具有前侧和背侧光电检测器的图像传感器的利记博彩app

文档序号:6988986阅读:251来源:国知局
专利名称:具有前侧和背侧光电检测器的图像传感器的利记博彩app
技术领域
本发明大体上涉及用于在数码相机和其它类型的图像俘获装置中使用的图像传感器,且更特定来说,涉及背照式图像传感器。仍更特定来说,本发明涉及具有前侧光电检测器和背侧光电检测器的背照式图像传感器。
背景技术
电子图像传感器通过使用将入射光转换成电信号的光敏性光电检测器来俘获图像。大体上将图像传感器分类为前照式图像传感器或背照式图像传感器。随着图像传感器 工业转向越来越小的像素设计以增加分辨率且降低成本,背光照明的益处变得越加清晰。在前照式图像传感器中,电控制线或电导体定位于图像传感器的光电检测器与光接收侧之间。此定位的结果为电导体阻挡了本应由光电检测器接收的光的部分,从而导致不良的量子效率(QE)性能(尤其对于小像素)。对于背照式图像传感器,电控制线或电导体与传感器的光接收侧相对地定位,且不会降低QE性能。背照式图像传感器因此解决小像素设计的QE性能挑战。但小像素设计仍具有两个其它性能问题。首先,小像素设计遭受低的光电检测器(PD)电荷容量。这是因为一阶电荷容量(first order charge capacity)与光电检测器的面积一起缩放。其次,制造背照式传感器的过程由将装置晶片结合到内插晶片和接着薄化所述装置晶片组成。此过程产生栅格失真(grid distortion)。这些栅格失真导致彩色滤光片阵列的未对准,从而增加像素间的色彩串扰的量。图I (a)到图I (d)说明根据现有技术的用于制造背照式传感器的方法。图I (a)到图I (d)描绘标准的互补金属氧化物半导体(CMOS)晶片100,其包括安置于衬底104上的外延层102。外延层102与衬底104 —起形成装置晶片106。或者,制造者可使用绝缘体上硅(SOI)晶片,这是因为内埋绝缘层提供对装置晶片106的背面薄化的自然蚀刻终止。不管起始材料为何物,栅格失真为背面薄化工艺的问题。图1(b)描绘成品装置晶片106。通常,在外延层102中制造多个图像传感器108。图1(c)说明在结合之前的内插晶片112的定位。典型的内插晶片由硅层114和粘附层116 (例如,CMP 二氧化硅层)组成。将所制造的装置晶片106结合到内插晶片112,且通过首先研磨、接着抛光且最终蚀刻最后的数十到数百微米的硅来移除衬底104和外延层102的一部分。图I⑷说明根据现有技术的成品晶片118和背照式图像传感器108的分解图。归因于沉积工艺且归因于导电互连件122,应力聚集于绝缘层120中。粘附层116、124中还存在应力。对装置晶片106的薄化减小了外延层102的强度。图2为归因于薄化和外延层102的应力松弛而产生的夸示失真图案。虚线200表示背照式图像传感器的无失真晶片图,而实线202描绘最终的失真图案。当在背面经薄化的图像传感器上制造彩色滤光片阵列126(参见图1(d))时,失真图案202为一难题。几乎所有的光刻设备测量成品晶片118上的8到12个图像传感器108的对准标记位置,且接着执行全局对准。通过现代干涉仪测量技术,全局对准提供在三百毫米(mm)内超过10纳米(nm)的对准容限。换句话说,全局对准优于逐裸片对准。而且,刮除光刻掩模且在逐裸片基础上对准所述掩模减缓了设备输送,借此增加了成本。对于背面经薄化的晶片,归因于失真的成品晶片118位置的不确定量(还称为上覆)通常为50nm到200nm。对于小像素,50mn到200nm的不确定量导致显著的彩色滤光片阵列未对准,从而引起显著的色彩串扰。这些不确定量必须比得上所述上覆通常小于20nm的前照式传感器。再次参看图I (d),现有技术背照式图像传感器说明栅格失真可如何引起像素之间的色彩串扰。双向箭头128表示在使用全局对准来制造彩色滤光片阵列(CFA)时,前侧光电检测器130a、130b、130c相对于CFA的背侧彩色滤光片元件132a、132b、132c的未对准。在前侧光电检测器配置的情况下,栅格失真可导致光134从邻近的未对准滤光片元件(例如,132a)泄漏到目标光电检测器(例如,光电检测器130b)中。

发明内容
一种背照式图像传感器包括第一导电类型的传感器层,所述传感器层具有前侧和与所述前侧相对的背侧。绝缘层安置于所述传感器层的所述背侧上方。电路层形成于所述传感器层的所述前侧邻近处,使得所述传感器层定位于所述电路层与所述绝缘层之间。第二导电类型的一个或一个以上前侧区形成于所述传感器层的所述前侧的至少一部分中。所述第二导电类型的背侧区形成于所述传感器层的所述背侧中。所述第一导电类型的多个前侧光电检测器安置于所述传感器层中,邻近于所述前侧。与所述前侧光电检测器分离的所述第一导电类型的多个相异的背侧光电检测器形成于所述传感器层中,邻近于所述背侧且邻接于所述第二导电类型的所述背侧区的部分。一个或一个以上电压端子可电连接到所述第二导电类型的所述前侧区、所述背侧区或所述前侧区与所述背侧区两者,以用于将所述区偏置到相应电压。