专利名称::热固化型芯片接合薄膜的利记博彩app
技术领域:
:本发明涉及在将例如半导体芯片等半导体元件固着到衬底或引线框等被粘物上时使用的热固化型芯片接合薄膜。另外,本发明涉及由该热固化型芯片接合薄膜与粘合薄膜层压而得到的切割/芯片接合薄膜。
背景技术:
:以往,半导体装置的制造过程中,使用在切割工序中胶粘保持半导体晶片、并且提供装配工序所需的芯片固着用胶粘剂层的切割/芯片接合薄膜(参照下述专利文献1)。该切割/芯片接合薄膜通过在支撑基材上依次层压粘合剂层和胶粘剂层而构成。即,在胶粘剂层的保持下切割半导体晶片后,拉伸支撑基材,将半导体芯片与芯片接合薄膜一同拾取。进而,将半导体芯片通过芯片接合薄膜芯片接合到引线框的焊盘上。但是,近年来,随着半导体晶片的大型化和薄型化,芯片接合时半导体芯片有时在翘曲的状态下胶粘。此时,在半导体芯片的边缘部未施加充分的压力,结果,有时产生直径为约10(im约100nm的微小气泡(微孔)。另外,由于该微孔,有时还在半导体芯片的边缘部产生局部的收縮(凹陷)。结果,由于该微孔和局部收縮的存在,造成半导体装置的制造成品率下降。即,微孔等成为在例如用于半导体相关部件的可靠性评价的耐湿回流焊接试验中产生剥离的原因,导致可靠性下降。另外,树脂塑封时,塑封树脂进入存在微孔等的半导体芯片的边缘部,成为使该半导体芯片破损的原因。专利文献1:日本特开昭60-57342号公报
发明内容本发明是鉴于上述问题而进行的,其目的在于提供在将半导体元件芯片接合到被粘物上时,抑制其边缘部产生微孔或局部收縮,结果能够提高半导体装置的制造成品率的热固化型芯片接合薄膜。本发明人为了解决上述现有问题,对热固化型芯片接合薄膜进行了研究。结果发现,通过使作为热固化型芯片接合薄膜构成材料的环氧树脂及酚树脂的混合量比以往多,在将半导体芯片芯片接合到被粘物上时,其边缘部密合性也提高,从而完成了本发明。艮P,本发明的热固化型芯片接合薄膜,是制造半导体装置时使用的热固化型芯片接合薄膜,其特征在于,至少包含环氧树脂、酚树脂及丙烯酸系共聚物,并且当设所述环氧树脂与酚树脂的总重量为X、丙烯酸系共聚物的重量为Y时,其比率X/Y为0.75。通过如所述构成那样使环氧树脂和酚树脂的总重量大于丙烯酸系共聚物的重量,能够得到能以液体状态固着到被粘物上的热固化型芯片接合薄膜。由此,在例如将大型化/薄型化的半导体芯片等半导体元件芯片接合被粘物上时,也能够使该半导体元件边缘部的密合性提高而进行。结果,能够减少微小气泡(微孔)或局部收縮(凹陷)的产生。由此,在用于半导体相关部件的可靠性评价的耐湿回流焊接试验中,也能够防止热固化型芯片接合薄膜产生剥离,从而提高可靠性。另外,在树脂塑封时也能够防止塑封树脂进入半导体元件的边缘部,从而防止半导体元件的破损。另外,所述构成中,12013(TC下的熔融粘度优选在500~3500Pa*s范围内。由此,即使在例如对固着在热固化型芯片接合薄膜上的半导体元件进行丝焊时,也能够防止因超声波振动或加热而在芯片接合薄膜与被粘物的胶粘面上产生剪切变形。结果,能够提高丝焊的成功率,并进一步提高成品率而制造半导体装置。所述构成中,所述丙烯酸系共聚物优选包含10~60重量%丙烯酸丁酯和40~卯重量%丙烯酸乙酯。另外,所述构成中,所述丙烯酸系共聚物的玻璃化转变温度优选在-303(TC范围内。由此,例如在密封工序中能够防止半导体元件倾斜,另外,在回流焊接工序时能够防止芯片接合薄膜与被粘物之间产生剥离。所述构成中,所述环氧树脂的12013(TC下的熔融粘度优选在0.05~7Pas范围内。另外,所述构成中,所述酚醛树脂的I20~I30°C下的熔融粘度优选在0.3~35Pas范围内。丙烯酸系共聚物丙烯酸系共聚物另外,为了解决所述问题,本发明的切割/芯片接合薄膜的特征在于,为所述热固化型芯片接合薄膜层压在切割薄膜上的结构。半导体装置中,优选在芯片接合到被粘物上的半导体元件的边缘部不存在微小气泡或局部收縮(凹陷)。使用本发明的切割/芯片接合薄膜制造半导体装置时,可以减少这样的微小气泡或局部收縮(凹陷)的产生,因此可以防止该半导体元件的破损,提高生产量(through-put)。发明效果本发明,通过前面说明的手段,取得下述效果。艮P,根据本发明,含有环氧树脂、酚树脂及丙烯酸系共聚物,并且当设所述环氧树脂与酚树脂的总重量为X、丙烯酸系共聚物的重量为Y时,其比率X/Y为0.7~5,由此,能够减少例如芯片接合在被粘5物上的大型化/薄型化的半导体元件的边缘部微小气泡(微孔)或局部收縮(凹陷)的产生。结果,对耐湿回流焊接试验的耐久性提高,另外进行树脂塑封时,能够防止塑封树脂进入半导体元件的边缘部,从而防止半导体元件的破损。图1是显示本发明的一个实施方式的切割/芯片接合薄膜的剖面示意图。图2是显示本发明的另一个实施方式的切割/芯片接合薄膜的剖面示意图。图3是显示通过本发明的一个实施方式的芯片接合薄膜安装半导体芯片的例子的剖面示意图。