通过利用阻挡层有效绝缘I带,改善IBSC的总体功率转换效率和性能。而且,因为利用IBSC,所以仅要求P-N结,这与接触阻挡层一起,相比多结设计,显著简化电池设计,且因此明显降低制造成本。虽然已经根据当前被当作最实用和优选的实施例,描述了使用分级成分和接触阻挡层的中间带太阳能电池,但应该理解,本公开不必局限于上述实施例。还应该理解,可做出不同变化而不偏离本发明的本质。例如,与上面不同实施例所述不同的材料可用于IBSC 的不同层,只要其提供上面不同实施例所述材料实现的理想特征。这样的变化也是包括在说明书中的暗示并在本公开的范畴内。应该理解本公开是为了产生涵盖本发明无数方面的专利,独立地和作为整体系统,既包括方法也包括设备模式。
进一步,本发明的每个不同元素和权利要求也可以不同方式实现。本公开应理解为包括每个这类变化,只要其是任何设备实施例、方法和工艺实施例的变化,或甚至仅是这些实施例任何元素的变化。特别地,应该理解本发明每个元素的词可由等价设备术语或方法术语表达。这类等价的、更宽泛的、或甚至更通用术语应当作包括在每个元素或动作的说明内。在需要使本发明所赋予的暗示性宽泛范围更明确时,这类术语可替换。应该理解,所有动作可表达为采取该动作的方法或引起该动作的元素。类似地,这里公开的每个物理元素应理解为包括物理元素促进的动作的公开。上面的说明不是为了涵盖包括在权利要求限定的精神和范畴内的不同修改和类似结构,本发明的范畴应与最宽泛的解读一致,以便包括所有这类修改和类似结构和/或方法步骤。因此,本发明包括权利要求的任意和所有实施例。
权利要求
1.一种中间带太阳能电池,其包括p-n结,其包括ρ型层和η型层,每个所述ρ型层和η型层材料都包括中间带;以及接触阻挡层,其设置在η型层的外表面上,并提供所述P型和η型层的中间带的电绝缘。
2.根据权利要求1所述的中间带太阳能电池,进一步包括设置在ρ型层外表面上的接触阻挡层,以便所述接触阻挡层设置在所述P型和η型层的相对表面上,从而提供所述P型和η型层的中间带的电绝缘。
3.根据权利要求1所述的中间带太阳能电池,其中所述P型和η型层材料包括稀释的 III-V族氮化物材料。
4.根据权利要求3所述的中间带太阳能电池,其中所述ρ型和η型层材料包括GaNAs。
5.根据权利要求4所述的中间带太阳能电池,其中所述ρ型和η型层材料包括GaNAs, 其中氮浓度范围在0. 5% -5%之间。
6.根据权利要求3所述的中间带太阳能电池,其中所述ρ型和η型层中至少一个具有成分分级的氮浓度,从而为更有效的电荷收集提供电场。
7.根据权利要求2所述的中间带太阳能电池,其中所述接触阻挡层中至少一个与所述 P型和η型层晶格匹配。
8.根据权利要求1所述的中间带太阳能电池,其中所述接触阻挡层的导带与所述η型层的相应较高子带对齐。
9.根据权利要求1所述的中间带太阳能电池,其中所述接触阻挡层包括AKiaAs和 InGaP中至少一种。
10.根据权利要求1所述的中间带太阳能电池,其中所述p-n结的ρ型和η型层以及接触阻挡层是由所需材料形成的,以便所述P型和η型层的中间带吸收能量低于所述P型和 η型层带隙的光子,从而当所述中间带太阳能电池暴露于太阳光辐射时形成增加的光电流。
11.根据权利要求1所述的中间带太阳能电池,其中所述P型和η型层中的一个形成在衬底上。
12.根据权利要求2所述的中间带太阳能电池,进一步包括在一个接触阻挡层上形成的保护层,从而提高保护性覆盖并进一步提高低电阻接触。
13.一种中间带太阳能电池,其包括衬底;在所述衬底上形成的第一接触阻挡层;在所述第一接触阻挡层上的P-n结,其中所述p-n结包括ρ型层材料和η型层材料,其中每个P型层和η型层材料都包括中间带;以及第二接触阻挡层,其在所述第一接触阻挡层的所述P-n结的相对表面上形成,其中所述第一和第二接触阻挡层提供所述P型和η型层的中间带的电绝缘。
14.根据权利要求13所述的中间带太阳能电池,其进一步包括保护层,其在所述第二接触阻挡层上形成从而提供保护性覆盖并进一步提供低电阻接触。
15.根据权利要求13所述的中间带太阳能电池,其中所述p-n结的所述ρ型和η型层材料包括稀释的III-V族氮化物材料。
16.根据权利要求15所述的中间带太阳能电池,其中所述ρ型和η型层材料包括GaNAs0
17.根据权利要求13所述的中间带太阳能电池,其中至少一个所述接触阻挡层与所述 P型和η型层的相应带隙晶格匹配。
18.根据权利要求13所述的中间带太阳能电池,其中至少一个所述接触阻挡层的导带与具有中间带的P型和η型成的相应较高子带对齐。
19.根据权利要求13所述的中间带太阳能电池,其中所述接触阻挡层包括MGaAs和 InGaP中至少一种。
20.根据权利要求13所述的中间带太阳能电池,其中所述ρ-η结的所述ρ型和η型层以及接触阻挡层是由所需材料形成的,以便P型和η型层的中间带吸收能量低于所述P型和η型层带隙的光子,从而当所述中间带太阳能电池暴露于太阳光辐射时形成增加的光电流。
21.根据权利要求13所述的中间带太阳能电池,其中所述ρ型和η型层中至少一种具有成分分级的氮浓度,从而为更有效的电荷收集提供电场。
全文摘要
本发明提供一种中间带太阳能电池(IBSC),其包括基于稀释的III-V族氮化物材料的p-n结和一对位于p-n结相对表面上的接触阻挡层,其用于通过阻挡中间带中电荷输运电绝缘p-n结的中间带,但不影响p-n结的电子和空穴收集效率,因而增加IBSC的开路电压(VOC),并利用中间带吸收能量低于IBSC的吸收层带隙的光子增加光电流。因此,IBSC的整体功率转换效率比传统单结太阳能电池高得多。IBSC的p-n结吸收层具有成分分级的氮浓度,从而为更有效的电荷收集提供电场。
文档编号H01L31/0735GK102576775SQ201080040445
公开日2012年7月11日 申请日期2010年9月7日 优先权日2009年9月11日
发明者K·M·禹, W·瓦鲁奇威兹 申请人:罗斯特雷特能源实验室公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1