所述第二导电类型的一个或一个以上连接区可形成于所述传感器层的相应部分中,位于所述第二导电类型的所述前侧区与所述背侧区之间,以用于将一个区电连接到另一区。每一前侧光电检测器可与相应背侧光电检测器配对以形成光电检测器对。在光电检测器对的情况下,所述第二导电类型的一个或一个以上连接区可安置于所述传感器层的相应部分中,位于每一光电检测器对之间,以用于将所述光电检测器对中的所述前侧光电检测器与所述背侧光电检测器电连接在一起。溢漏(overflow drain)可安置于所述传感器层的一部分中,位于每一光电检测器对之间。所述第二导电类型的一个或一个以上隔离区可形成于所述传感器层中且部分地环绕每一前侧光电检测器和背侧光电检测器。所述第一导电类型的一个或一个以上沟道区可安置于所述传感器层中,位于所述第一隔离区之间,且邻近于每一前侧光电检测器和背侧光电检测器。优点本发明具有如下优点提供一种具有增加的光电检测器电荷容量和改进的色彩串扰性能的图像传感器。


参看以下图式更好地理解本发明的实施例。所述图式的元件未必相对于彼此而按比例。图I (a)到图I (d)说明制造背照式图像传感器的简化过程。图2为归因于图I中所展示的薄化和外延层102的应力松弛而产生的夸示失真图案;图3为在根据本发明的一实施例中的图像俘获装置的简化方框图;图4为在根据本发明的一实施例中的图3中所展示的图像传感器306的简化方框图; 图5为说明图4中所展示的像素400的第一示范性实施方案的示意图;图6为说明图4中所展示的像素400的第二示范性实施方案的示意图;图7说明在根据本发明的一实施例中的具有前侧光电检测器和背侧光电检测器的第一背照式图像传感器的一部分的横截面图;图8为沿图7中的线A-A^的静电电位对距离的曲线;图9描绘在根据本发明的一实施例中的具有前侧光电检测器和背侧光电检测器的第二背照式图像传感器的一部分的横截面图;图10为在根据本发明的一实施例中的用于制造图9中所展示的图像传感器的一部分的方法的流程图;图11说明在根据本发明的一实施例中的具有前侧光电检测器和背侧光电检测器的第三背照式图像传感器的一部分的横截面图;图12为沿图11中的线Bt和C-CT的静电电位对距离的曲线;图13描绘在根据本发明的一实施例中的具有前侧光电检测器和背侧光电检测器的第四背照式图像传感器的一部分的横截面图;图14说明在根据本发明的一实施例中的具有前侧光电检测器和背侧光电检测器的第五背照式图像传感器的一部分的横截面图;以及图15描绘在根据本发明的一实施例中的具有前侧光电检测器和背侧光电检测器的第六背照式图像传感器的一部分的横截面图。
具体实施例方式除非上下文清楚地另有指示,否则以下术语在整个说明书和权利要求书中采用本文中明确地关联的含义。“一”和“所述”的含义包括复数引用,“在…中”的含义包括“在…中”和“在…上”。术语“连接”是指所连接项目之间的直接电连接,或经由一个或一个以上被动或主动中间装置的间接连接。术语“电路”是指单一组件,或连接在一起以提供所要功能的多个组件(主动或被动)。术语“信号”是指至少一个电流、电压或数据信号。另外,参考正描述的图式的定向来使用例如“在…上”、“在…上方”、“顶部”、“底部”等方向术语。因为本发明的实施例的组件可定位在许多不同定向上,所以方向术语仅出于说明的目的而使用且决不为限制性的。当结合图像传感器晶片或对应图像传感器的层使用时,方向术语意欲被广泛地解释,且因此不应被解译成排除一个或一个以上介入层或其它介入图像传感器特征或元件的存在。因此,在本文中描述为形成于另一层上或形成于另一层上方的给定层可通过一个或一个以上额外层而与所述另一层分离。最后,术语“晶片”和“衬底”应被理解为基于半导体的材料,包括(但不限于)硅、绝缘体上娃(SOI)技术、掺杂和未掺杂半导体、形成于半导体衬底上的外延层,和其它半导体衬底。参看各图式,相同数字在所有视图中指示相同部分。图3为在根据本发明的一实施例中的图像俘获装置的简化方框图。将图像俘获装置300实施为图3中的数码相机。所属领域的技术人员将认识到,数码相机仅为可利用并入有本发明的图像传感器的图像俘获装置的一个实例。其它类型的图像俘获装置(例如,手机相机、扫描仪和数字视频摄像机)可与本发明一起使用。
在数码相机300中,来自主场景的光302输入到成像级304。成像级304可包括常规元件,例如透镜、中性密度滤光片、光圈和快门。光302由成像级304聚焦以在图像传感器306上形成图像。图像传感器306通过将入射光转换成电信号来俘获一个或一个以上图像。数码相机300进一步包括处理器308、存储器310、显示器312和一个或一个以上额外输入/输出(I/O)元件314。虽然在图3的实施例中展示为单独元件,但成像级304可与图像传感器306集成,且有可能与数码相机300的一个或一个以上额外元件集成,以形成紧凑的相机模块。可将处理器308实施为(例如)微处理器、中央处理单元(CPU)、专用集成电路(ASIC)、数字信号处理器(DSP)或其它处理装置,或多个此些装置的组合。