图4是显示通过所述芯片接合薄膜三维安装半导体芯片的例子的剖面示意图。图5是使用所述芯片接合薄膜,经由垫片三维安装两个半导体芯片的例子的剖面示意图。标记说明1基材2粘合剂层2a部分2b部分3、3,、13、21芯片接合薄膜(热固化型芯片接合薄膜)3a芯片接合薄膜5半导体芯片6被粘物7焊线8密封树脂9垫片10、11切割/芯片接合薄膜15半导体芯片具体实施例方式对于本发明的热固化型芯片接合薄膜(以下,称为"芯片接合薄膜"),以图1所示的在基材1上层压有粘合剂层2的切割薄膜上层压的实施方式为例进行如下说明。本发明的芯片接合薄膜3、3',至少含有环氧树脂、酚树脂和丙烯酸系共聚物而构成。另外,当设环氧树脂与酚树脂的总重量为X、丙烯酸系共聚物的重量为Y时,其比率X/Y为0.75、优选为0.84、更优选为1~3。通过使X/Y在所述数值范围内,使所述环氧树脂以及作为环氧树脂的固化剂起作用的酚树脂的含量比丙烯酸系共聚物多。由此,能够降低熔融粘度,提高与被粘物的润湿性。结果,能够使芯片接合薄膜3、3'的12013(TC下的熔融粘度为3500Pas以下,从而能够减少芯片接合到被粘物上的半导体芯片(半导体元件)的边缘部微小气泡(微孔)或局部收缩(凹陷)的产生。另外,当X/Y大于5时,有时产生难以将芯片接合薄膜3、3'加工为薄膜状的不良情况。所述环氧树脂,只要是通常作为胶粘剂组合物使用的环氧树脂则没有特别限制,可以使用例如双酚A型、双酚F型、双酚S型、溴化双酚A型、氢化双酚A型、双酚AF型、联苯型、萘型、芴型、苯酚酚醛清漆型、邻甲酚酚醛清漆型、三羟基苯基甲垸型、四酚基乙垸型等双官能环氧树脂或多官能环氧树脂、或者乙内酰脲型、异氰脲酸三縮水甘油酯型或縮水甘油基胺型等环氧树脂。这些环氧树脂可以单独使用或者两种以上组合使用。这些环氧树脂中,特别优选酚醛清漆型环氧树脂、联苯型环氧树脂、三羟基苯基甲垸型树脂或四酚基乙垸型环氧树脂。这是因为这些环氧树脂与作为固化剂的酚树脂的反应性高,并且耐热性等优良。另外,环氧树脂中腐蚀半导体元件的离子性杂质等的含量低。另外,所述酚树脂作为所述环氧树脂的固化剂起作用,可以列举例如苯酚酚醛清漆树脂、苯酚芳烷基树脂、甲酚酚醛清漆树脂、叔丁基苯酚酚醛清漆树脂、壬基苯酚酚醛清漆树脂等酚醛清漆型酚树脂、甲阶酚醛树脂(resol)型酚树脂、聚对羟基苯乙烯等聚羟基苯乙烯等。它们可以单独使用或者两种以上组合使用。这些酚树脂中,优选下述化学式所示的联苯型苯酚酚醛清漆树脂或苯酚芳垸基树脂。这是因为它们能够提高半导体装置的连接可靠性。(所述n为010的自然数)另外,所述n优选为010的自然数,更优选为0~5的自然数。通过使n在所述数值范围内,确保芯片接合薄膜3、3'的流动性。所述环氧树脂与酚树脂的配比,优选例如以相对于所述环氧树脂成分中的每一当量环氧基,酚树脂中的羟基为0.52.0当量的比例进行配合。更优选为0.8-1.2当量。这是因为两者的配比如果偏离所述范围,则不能进行充分的固化反应,环氧树脂固化物的特性容易变差。所述环氧树脂的120130'C下的熔融粘度优选在0.05~7Pa*s范围内、更优选在0.075Pa's范围内、特别优选在0.13Pa's范围内。另外,所述酚醛树脂的12013(TC下的熔融粘度优选在0.3~35Pas范围内、更优选在0.420Pa's范围内、特别优选在0.510Pa's范围内。作为丙烯酸系共聚物中使用的单体成分没有特别限制,可以列举例如丙烯酸丁酯、丙烯酸乙酯等。本发明的丙烯酸系共聚物,优选相对于全部单体成分包含10~60重量%范围内的丙烯酸丁酯和40~90重量%范围内的丙烯酸乙酯的共聚物。8另外,作为能与所述单体成分共聚的其它单体成分没有特别限制,可以列举例如丙烯腈等。这些可共聚单体成分的用量相对于全部单体成分优选在120重量%范围内。通过含有该数值范围内的其它单体成分,能够改善凝聚力、胶粘性等。作为丙烯酸系共聚物的聚合方法没有特别限制,可以采用例如-溶液聚合法、本体聚合法、悬浮聚合法、乳液聚合法等目前公知的方法。所述丙烯酸系共聚物的玻璃化转变温度(Tg)优选为-303(TC、更优选为-2015'C。通过使玻璃化转变温度为-3(TC以上,能够确保耐热性。另一方面,通过使玻璃化转变温度为30'C以下,能够提高防止表面状态粗糙的晶片切割后芯片飞散的效果。所述丙烯酸系共聚物的重均分子量优选为10万以上、更优选为60万120万、特别优选为70万100万。通过使重均分子量为10万以上,能够使其在高温时对布线衬底等被粘物表面的胶粘性优良,并且也提高耐热性。另外,通过使重均分子量为120万以下,能够容易地溶解于有机溶剂。重均分子量是通过凝胶渗透色谱法(GPC),使用标准聚苯乙烯校准曲线得到的聚苯乙烯换算值。作为所述填料,可以列举无机填料或有机填料。从提高操作性及导热性、调节瑢融粘度、及赋予触变性等观点考虑,优选无机填料。