成像级304和图像传感器306的各种元件可受从处理器308所供应的时序信号或其它信号控制。存储器310可经配置为任何类型的存储器,例如随机存取存储器(RAM)、只读存储器(ROM)、快闪存储器、基于磁盘的存储器、可装卸存储器,或其它类型的存储元件(以任何组合)。由图像传感器306俘获的给定图像可由处理器308存储于存储器310中且呈现于显示器312上。显示器312通常为主动式矩阵彩色液晶显示器(LCD),但可使用其它类型的显示器。额外I/O元件314可包括(例如)各种屏幕上控制件、按钮或其它用户接口、网络接口或存储器卡接口。应了解,图3中所展示的数码相机可包含所属领域的技术人员已知的类型的额外或替代元件。本文中未具体展示或描述的元件可选自此项技术中已知的元件。如先前所述,本发明可实施于广泛多种图像俘获装置中。而且,本文中所描述的实施例的特定方面可至少部分地以由图像俘获装置的一个或一个以上处理元件执行的软件形式实施。如所属领域的技术人员将了解,可在给定本文中提供的教示的情况下以直接方式实施此软件。现在参看图4,展示在根据本发明的一实施例中的图3中所展示的图像传感器306的简化方框图。图像传感器306通常包括形成成像区域402的像素400的一阵列。图像传感器306进一步包括列解码器404、行解码器406、数字逻辑408和模拟或数字输出电路410。在根据本发明的一实施例中,将图像传感器306实施为背照式互补金属氧化物半导体(CMOS)图像传感器。因此,将列解码器404、行解码器406、数字逻辑408和模拟或数字输出电路410实施为电连接到成像区域402的标准CMOS电子电路。可至少部分地以软件形式实施与对成像区域402的取样与读出以及对对应图像数据的处理相关联的功能性,所述软件存储于存储器310中且由处理器308执行(参见图3)。取样与读出电路的部分可布置于图像传感器306外部,或(例如)与成像区域402 —体地形成于具有光电检测器和成像区域的其它元件的共同集成电路上。所属领域的技术人员将认识到,可在根据本发明的其它实施例中实施其它外围电路配置或架构。图5为说明图4中所展示的像素400的第一示范性实施方案的示意图。像素400为非共享像素,其包括光电检测器502、转移栅极504、电荷-电压转换机构506、复位晶体管508和放大器晶体管510,放大器晶体管510的源极连接到输出线512。复位晶体管508和放大器晶体管510的漏极维持在电位Vdd处。复位晶体管508的源极和放大器晶体管510的栅极连接到电荷-电压转换机构506。在根据本发明的一实施例中,光电检测器502经配置为钉扎式光电二极管,电荷-电压转换机构506经配置为浮动扩散区,且放大器晶体管510经配置为源极跟随器晶体管。在根据本发明的其它实施例中,可用额外或不同的组件实施像素400。仅举例来说, 在根据本发明的另一实施例中,光电检测器502经配置为非钉扎式光电检测器。转移栅极504用以将所收集的光生电荷从光电检测器502转移到电荷-电压转换机构506。电荷-电压转换机构506用以将所述光生电荷转换成电压信号。放大器晶体管510缓冲存储于电荷-电压转换机构506中的所述电压信号,且放大所述电压信号并将其发射到输出线512。复位晶体管508用以将电荷-电压转换机构506复位到已知电位,然后进行读出。输出线512连接到读出与图像处理电路(图中未展示)。如所展示,当使用脉冲式电力供应模式来读出图像时,图5中的实施例不包括行选择晶体管。虽然具有浮动扩散区的像素可提供附加功能性和较好性能,但无浮动扩散区的像素足够用于许多应用。图6为说明图4中所展示的像素400的第二示范性实施方案的示意图。像素400为三晶体管像素,其包括光电检测器502、复位晶体管508、放大器晶体管510和行选择晶体管602。复位晶体管508和放大器晶体管510的漏极维持在电位Vdd处。复位晶体管508的源极和放大器晶体管510的栅极连接到光电检测器502。列选择晶体管602的漏极连接到放大器晶体管510的源极,且行选择晶体管602的源极连接到输出线512。直接使用复位晶体管508来复位光电检测器502,且直接通过放大器晶体管510来对积分信号取样。根据本发明的实施例不限于图5和图6中所展示的像素结构。可在根据本发明的其它实施例中使用其它像素配置。仅举例来说,可在根据本发明的一实施例中使用在多个像素之间共享一个或一个以上组件的像素结构。图7说明在根据本发明的一实施例中的具有前侧光电检测器和背侧光电检测器的第一背照式图像传感器的一部分的横截面图。图7中所展示的元件中的一些在本文中经描述为具有特定的导电类型。根据本发明的其它实施例不限于这些导电类型。举例来说,在根据本发明的另一实施例中,可颠倒所有导电类型。图7描绘可包括于图像传感器306中的三个示范性像素700的部分。图像传感器306包括用具有P型导电性的外延层形成的有效娃传感器层702。传感器层702包括前侧704,和与所述前侧704相对的背侧706。绝缘层708安置于背侧706上方且电路层710邻近于前侧704,以使得传感器层702位于电路层710与绝缘层708之间。绝缘层708可由二氧化硅或其它合适的电介质材料制造。电路层710包括导电互连件712、714、716(例如,栅极和连接器),所述导电互连件形成用于图像传感器306的控制电路且将电路层710电连接到传感器层702。每一像素700包括具有P型导电性的相应前侧光电检测器718f、720f、722f。前侧光电检测器718f、720f、722f收集在传感器层702内从入射于传感器层702的背侧706上的光724而产生的电荷载流子。具有η型导电性的前侧区726、728、730形成于传感器层702的前侧中。前侧区726,728,730电连接到电压端子732,以用于将前侧区726、728、730偏置到特定电压电平Vbias0在所说明的实施例中,η型前侧区726经配置为η型钉扎层,其环绕浅沟槽隔离(STI)沟槽734且给浅沟槽隔离(STI)沟槽734加衬;η型前侧区728经配置为η型钉扎层,其形成于每一光电检测器718f、720f、722f上方;且11型前侧区730经配置为浅η阱,其环绕P型电荷-电压转换机构736。包括于所述实施例中但未展示于图7中的其它η型区包括环绕复位和放大器(例如,源极跟随器)晶体管的P+节点的浅η阱。虽然未展示于图7的横截面中,但环绕每一电荷-电压转换机构736的浅η阱730中的每一者通过其它η型 植入物(例如,η型钉扎层726、728)而连续地电连接在一起。除了前侧光电检测器718f、720f、722f以外,每一像素还包括p型背侧光电检测器718b、720b、722b。每一像素700因此包括相应的前侧P型光电检测器与背侧P型光电检测器对(718f,718b)、(720f,720b)、(722f,722b),以用于收集从入射于背侧706上的光724产生的光生电荷载流子。图8说明沿图7中的线A-A'的静电电位对距离的曲线。曲线800描绘在光电检测器720f、720b为空(含有零个光生电荷载流子)时的静电电位。在图7中所展示的实施例中,在所述对光电检测器720f、720b之间不存在阱或势垒。通常,为了使光电检测器对之间不具有阱和势垒,背侧光电检测器718b、720b、722b的植入剂量小于前侧光电检测器718f、720f、722f的植入剂量。模拟发现与仅前侧光电检测器配置相比,针对光电检测器对配置的光电检测器电荷容量的典型增加在百分之二十五(25% )与百分之七十五(75% )之间。光电检测器容量的增加取决于若干设计特征,包括(但不限于)像素700的大小和传感器层702的厚度。转移栅极738用以将所收集的光生电荷从前侧光电检测器718f、720f、722f和背侧光电检测器718b、720b、722b转移到相应的电荷-电压转换机构736。在所说明的实施例中,电荷-电压转换机构736经配置为P型浮动扩散区。每一浮动扩散区驻留于一浅η阱730 中。在根据本发明的一实施例中,在电荷转移期间,转移栅极738上的电压减小到零伏,且转移栅极738下方的静电沟道电位低于前侧光电检测器718f、720f、722f的静电沟道电位。在根据本发明的一个实施例中,当不存在阱或势垒来阻碍电荷转移时,光生电荷从光电检测器718f、718b、720f、720b、722f、722b到相应的电荷-电压转换机构736的转移没有滞后,在电荷转移期间,背侧光电检测器718b、720b、722b的静电电位大于前侧光电检测器718f.720f.722f的静电电位,且前侧光电检测器718f、720f、722f的静电电位大于转移栅极738下方的静电沟道电位。邻近于前侧704的N型前侧区726、728减少了归因于传感器层702与电路层710之间的界面处的悬空硅结合而产生的暗电流。同样地,邻近于背侧706的η型背侧区740减少了传感器层702与绝缘层708之间的界面处的暗电流。与η型前侧区726、728 —样,η型背侧区740可连接到电压端子732。在图7中所展示的实施例中,背侧区740经由η型连接区730、742、744而连接到电压端子732。在根据本发明的另一实施例中,电压端子732定位于绝缘层708上且电连接到背侧区740。N型连接区730、742、744将背侧区740电连接到η型前侧区726、728、730。在根据本发明的一实施例中,施加到电压端子732的电压将背侧区740与η型前侧区726、728、730偏置到一电压。现在参看图9,展示在根据本发明的一实施例中的具有前侧光电检测器和背侧光电检测器的第二背照式图像传感器的一部分的横截面图。具体来说,图9说明图7中所展示的三个像素700的部分在执行结合和薄化程序(未展示内插晶片)之后的横截面。在薄化传感器层702之后,通常使用若干种已知技术中的一种来执行全局对准。图10为在根据本发明的一实施例中的用于制造图9中所展示的图像传感器的一部分的方法的流程图。示范性全局对准技术使用红外线(IR)对准器使掩盖层对准于第一金属层900中的一个或一个以上对准标记(图10中的方框1000)。