作为所述无机填料没有特别限制,可以列举例如二氧化硅、氢氧化铝、氢氧化钙、氢氧化镁、三氧化锑、碳酸钙、碳酸镁、硅酸钙、硅酸镁、氧化钙、氧化镁、氧化铝、氮化铝、硼酸铝、氮化硼、结晶二氧化硅、非晶二氧化硅等。它们可以单独使用或者两种以上组合使用。从提高导热性的观点考虑,优选氧化铝、氮化铝、氮化硼、结晶二氧化硅、非晶二氧化硅等。另外,从与芯片接合薄膜3的胶粘性的平衡的观点考虑,优选二氧化硅。另外,作为所述有机填料,可以列举聚酰亚胺、聚酰胺酰亚胺、聚醚醚酮、聚醚酰亚胺、聚酯酰亚胺、尼龙、聚硅氧垸等。它们可以单独使用或者两种以上组合使用。所述填料的平均粒径优选为0.005~10/im、更优选为0.05~l|im。填料的平均粒径如果为0.005pm以上,则对被粘物的润湿性良好,能够抑制胶粘性下降。另一方面,通过使所述平均粒径为10nm以下,能够提高填料的添加对芯片接合薄膜3的增强效果,从而提高耐热性。另外,也可以组合使用平均粒径相互不同的填料。另外,填料的平均粒径是通过例如分光式粒度分布仪(HORIBA审'j,装置名LA-910)求得的值。相对于环氧树脂、酚树脂和丙烯酸树脂的总量100重量份,填料的含量优选超过0重量份且为80重量份以下、更优选超过0重量份且为70重量份以下。填料的含量如果为O重量份,则不具有添加填料而产生的增强效果,芯片接合薄膜3的耐热性倾向于降低。另一方面,如果含量超过80重量份,则对被粘物的润湿性降低,胶粘性倾向于降低。所述填料的形状没有特别限制,可以使用例如球状、椭球状填料。另外,根据需要,芯片接合薄膜3中可以配合其它添加剂。作为其它添加剂,可以列举例如..阻燃剂、硅烷偶联剂或离子捕获剂等。作为所述阻燃剂,可以列举例如三氧化锑、五氧化锑、溴化环氧树脂等。它们可以单独使用或者两种以上组合使用。作为所述硅烷偶联剂,可以列举例如卩-(3,4-环氧环己基)乙基三甲氧基硅垸、y-环氧丙氧基丙基三甲氧基硅垸、y-环氧丙氧基甲基二乙10氧基硅烷等。这些化合物可以单独使用或者两种以上组合使用。作为所述离子捕获剂,可以列举例如水滑石类、氢氧化铋等。它们可以单独使用或者两种以上组合使用。作为所述环氧树脂与酚树脂的热固化促进催化剂没有特别限制,优选包含例如三苯膦骨架、胺骨架、三苯硼骨架、三卤化硼骨架等中任何一种骨架的盐。另外,所述芯片接合薄膜3的12013(TC下的熔融粘度优选为500~3500Pa's、更优选为500~3300Pas、特别优选为5003000Pa's。通过使熔融粘度在所述数值范围内,能够减少接合在被粘物上的半导体元件的边缘部微小气泡(微孔)或局部收缩(凹陷)的产生。结果,能够防止耐湿回流焊接试验中芯片接合薄膜3的剥离或半导体元件的破损,从而能够制造高可靠性的半导体装置。所述芯片接合薄膜3热固化后在26(TC下的储存弹性模量优选为0.5MPa以上,更优选为0.5100MPa,特别优选为0.550MPa。通过使储存弹性模量为0.5MPa以上,能够制造即使在耐湿回流焊接试验等中也具有高可靠性的半导体装置。芯片接合薄膜3的厚度(层压体的情况下指总厚度)没有特别限制,例如为约5jum约100pm,优选为约5jim约50(im。另外,芯片接合薄膜例如可以作成仅由单层胶粘剂层构成的结构。另外,也可以将玻璃化转变温度不同的热塑性树脂、热固化温度不同的热固性树脂适当组合,形成2层以上的多层结构。另外,由于半导体晶片的切割工序中使用切削水,因此有时芯片接合薄膜吸湿而达到常态以上的含水率。如果在如此高含水率的状态下胶粘到衬底等上,则在后固化阶段有时水蒸汽滞留在胶粘界面上而产生隆起。因此,作为芯片接合薄膜,通过形成由胶粘剂层夹住高透湿性芯材的结构,在后固化阶段使水蒸汽透过薄膜而扩散,从而能够避免所述问题。从这样的观点考虑,芯片接合薄膜也可以作成在芯材的单面或双面上形成胶粘剂层的多层结构。作为所述芯材,可以列举薄膜(例如聚酰亚胺薄膜、聚酯薄膜、聚对苯二甲酸乙二醇酯薄膜、聚萘二甲酸乙二醇酯薄膜、聚碳酸酯薄膜等)、用玻璃纤维或塑料制无纟力纤维增强的树脂衬底、镜面硅晶片、硅衬底或玻璃衬底等。另外,芯片接合薄膜3优选由隔膜进行保护(未图示)。隔膜具有作为在供给实用之前保护芯片接合薄膜的保护材料的功能。另外,隔膜还能够作为在切割薄膜上转印芯片接合薄膜3时的支撑基材使用。隔膜在向芯片接合薄膜上粘贴工件时剥离。作为隔膜,可以使用聚对苯二甲酸乙二醇酯(PET)、聚乙烯、聚丙烯,也可以使用由含氟剥离剂、长链烷基丙烯酸酯类剥离剂等剥离剂进行了表面涂敷的塑料薄膜或纸等。作为所述切割薄膜,可以列举例如在基材1上层压粘合剂层2而得到的切割薄膜。芯片接合薄膜3层压在粘合剂层2上。或者,如图2所示,也可以是仅在半导体晶片粘贴部分形成芯片接合薄膜3的结构。所述基材1作为切割/芯片接合薄膜10、11的强度母体。可以列举例如低密度聚乙烯、线性聚乙烯、中密度聚乙烯、高密度聚乙烯、超低密度聚乙烯、无规共聚聚丙烯、嵌段共聚聚丙烯、均聚聚丙烯、聚丁烯、聚甲基戊烯等聚烯烃、乙烯-醋酸乙烯酯共聚物、离聚物树脂、乙烯-(甲基)丙烯酸共聚物、乙烯(甲基)丙烯酸酯(无规、交替)共聚物、乙烯-丁烯共聚物、乙烯-己烯共聚物、聚氨酯、聚对苯二甲酸乙二醇酯、聚萘二甲酸乙二醇酯等聚酯、聚碳酸酯、聚酰亚胺、聚醚醚酮、聚酰亚胺、聚醚酰亚胺、聚酰胺、全芳族聚酰胺、聚苯硫醚、芳族聚酰胺(纸)、玻璃、玻璃布、含氟树脂、聚氯乙烯、聚偏氯乙烯、纤维素类树脂、聚硅氧烷(smcone)树脂、金属(箔)、纸等。粘合剂层2为紫外固化型时,基材1优选对紫外线具有透射性的材料。另外,作为基材l的材料,可以列举上述树脂的交联物等聚合物。所述塑料薄膜可以不拉伸而使用,也可以根据需要进行单轴或双轴拉伸处理后使用。利用经拉伸处理等而赋予了热收縮性的树脂片,通过在切割后使其基材1热收縮,能够降低粘合剂层2与芯片接合薄膜3、3'的胶粘面积,从而使半导体芯片的回收变得容易。为了提高与邻接层的密合性、保持性等,基材1的表面可以进行通常的表面处理,例如铬酸处理、臭氧暴露、火焰暴露、高压电击暴露、离子化射线处理等化学或物理处理、以及底涂剂(例如后述的粘合物质)涂布处理。所述基材1可以适当选择相同种类或不同种类而使用,根据需要也可以将多种混合使用。另外,为了赋予基材1防静电性能,可以在所述基材1上设置包含金属、合金、它们的氧化物等且厚度为约30A约500A的导电物质的蒸镀层。基材l可以是单层或2种以上的多层。基材1的厚度没有特别限制,可以适当确定。一般为约5pm约200拜。另外,在不损害本发明效果的范围内,基材1中也可以含有各种添加剂(例如,着色剂、填充剂、增塑剂、抗老化剂、抗氧化剂、表面活性剂、阻燃剂等)。所述粘合剂层2含有紫外线固化型粘合剂。紫外线固化型粘合剂可以通过照射紫外线使交联度增大从而容易地降低其粘合力,通过仅对与图2所示的粘合剂层2的半导体晶片粘贴部分对应的部分2a照射13紫外线,能够设定与其它部分2b的粘合力差。另外,通过根据图2所示的芯片接合薄膜3'使紫外线固化型粘合剂层2固化,能够容易地形成粘合力显著下降的所述部分2a。由于芯片接合薄膜3'粘贴在固化且粘合力下降的所述部分2a上,因此粘合剂层2的所述部分2a与芯片接合薄膜3'的界面具有在拾取时容易剥离的性质。另一方面,未照射紫外线的部分具有充分的粘合力,形成所述部分2b。如前所述,图1所示的切割/芯片接合薄膜10的粘合剂层2中,由未固化的紫外线固化型粘合剂形成的所述部分2b与芯片接合薄膜3粘合,能够确保切割时的保持力。这样,紫外线固化型粘合剂能够以良好的胶粘/剥离平衡支撑用于将半导体芯片固着到衬底等被粘物上的芯片接合薄膜3。图2所示的切割/芯片接合薄膜11的粘合剂层2中,所述部分2b能够固定贴片环。所述被粘物6没有特别限制,可以列举例如BGA衬底等各种衬底、引线框、半导体元件、垫片等。所述紫外线固化型粘合剂可以没有特别限制地使用具有碳碳双键等紫外线固化性官能团并且显示粘合性的粘合剂。作为紫外线固化型粘合剂,可以例示例如在丙烯酸类粘合剂、橡胶类粘合剂等普通的压敏粘合剂中混合紫外线固化性单体成分或低聚物成分而形成的添加型紫外线固化型粘合剂。作为所述压敏粘合剂,从半导体晶片或玻璃等避免污染的电子部件的超纯水或醇等有机溶剂的清洗性等观点考虑,优选以丙烯酸类聚合物为基础聚合物的丙烯酸类粘合剂。作为所述丙烯酸类聚合物,可以列举由丙烯酸酯和包含含羟基单体的单体组合物形成的聚合物。但是,优选不包含含羧基单体。作为所述丙烯酸酯,优选使用由化学式CH^CHCOOR(式中,R为碳原子数610、更优选碳原子数8~9的烷基)表示的单体。如果碳原子数小于6,则剥离力过大,有时拾取性下降。另一方面,如果碳原子数超过10,则与芯片接合薄膜的胶粘性或密合性下降,结果,有时在切割时产生芯片飞散。作为由所述化学式表示的单体,可以列举例如丙烯酸己酯、丙烯酸丁酯、丙烯酸辛酯、丙烯酸异辛酯、丙烯酸-2-乙基己酯、丙烯酸壬酯、丙烯酸异壬酯、丙烯酸癸酯、丙烯酸异癸酯等。这些单体中,优选所述垸基的R的碳原子数为8~9的单体,具体而言优选丙烯酸-2-乙基己酯、丙烯酸异辛酯。另外,前面例示的单体可以单独使用或者两种以上组合使用。另外,所述丙烯酸酯的含量相对于全部单体成分优选为50重量%99重量%,更优选为70-90重量%。含量如果低于50重量%则剥离力过大,有时拾取性下降。但是,如果超过99重量%,则粘合性下降,有时切割时产生芯片飞散。所述丙烯酸类聚合物,也可以含有所述化学式表示的单体以外的丙烯酸酯作为单体成分。作为这样的丙烯酸酯,除了所述化学式表示的单体以外的丙烯酸烷基酯之外,可以列举具有芳香环的丙烯酸酯(例如丙烯酸苯酯等丙烯酸芳酯等)、具有脂环烃基的丙烯酸酯(例如丙烯酸环戊酯、丙烯酸环己酯等丙烯酸环垸基酯、丙烯酸异冰片酯等)等。这些单体成分中,优选所述丙烯酸烷基酯、丙烯酸环烷基酯,特别优选丙烯酸烷基酯。