在根据本发明的其它实施例中,所述一个或一个 以上对准标记形成于电路层710中的不同层中。另外,可使用多晶硅栅极层或沟槽隔离层来形成所述第一对准标记。仅举例来说,将掩盖层实施为光致抗蚀剂层,其掩盖界定待形成于层中的图案或开口的蚀刻。如本文中所使用,术语“对准”定义为归因于栅格失真而尽可能接近地使一个或一个以上第二对准标记对齐或大体上对齐于第一对准标记。接着将所述一个或一个以上第二对准标记902从背侧蚀刻到绝缘层708和传感器层702中(图10中的方框1002)。在根据本发明的一实施例中,蚀刻所述一个或一个以上第二对准标记(图9中的902)提供背侧光电检测器植入物与CFA的较好对准。在根据本发明的另一实施例中,所述一个或一个以上第二对准标记902可形成于传感器层中的外延层中或形成于金属层中。在蚀刻了第二对准标记902之后,使掩盖层对准于所述第二对准标记,且将η导电类型的一个或一个以上掺杂物植入到传感器层702的背侧中以形成背侧区740。接着使一个或一个以上掩盖层对准于所述第二对准标记,且植入η导电类型的一个或一个以上掺杂物以形成背侧光电检测器718b、720b、722b和一个或一个以上η型连接区744(图10中的方框1004)。接着用激光退火来激活这些植入区域中的掺杂物(图10中的方框1006)。任选地在晶片上沉积或旋转涂覆薄的分隔层904。接着使用用于对准的一个或一个以上第二对准标记902来制造CFA的光学组件(例如,滤光片元件906、908、910)(图10中的方框1008)。如果需要,任选地在晶片上沉积或旋转涂覆另一薄的分隔层912。接着制造微透镜阵列914 (其为另一光学组件)且使其对准于一个或一个以上第二对准标记902 (图10中的方框1010) O在根据本发明的其它实施例中,可将光学组件实施为绕射光栅、偏光兀件、双折射材料、液晶和光导管。使所述一个或一个以上背侧连接区744、背侧光电检测器718b、720b、722b、彩色滤光片元件906、908、910和微透镜阵列914全局地对准于同一组对准标记的一个益处在于这些元件之间的任何未对准不受栅格失真影响。现将使用图9来说明如何将光生电荷载流子引导到正确的像素,进而减少像素间色彩串扰。仅举例来说,假定中心滤光片元件908透射以与蓝色(蓝光光子)相关联的波长传播的光。几乎所有的蓝光光子在背侧706的表面附近产生电荷载流子。电荷载流子916表示这些光生电荷载流子中的一者。在图9中所展示的实施例中,电荷载流子916为空穴(h)。如果不存在背侧光电检测器718b、720b、722b,则电荷载流子916迁移到前侧光电检测器720f或前侧光电检测器722f中的概率几乎相等。然而,在图7和图9中所展示的光电检测器对配置的情况下,每一背侧光电检测器718b、720b、722b与其相应滤光片元件909、908、910对准。因此,电荷载流子916漂移到背侧光电检测器720b的中心,且从那里被引导到正确的前侧光电检测器720f中。总之,使背侧光电检测器718b、720b、722b对准于滤光片元件906、908、910减少了由栅格失真引起的像素间串扰。现在参看图11,展示在根据本发明的一实施例中的具有前侧光电检测器和背侧光电检测器的第三背照式图像传感器的一部分的横截面图。在此实施例中,将η型前侧区726,728,730偏置于一个电压电位处,而将η型背侧区740偏置于不同电压电位处。经由电压端子732将邻近于有效硅传感器层1102的前侧1100的η型前侧区偏置到已知电压电平VbiasA。N型背侧区740经由η型连接区1106、1108、1110而连接到另一电压端子1104。经由电压端子1104将N型背侧区740偏置到已知电压电平VbiasB。在根据本发明的一个实施例中,电压端子1104定位于成像阵列的边缘(例如,图4中所展示的像素400的阵列 的边缘)处,且由来自传感器层1102的背侧1112的一个或一个以上触点连接。在根据本发明的一个实施例中,额外接地触点安置于电压端子732、1104之间以消除加电期间的偏置问题。在传感器层1102的前侧1100与背侧1112之间建立电压差通过在背侧1112与前侧1110之间产生迫使光生电荷载流子进入最近的光电检测器中的电场而改进了色彩串扰性能。此额外电场允许使用具有改进的色彩串扰性能的较厚传感器层1102。仅举例来说,对于I. 4微米乘以I. 4微米的像素,色彩串扰性能在传感器层1102厚度大于2微米的情况下通常变得不可接受。然而,对于背侧1112与前侧1100之间的I伏的差,对于6微米的传感器层1102厚度来说,色彩串扰性能几乎等同于2毫米厚度。较厚传感器层1102通常具有较好的红色且近IR响应,其在许多图像传感器应用(例如,保安和汽车)中是合意的。每一像素1114包括相应的前侧P型光电检测器与背侧P型光电检测器对(718f,718b)、(720f,720b)、(722f,722b),以用于收集从入射于背侧1112上的光724产生的光生电荷载流子。