例示的丙烯酸酯可以单独使用或者两种以上组合使用。作为所述化学式表示的单体以外的丙烯酸烷基酯,可以列举例如丙烯酸甲酯、丙烯酸乙酯、丙烯酸丙酯、丙烯酸异丙酯、丙烯酸丁酯、丙烯酸异丁酯、丙烯酸仲丁酯、丙烯酸叔丁酯、丙烯酸戊酯、丙烯酸异戊酯等烷基的碳原子数为5以下的丙烯酸烷基酯;丙烯酸十一烷基酯、丙烯酸十二烷基酯、丙烯酸十三垸基酯、丙烯酸十四烷基酯、丙烯酸十六垸基酯、丙烯酸十八烷基酯、丙烯酸二十垸基酯等烷基的碳原子数为11以上(优选11~30)的丙烯酸烷基酯等。另外,所述化学式表示的单体等的丙烯酸垸基酯,可以是直链状、支链状中任何一种形式的丙烯酸烷基酯。所述丙烯酸类聚合物,含有能够与所述丙烯酸酯共聚的含羟基单体作为必须成分。作为含羟基单体,可以列举例如(甲基)丙烯酸-2-羟基乙酯、(甲基)丙烯酸-2-羟基丙酯、(甲基)丙烯酸-4-羟基丁酯、(甲基)丙烯酸-6-羟基己酯、(甲基)丙烯酸-8-羟基辛酯、(甲基)丙烯酸-10-羟基癸酯、(甲基)丙烯酸-12-羟基月桂酯、(甲基)丙烯酸(4-羟甲基环己基)甲酯等。这些单体可以单独使用或者两种以上组合使用。所述含羟基单体的含量相对于全部单体成分优选在1~30重量%范围内,更优选在3~10重量%范围内。含量如果小于1重量%,则粘合剂的凝聚力下降,有时拾取性下降。另一方面,含量如果超过30重量%,则粘合剂的极性增高,与芯片接合薄膜间的相互作用增大,因此难以剥离。为了改善凝聚力、耐热性等,所述丙烯酸类聚合物根据需要也可以含有与能够与所述丙烯酸酯或含羟基单体共聚的其它单体成分对应的单元。作为这样的其它单体成分,可以列举例如甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸丙酯、甲基丙烯酸异丙酯、甲基丙烯酸丁酯、甲基丙烯酸异丁酯、甲基丙烯酸仲丁酯、甲基丙烯酸叔丁酯等甲基丙烯酸酯;马来酸酐、衣康酸酐等酸酐单体;苯乙烯磺酸、烯丙基磺酸、2-(甲基)丙烯酰胺-2-甲基丙垸磺酸、(甲基)丙烯酰胺丙烷磺酸、(甲基)丙烯酸磺丙酯、(甲基)丙烯酰氧基萘磺酸等含磺酸基单体;丙烯酰磷酸-2-羟基乙酯等含磷酸基单体;苯乙烯、乙烯基甲苯、a-甲基苯乙烯等苯乙烯类单体;乙烯、丁二烯、异戊二烯、异丁烯等烯烃或二烯烃类;氯乙烯等含卤原子单体;氟(甲基)丙烯酸酯等含氟原子单体;丙烯酰胺、丙烯腈等。所述丙烯酸类聚合物,如上所述,优选不包含含羧基单体。这是因为如果包含含羧基单体,则羧基与芯片接合薄膜3中的环氧树脂的环氧基反应,由此粘合剂层2与芯片接合薄膜3的胶粘性增大,两者的剥离性下降。作为这样的含羧基单体,可以列举例如丙烯酸、甲基丙烯酸、(甲基)丙烯酸羧乙酯、(甲基)丙烯酸羧戊酯、衣康酸、马来酸、富马酸、巴豆酸等。所述丙烯酸类聚合物可以通过使单一单体或两种以上单体的混合物进行聚合而得到。聚合可以通过溶液聚合(例如自由基聚合、阴离子聚合、阳离子聚合等)、乳液聚合、本体聚合、悬浮聚合、光聚合(例如紫外线(UV)聚合)等中任何一种方式进行。从防止污染洁净被粘物等观点考虑,优选低分子量物质的含量小。考虑这一点,丙烯酸类聚合物的数均分子量优选为约35万~约100万、更优选为约45万~约80万。另外,为了提高作为基础聚合物的丙烯酸类聚合物等的数均分子量,所述粘合剂中也可以适当采用外部交联剂。作为外部交联方法的具体手段,可以列举添加多异氰酸酯化合物、环氧化合物、氮丙啶化合物、三聚氰胺类交联剂等所谓的交联剂而使其反应的方法。使用外部交联剂时,其用量根据与要交联的基础聚合物的平衡并考虑作为粘合剂的使用用途而适当确定。一般而言,相对于所述基础聚合物100重量份,优选混合约5重量份以下、更优选混合0.15重量份。另外,根据需要,粘合剂中除前述成分以外也可以使用现有公知的各种增粘剂、抗老化剂等添加剂。17作为混合的所述紫外线固化性单体成分,可以列举例如氨基甲酸酯低聚物、氨基甲酸酯(甲基)丙烯酸酯、三羟甲基丙烷三(甲基)丙烯酸酯、四羟甲基甲垸四(甲基)丙烯酸酯、季戊四醇三(甲基)丙烯酸酯、季戊四醇四(甲基)丙烯酸酯、二季戊四醇单羟基五(甲基)丙烯酸酯、二季戊四醇六(甲基)丙烯酸酯、1,4-丁二醇二(甲基)丙烯酸酯等。另外,紫外线固化性低聚物成分可以列举氨基甲酸酯类、聚醚类、聚酯类、聚碳酸酯类、聚丁二烯类等各种低聚物,其分子量优选在约100~约30000范围内。紫外线固化性单体成分或低聚物成分的混合量,可以根据所述粘合剂层的种类,适当确定能使粘合剂层的粘合力下降的量。一般而言,相对于构成粘合剂的丙烯酸类聚合物等基础聚合物100重量份,例如为约5重量份至约500重量份、优选为约40重量份至约150重量份。另外,作为紫外线固化型粘合剂,除前面说明的添加型紫外线固化型粘合剂以外,还可以列举使用在聚合物侧链或主链中或者主链末端具有碳碳双键的聚合物作为基础聚合物的内在型紫外线固化型粘合剂。