转移栅极738用以将所收集的光生电荷载流子从光电检测器对(718f,718b)、(720f,720b)、(722f,722b)转移到相应的电荷-电压转换机构736。依据每一像素1114的大小和传感器层1102的厚度,第一导电类型(例如,P导电类型)的额外修整植入区1116可用以移除背侧光电检测器718b、720b、722b与前侧光电检测器718f、720f、722f之间的任何阱和势垒。在图12中说明修整植入区1116的益处。实线1200展示在无修整植入区1116的情况下沿图11中的线B-B'的示范性静电电位分布对距离(针对零光生载流子的情况)。存在势垒1202,其阻止收集于背侧光电检测器区1204内的电荷载流子移动到前侧光电检测器区1206且随后进入相应的电荷-电压转换区中。虚线1208展示在具有修整植入区1116的情况下的示范性静电电位分布。移除所述势垒,且光电检测器对配置现在无滞后地操作。图12说明“经良好工程设计”的光电检测器对的其它方面。背侧1210的静电电位高于前侧1212的静电电位。由于此电位或电压差,对于一些像素设计,背侧光电检测器718b、720b、722b的剂量可大于前侧光电检测器718f、720f、722f的剂量,且仍没有阱和势垒。前侧1212的静电电位与背侧1210的静电电位相等的情况很少。增加光电检测器植入剂量增加了光电检测器电荷容量。因此,“经良好工程设计”的光电检测器无滞后(零阱和零势垒)且最大化光电检测器容量。虚线1214表示沿图11中的线C-CT的示范性静电电位分布对距离(针对零光生载流子的情况)。线1214上的最低点1216表示两个光电检测器对之间的最小静电电位,且通常称为“鞍点”。示范性鞍点位置在图11中被识别为位置1118。在照明之后,单一光电检测器对即刻填有光生电荷载流子。在某一时间点处,光电检测器对达到饱和。当过量的电荷溢出鞍点1216(参见图11中的1118)时,过量的电荷晕染到邻近的光电检测器对中。像素间晕染(blooming)可导致众多图像假影(包括“雪球”),其中一个有缺陷的光电检测器产生多像素缺陷和“线性扭结”,其中低信号电平下的色彩保真度不同于高信号电平下的色彩保真度。
在光电检测器对之间引入在静电电位上低于鞍点1216的溢漏点减少了像素间晕染。在根据本发明的一个实施例中,每一像素结构内包括一侧向溢漏。在根据本发明的另一实施例中,每一光电检测器对(718f,718b)、(720f,720b)、(722f,722b)与其相应的电荷-电压转换机构736之间存在一自然溢漏。通常,此自然溢漏点(例如,图11中的位置1120)在每一转移栅极738下方驻留了几十微米。如果恰当地操纵转移栅极738附近的植入剂量,则所述自然溢漏点可低于鞍点1216(图11中的1116)。如果自然溢漏(图11中的1120)在静电电位上不低于像素间鞍点1216,则可在读出每一行像素之间将小电压脉冲施加到所有转移栅极738。此小电压脉冲降低了自然溢漏(例如,图11中的1120)处的静电电位,且在晕染发生之前排出光电检测器对内的过量电荷。现在参看图13,展示在根据本发明的一实施例中的具有前侧光电检测器和背侧光电检测器的第四背照式图像传感器的一部分的横截面图。图13中所描绘的结构类似于图12中的结构,其中添加了一个或一个以上η型前侧隔离区1300和η型背侧隔离区1302。额外隔离区1300、1302形成于相邻的光电检测器之间,且使鞍点1216(图12)的静电电位升高并增加了像素间隔离。在根据本发明的一实施例中,在前侧处理期间植入前侧隔离区1300,且在背侧处理期间植入背侧隔离区1302。在根据本发明的一个实施例中,可使用图10中所描绘的方法来形成图13中所展示的图像传感器,其中方框1004包括所述一个或一个以上背侧隔离区1302的形成。图14说明在根据本发明的一实施例中的具有前侧光电检测器和背侧光电检测器的第五背照式图像传感器的一部分的横截面图。在图14中所展示的实施例中,N型前侧隔离区1400和P型沟道区1402环绕前侧光电检测器718f、720f、722f,而η型背侧隔离区1404和P型背侧沟道区1406环绕背侧光电检测器718b、720b、722b。根据本发明的其它实施例可形成η型隔离区1400、1404和ρ型沟道区1402、1406,以使得所述区部分地环绕每一光电检测器。在根据本发明的一个实施例中,可使用图10中所描绘的方法来制造图14中所展示的图像传感器,其中方框1004包括背侧隔离区1404或背侧沟道区1406的形成。N型前侧隔离区1400和N型背侧隔离区1404用于若干目的。首先,如同图13中的隔离区1300、1302,前侧隔离区1400和背侧隔离区1404改进光电检测器之间的隔离。其次,隔离区1400、1404部分地环绕光电检测器718f、718b、720f、720b、722f、722b,从而增加了光电检测器的容量。另外,P型前侧沟道区1402和P型背侧沟道区1406移除了背侧光电检测器71813、72013、72213与前侧光电检测器718€、72(^、722€之间的阱和势垒。