内在型紫外线固化型粘合剂不必含有或者多数不含有作为低分子量成分的低聚物成分等,因此低聚物成分等不会随时间推移而在粘合剂中移动,能够形成层结构稳定的粘合剂层,因此优选。所述具有碳碳双键的基础聚合物,可以没有特别限制地使用具有碳碳双键并且具有粘合性的聚合物。作为这样的基础聚合物,优选以丙烯酸类聚合物为基本骨架的聚合物。作为丙烯酸类聚合物的基本骨架,可以列举前面例示的丙烯酸类聚合物。向所述丙烯酸类聚合物中引入碳碳双键的方法没有特别限制,可以采用各种方法,但在聚合物侧链中引入碳碳双键在分子设计上比较容易。例如,可以列举预先使具有官能团的单体与丙烯酸类聚合物共聚后,使具有能够与该官能团反应的官能团及碳碳双键的化合物在维持碳碳双键的紫外线固化性的状态下进行縮合或加成反应的方法。作为这些官能团的组合例,可以列举羧酸基与环氧基、羧酸基与氮丙啶基、羟基与异氰酸酯基等。这些官能团的组合中,从跟踪反应的容易度考虑,优选羟基与异氰酸酯基的组合。另外,通过这些官能团组合的不同,如果是生成所述具有碳碳双键的丙烯酸类聚合物的组合,则官能团可以在丙烯酸类聚合物和所述化合物的任何一者上,而在所述优选组合的情况下,优选丙烯酸类聚合物具有羟基、所述化合物具有异氰酸酯基。此时,作为具有碳碳双键的异氰酸酯化合物,可以列举例如甲基丙烯酰异氰酸酯、2-甲基丙烯酰氧乙基异氰酯酯、间异丙烯基-(X,OC-二甲基苄基异氰酸酯等。另外,作为丙烯酸类聚合物,可以使用前面例示的含羟基单体或2-羟乙基乙烯基醚、4-羟丁基乙烯基醚、二乙二醇单乙烯基醚这些醚类化合物等共聚而成的聚合物。所述内在型紫外线固化型粘合剂,可以单独使用所述具有碳碳双键的基础聚合物(特别是丙烯酸类聚合物),也可以在不使特性变差的范围内混合所述紫外线固化性单体成分或低聚物成分。紫外线固化性低聚物成分等相对于基础聚合物100重量份通常在30重量份范围内,优选在010重量份范围内。所述紫外线固化型粘合剂中,在通过紫外线等进行固化时含有光聚合引发剂。作为光聚合引发剂,可以列举例如4-(2-羟基乙氧基)苯基(2-羟基-2-丙基)酮、a-羟基-a,a,-二甲基苯乙酮、2-甲基-2-羟基苯丙酮、l-羟基环己基苯基酮等a-酮醇类化合物;甲氧基苯乙酮、2,2-二甲氧基-2-苯基苯乙酮、2,2-二乙氧基苯乙酮、2-甲基-1-[4-(甲硫基)苯基]-2-吗啉代丙垸-l-酮等苯乙酮类化合物;苯偶姻乙基醚、苯偶姻异丙醚、茴香偶姻甲醚等苯偶姻醚类化合物;苯偶酰二甲基縮酮等縮酮类化合物;2-萘磺酰氯等芳香族磺酰氯类化合物;l-苯基酮-l,l-丙垸二酮-2-(邻-乙氧基羰基)肟等光活性肟类化合物;二苯甲酮、苯甲酰苯甲酸、3,3,-二甲基_4-甲氧基二苯甲酮等二苯甲酮类化合物;噻吨酮、2-氯噻吨酮、2-甲基噻吨酮、2,4-二甲基噻吨酮、异丙基噻吨酮、2,4-二氯噻吨酮、2,4-二乙基噻吨酮、2,4-二异丙基噻吨酮等噻吨酮类化合物;樟脑醌;卤化酮;酰基氧化膦;酰基膦酸酯等。光聚合引发剂的混合量相对于构成粘合剂的丙烯酸类聚合物等基础聚合物100重量份例如为约0.05重量份约20重量份。另外,作为紫外线固化型粘合剂,可以列举例如日本特开昭60-196956号公报公开的、包含具有2个以上不饱键的可加聚化合物、具有环氧基的烷氧基硅烷等可光聚合化合物、及羰基化合物、有机硫化合物、过氧化物、胺、错盐类化合物等光聚合引发剂的橡胶类粘合剂或丙烯酸类粘合剂等。作为在所述粘合剂层2中形成所述部分2a的方法,可以列举在基材1上形成紫外线固化型粘合剂层2后,对所述部分2a部分地照射紫外线而使其固化的方法。部分的紫外线照射可以通过形成与半导体晶片粘贴部分3a以外的部分3b等对应的图案的光掩模来进行。另外,可以列举斑点式照射紫外线而使其固化的方法等。紫外线固化型的粘合剂层2的形成可以通过将设置在隔膜上的粘合剂层转印到基材1上来进行。部分的紫外线固化也可以对在隔膜上设置的紫外线固化型粘合剂层2进行。切割/芯片接合薄膜10的粘合剂层2中,也可以对粘合剂层2的一部分进行紫外线照射,以使所述部分2a的粘合力<其它部分2b的粘合力。g卩,可以使用对基材1的至少单面的、与半导体晶片粘贴部分3a对应的部分以外的部分的全部或一部分进行遮光的基材l,在其上形成紫外线固化型粘合剂层2,然后照射紫外线,使与半导体晶片粘贴部分3a对应的部分固化,从而形成粘合力下降的所述部分2a。作为遮光材料,可以通过在支撑膜上利用印刷或蒸镀能够成为光掩模的材料来制作。由此,能够高效制造本发明的切割/芯片接合薄膜10。另外,紫外线照射时,在发生由氧引起的固化抑制时,优选从紫外线固化型粘合剂层2的表面上隔断氧(空气)。其方法可以列举例如用隔膜被覆粘合剂层2的表面的方法、或者在氮气氛围中进行紫外线等的紫外线照射的方法等。粘合剂层2的厚度没有特别限制,从同时防止芯片切割面的缺陷和保持胶粘层的固定等观点考虑,优选为约lpm约50pm。优选为2~30pm,更优选为5~25pm。另外,粘合剂层2可以是单层,或者是多层层压而成。粘合剂层2的剪切储存弹性模量在23'C及15(TC下优选为5X104~lX101QPa、更优选为lX105~lX108Pa。剪切储存弹性模量如果小于5Xl(^Pa,则有时粘合剂层2与芯片接合薄膜3、3'难以剥离。另一方面,剪切储存弹性模量如果超过lX101QPa,则有时粘合剂层2与芯片接合膜3、3'的密合性下降。粘合剂层2的剪切储存弹性模量是如下所述得到的值。即,首先将粘合剂层成形为厚度约1.5mm、直径7.9mm的圆筒状。然后,使用RheometicScientific公司制造的ARES粘弹性测定装置作为动态粘弹性测定装置,将各粘合剂层安装到平行板的夹具上,在给予频率1Hz的剪切应变的同时以5"C/分钟的升温速度在23"C至150'C的温度范围内进行温度变化。测定此时的弹性模量,由此得到23'C及150'C下的剪切储存弹性模量。另外,粘合剂层2为放射线固化型时,所述剪切储存弹性模量的值为放射线固化前的值。另外,剪切储存弹性模量例如可以通过添加外部交联剂进行适当调节。粘合剂层2的与芯片接合薄膜3的粘贴面的表面自由能优选为30mJ/m2以下,更优选为15~30mJ/m2,特别优选为20~28mJ/m2。表面自由能如果超过30mJ/m2,则粘合剂层2对芯片接合薄膜3的胶粘性过大,有时拾取性下降。粘合剂层2的表面自由能例如可以通过添加外部交联剂进行适当调节。另外,表面自由能通过以下方法计算。艮P,使用该测定值及文献记载的接触角测定液体的表面自由能值的己知值,由下式计算表面自由能(tO。21n+ysp(i)YL=YLd+YLp(2)(i+cose)化=2(YsV)1/2+2(YsV)1/2(3)其中,式(1)~式(3)中的各符号分别具有如下含义。0:由水或二碘甲烷的液滴测定的接触角(rad)ys:粘合剂层2的表面自由层(mJ/m2)ysd:粘合剂层2的表面自由能中的色散分量(mJ/m2)粘合剂层2的表面自由能中的极性分量(mJ/m2)YL:水或二碘甲烷的表面自由能(mJ/m2)YLd:水或二碘甲烷的表面自由能中的色散分量(mJ/m2)YLp:水或二碘甲烷的表面自由能中的极性分量(mJ/m2)另外,文献记载的已知的表面自由能值如下。水色散分量(yLd)21.8mJ/m2、极性分量(yLp)51.0mJ/m2二碘甲烷色散分量(YLd)49.5mJ/m2、极性分量(yLp)1.3mJ/m2另外,粘合剂层2的与芯片接合薄膜3的粘贴面的水及二碘甲垸的接触角的测定是如下操作而得到的值。即,根据JISZ8703,在温度23±2°C、相对湿度50土5。/。Rh的环境下,向粘合剂层2的表面上滴加约lpL的水(蒸馏水)或二碘甲垸的液滴。然后,使用表面接触角仪CA-X(FACE公司制造)在滴加30秒后通过3点法(使用平均值)测定接触角。另外,在不损害本发明效果等的范围内,粘合剂层2中可以包含各种添加剂(例如,着色剂、增稠剂、增量剂、填充剂、增粘剂、增塑剂、抗老化剂、抗氧化剂、表面活性剂、交联剂等)。(切割/芯片接合薄膜的制造方法)下面,以切割/芯片接合薄膜10为例对本发明的切割/芯片接合薄膜的制造方法进行说明。首先,基材1通过现有公知的制膜方法可以制膜。作为该制膜方法,可以列举例如压延制膜法、有机溶剂中的流延法、密封体系中的挤出吹塑法、T形模头挤出法、共挤出法、干式层压法等。然后,在基材1上涂布粘合剂组合物,并使其干燥(根据需要加热而使其交联〉而形成粘合剂层2。作为涂布方式,可以列举例如辊涂、丝网涂布、凹版涂布等。另外,涂布可以直接在基材1上进行,也可以在涂布到表面进行了剥离处理的剥离纸等上后转印到基材1上。另一方面,将用于形成芯片接合薄膜3的形成材料涂布到剥离纸上至规定厚度,进一步在规定条件下干燥而形成涂层。通过将该涂层转印到所述粘合剂层2上,形成芯片接合薄膜3。另外,通过在所述粘合剂层2上直接涂布形成材料后,在规定条件下进行干燥,也可以形成芯片接合薄膜3。由以上能够得到本发明的切割/芯片接合薄膜10。(半导体装置的制造方法)下面,对使用本实施方式的芯片接合薄膜的半导体装置的制造方法进行说明。图3是表示通过芯片接合薄膜安装半导体元件的例子的剖面示意图。本实施方式的半导体装置的制造方法,具备通过芯片接合薄膜3的晶片粘贴部分3a(以下,称为芯片接合薄膜3a)将半导体芯片(半导体元件)5固着在被粘物6上的固着工序;和进行丝焊的丝焊工序。另外,还具备用密封树脂8密封半导体芯片5的树脂密封工序;和使该密封树脂8后固化的后固化工序。所述固着工序,如图1所示,是通过芯片接合薄膜3a将半导体芯片5芯片接合到被粘物6上的工序。该工序是通过进行规定条件下的热处理,使芯片接合薄膜3a热固化而使半导体芯片5完全胶粘到被粘物6上。进行热处理时的温度优选为10020(TC、更优选在120180'C范围内。