在根据本发明的其它实施例中,额外P型沟道区可形成于区1402、1406之间以减少或消除任何残余阱和势垒。现在参看图15,其展示在根据本发明的一实施例中的具有前侧光电检测器和背侧光电检测器的第六背照式图像传感器的一部分的横截面图。图15描绘穿过三个η型金属氧化物半导体(NMOS)像素1500的横截面图,η型金属氧化物半导体(NMOS)像素1500具有通过使用标准的CMOS工艺来制造的光电检测器对结构(传感器层1502中的ρ外延层作为起始材料)。所述结构类似于图7中所展示的PMOS光电检测器对结构,其中ρ型植入物与η型植入物的导电性颠倒。然而,图7与图15之间存在若干显 著差异。首先,对于NMOS光电检测器对(1504f, 1504b)、(1506f, 1506b)、(1508f, 1508b),用 n 型沟道区 1510 在每一光电检测器对之间产生η型沟道,但在图7中,ρ型传感器层702产生连接ρ型光电检测器对的沟道。其次,对于 NMOS 光电检测器对(1504f,1504b)、(1506f,1506b)、(1508f,1508b),P型传感器层1502用于隔离且还用于将p型前侧区1512、1514、1516电连接到ρ型背侧区1518,但在图7中,η型连接区742、744提供隔离和电连接。另外,图15中所展示的示范性NMOS光电检测器对结构类似于图7的示范性PMOS光电检测器对结构。邻近于传感器层1502的前侧1520的ρ型前侧区1512、1514、1516连接到电压端子1522,电压端子1522用于偏置ρ型前侧区1512、1514、1516。浅ρ型前侧区1516环绕η型电荷-电压转换机构1524。转移栅极1526控制电荷从光电检测器对(1504f,1504b)、(1506f, 1506b)、(1508f, 1508b)到相应电荷-电压转换机构1524的转移。ρ型背侧区1518形成于传感器层1502中,邻近于背侧1528,且减少暗电流。绝缘层1530邻近于背侧1528而定位,而电路层1532邻近于前侧1520。电路层1532包括导电互连件1534、1536、1538,例如形成用于图像传感器1540的控制电路的栅极和连接器。可使用图10中所说明的方法来制造图15中所展示的实施例的一部分。用以形成背侧光电检测器1504b、1506b、1508b的一个或一个以上掺杂物的导电类型为η型,而用以形成背侧区1518的一个或一个以上掺杂物的导电类型为ρ型。另外,用以形成一个或一个以上沟道区1510的一个或一个以上掺杂物的导电类型为η型。零件列表100 标准互补金属氧化物半导体晶片102 外延层104 衬底106 装置晶片108 图像传感器112 内插晶片114 硅层116 粘附层118 成品晶片120 绝缘层122 导电互连件
124粘附层126彩色滤光片阵列(CFA)128表示未对准的双向箭头130a前侧光电检测器130b前侧光电检测器130c前侧光电检测器
132a彩色滤光片元件132b彩色滤光片元件132c彩色滤光片元件134光200表示无失真晶片图的虚线202表示失真晶片图案的实线300图像俘获装置302光304成像级306图像传感器308处理器310存储器312显示器314其它 I/O400像素402成像区域404列解码器406行解码器408数字逻辑410模拟或数字输出电路502光电检测器504转移栅极506电荷-电压转换机构508复位晶体管510放大器晶体管512输出线602行选择晶体管700像素702传感器层704传感器层的前侧706传感器层的背侧708绝缘层710电路层
712导电互连件714导电互连件716导电互连件718f前侧光电检测器718b背侧光电检测器720f前侧光电检测器720b背侧光电检测器722f前侧光电检测器 722b背侧光电检测器724光726前侧区728前侧区730前侧区732电压端子734浅沟槽隔离(STI)736电荷-电压转换机构738转移栅极740背侧区742连接区744连接区800静电电位的曲线900第一金属层902对准标记904分隔层906彩色滤光片元件908彩色滤光片元件910彩色滤光片元件912分隔层914微透镜阵列916电荷载流子1000 至 1010 方框1100传感器层的前侧1102传感器层1104电压端子1106连接区1108连接区1110连接区1112传感器层的背侧1114像素
1116修整植入区1118鞍点的位置1120自然溢漏1200实线1202势垒1204前侧光电检测器区1206背侧光电检测器区 1208虚线1210背侧的静电电位1212前侧的静电电位1214虚线1216最低点或鞍点1300隔离区1302隔离区1400前侧隔离区1402前侧沟道区1404背侧隔离区1406背侧沟道区1500像素1502传感器层1504f前侧光电检测器1504b背侧光电检测器1506f前侧光电检测器1506b背侧光电检测器1508f前侧光电检测器1508b背侧光电检测器1510沟道区1512前侧区1514前侧区1516前侧区1518背侧区1520传感器层的前侧1522电压端子1524电荷-电压转换机构1526 转移栅极1528 传感器层的背侧1530 绝缘层1532 电路层1534 导电互连件
1536 导电互连件
1538 导电互连件1540 图像传感器
权利要求
1.一种背照式图像传感器,其包含 第一导电类型的传感器层,其具有前侧和与所述前侧相对的背侧; 绝缘层,其安置于所述传感器层的所述背侧上; 电路层,其电连接到所述传感器层且邻近于所述传感器层的所述前侧; 第二导电类型的一个或一个以上前侧区,其形成于所述传感器层的所述前侧的至少一部分中; 所述第二导电类型的背侧区,其形成于所述传感器层的所述背侧中; 所述第一导电类型的多个前侧光电检测器,其用于将入射于所述传感器层的所述背侧上的光转换成光生电荷,其中所述多个前侧光电检测器安置于所述传感器层中且邻近于所述前侧;以及 所述第一导电类型的多个相异的背侧光电检测器,其与所述多个前侧光电检测器分离,其用于将入射于所述传感器层的所述背侧上的光转换成光生电荷,其中所述多个背侧光电检测器安置于所述传感器层中且邻接于所述第二导电类型的所述背侧区的若干部分。
2.根据权利要求I所述的背照式图像传感器,其进一步包含电压端子,所述电压端子电连接到所述第二导电类型的至少一个前侧区,以用于将所述一个或一个以上前侧区偏置到一电压。
3.根据权利要求2所述的背照式图像传感器,其进一步包含所述第二导电类型的一个或一个以上连接区,所述一个或一个以上连接区安置于所述传感器层的相应部分中所述第二导电类型的所述一个或一个以上前侧区与所述背侧区之间,以用于将所述前侧区与背侧区彼此电连接。
4.根据权利要求I到3中任一权利要求所述的背照式图像传感器,其中每一前侧光电检测器与相应的背侧光电检测器配对以形成光电检测器对。
5.根据权利要求I所述的背照式图像传感器,其中所述第一导电类型包含P导电类型,且所述第二导电类型包含η导电类型。
6.一种图像俘获装置,其包含 背照式图像传感器,其包含 第一导电类型的传感器层,其具有前侧和与所述前侧相对的背侧; 绝缘层,其安置于所述传感器层的所述背侧上; 电路层,其电连接到所述传感器层且邻近于所述传感器层的所述前侧; 第二导电类型的一个或一个以上前侧区,其形成于所述传感器层的所述前侧的至少一部分中; 所述第二导电类型的背侧区,其形成于所述传感器层的所述背侧中; 所述第一导电类型的多个前侧光电检测器,其用于将入射于所述传感器层的所述背侧上的光转换成光生电荷,其中所述多个前侧光电检测器安置于所述传感器层中且邻近于所述前侧;以及 所述第一导电类型的多个相异的背侧光电检测器,其与所述多个前侧光电检测器分离,其用于将入射于所述传感器层的所述背侧上的光转换成光生电荷,其中所述多个背侧光电检测器安置于所述传感器层中且邻接于所述第二导电类型的所述背侧区的若干部分。
7.根据权利要求6所述的图像俘获装置,其中所述背照式图像传感器进一步包含电压端子,所述电压端子电连接到所述第二导电类型的至少一个前侧区,以用于将所述一个或一个以上前侧区偏置到一电压。
8.根据权利要求7所述的图像俘获装置,其中所述背照式图像传感器进一步包含所述第二导电类型的一个或一个以上连接区,所述一个或一个以上连接区安置于所述传感器层的相应部分中所述第二导电类型的所述一个或一个以上前侧区与所述背侧区之间,以用于将所述前侧区与背侧区彼此电连接。
9.根据权利要求6到8中任一权利要求所述的图像俘获装置,其中每一前侧光电检测器与相应的背侧光电检测器配对以形成光电检测器对。
10.根据权利要求6所述的图像俘获装置,其中所述第一导电类型包含P导电类型,且所述第二导电类型包含η导电类型。
全文摘要
一种背照式图像传感器包括第一导电类型的传感器层(702),所述传感器层702)具有前侧704)和与所述前侧相对的背侧706)。绝缘层708)安置于所述背侧上方。电路层(710)邻近于所述前侧而形成,使得所述传感器层定位于所述电路层与所述绝缘层之间。第二导电类型的一个或一个以上前侧区(728)形成于所述传感器层的所述前侧的至少一部分中。所述第二导电类型的背侧区(740)形成于所述传感器层的所述背侧中。所述第一导电类型的多个前侧光电检测器(718f、720f、722f)安置于所述传感器层中。与所述多个前侧光电检测器分离的所述第一导电类型的多个相异的背侧光电检测器(718b、720b、722b)形成于所述传感器层中,邻接于所述第二导电类型的所述背侧区的若干部分。
文档编号H01L27/146GK102804378SQ201080028479
公开日2012年11月28日 申请日期2010年6月11日 优先权日2009年6月26日
发明者约翰·P·麦卡滕, 克里斯蒂安·亚历山德鲁·蒂瓦鲁斯, 约瑟夫·R·苏马 申请人:全视科技有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1