另外,热处理时间优选为0.25-10小时,更优选为0.58小时。作为将半导体芯片5固着到被粘物6上的方法,可以列举例如在被粘物6上层压芯片接合薄膜3a后,在芯片接合薄膜3a上以使丝焊面为上侧的方式依次层压半导体芯片5而进行固着的方法。另外,也可以将预先固着有芯片接合薄膜3a的半导体芯片5固着到被粘物6上并进行层压。所述丝焊工序,是通过焊线7将被粘物6的端子部(内部引线)的末端与半导体芯片5上的电极焊盘(未图示)进行电连接的工序。作为所述焊线7,可以使用例如金线、铝线或铜线等。迸行丝焊时的温度为8025(TC、优选在80220'C范围内。另外,其加热时间为数秒~数分钟。接线通过在加热至所述温度范围内的状态下,组合使用超声波产生的振动能和施加电压产生的压接能来进行。所述树脂密封工序,是利用密封树脂8将半导体芯片5密封的工序。本工序是为了保护搭载在被粘物6上的半导体芯片5和焊线7而进行的。本工序通过用模具将密封用树脂成形来进行。作为密封树脂8,可以使用例如环氧树脂。树脂密封时通常在175'C的加热温度下进行60~90秒,但是本发明不限于此,例如也可以在165185'C下进行数分钟固化。由此,使密封树脂固化。本发明中,即使在芯片接合工序中为了使芯片接合薄膜3a热固化而进行热处理的情况下,在树脂密封工序后也能够使芯片接合薄膜3a与被粘物6之间的空隙消失。所述后固化工序中,使在所述密封工序中固化不充分的密封树脂8完全固化。本工序中的加热温度根据密封树脂的种类而不同,例如,在165185t:的范围内,加热时间为约0.5小时~约8小时。如上操作而得到的半导体封装体,具有即使在进行例如耐湿回流焊接试验时也能够耐受该试验的高可靠性。耐湿回流焊接试验通过现有公知的方法进行。另外,如图4所示,本发明的切割/芯片接合薄膜也能够优选用于层压多个半导体芯片而进行三维安装的情况。图4是表示通过芯片接合薄膜三维安装半导体芯片的例子的剖面示意图。图4所示的三维安装的情况下,首先将切割为与半导体芯片相同尺寸的至少一个芯片接合薄膜3a固着在被粘物6上,然后通过芯片接合薄膜3a将半导体芯片5固着,使其丝焊面为上侧。然后,避开半导体芯片5的电极焊盘部分将芯片接合薄膜13固着。进而,将另一个半导体芯片15暂时固着在芯片接合薄膜13上,使其丝焊面为上侧。然后,进行丝焊工序。由此,通过焊线7将半导体芯片5及另一个半导体芯片15中的各个电极焊盘与被粘物6电连接。接着,进行利用密封树脂8将半导体芯片5等密封的密封工序,并使密封树脂固化。与此同时,通过芯片接合薄膜3a将被粘物6与半导体芯片5之间固着。另外,通过芯片接合薄膜13将半导体芯片5与另一个半导体芯片15之间固着。另外,密封工序后,也可以进行后固化工序。由于即使在半导体芯片的三维安装的情况下,也不进行芯片接合薄膜3a、13的加热处理,因此能够实现制造工序的简化及成品率的提高。另外,由于不会发生被粘物6产生翘曲、或半导体芯片5和另一个半导体芯片15产生裂纹的情况,因此能够使半导体元件进一步薄型化。另外,如图5所示,也可以进行通过芯片接合薄膜在半导体芯片间层压垫片的三维安装。图5是表示通过芯片接合薄膜经由垫片三维安装两个半导体芯片的例子的剖面示意图。图5所示的三维安装的情况下,首先在被粘物6上依次层压芯片接合薄膜3a、半导体芯片5和芯片接合薄膜21而使其暂时固着。进而,在芯片接合薄膜21上依次层压垫片9、芯片接合薄膜21、芯片接合薄膜3a及半导体芯片5而使其固着。然后,如图5所示,进行丝焊工序。由此,通过焊线7将半导体芯片5的电极焊盘与被粘物6电连接。接着,进行利用密封树脂8将半导体芯片5密封的密封工序,并使密封树脂8固化。由此,得到半导体封装体。密封工序优选仅将半导体芯片5侧单面密封的一次性密封法。密封是为了保护粘合片上粘贴的半导体芯片5而进行的,其代表方法为使用密封树脂8在模具中进行成形的方法。此时,通常使用由具有多个腔室的上模具和下模具构成的模具,同时进行密封工序。树脂密封时的加热温度优选在例如170180'C的范围内。密封工序后,也可以进行后固化工序。另外,作为所述垫片9,没有特别限制,例如可以使用现有公知的硅芯片、聚酰亚胺膜等。另外,作为所述垫片,可以使用芯材。作为芯材没有特别限制,可以使用现有公知的芯材。具体而言,可以使用膜(例如聚酰亚胺膜、聚酯膜、聚对苯二甲酸乙二醇酯膜、聚萘二甲酸乙二醇酯膜、聚碳酸酯膜等)、用玻璃纤维或塑料制无纺纤维增强的树脂衬底、镜面硅晶片、硅衬底或玻璃衬底等。然后,在印刷电路板上将所述半导体封装体进行表面安装。表面安装的方法可以列举例如向印刷电路板上预先供给焊料后,利用暖风等加热熔融而进行焊接的回流焊接。加热方法可以列举热风回流、红外线回流等。另外,整体加热、局部加热中任何一种方式皆可。优选加热温度为240~265°C、加热时间在120秒范围内。(其它事项)在所述衬底等上三维安装半导体元件时,在形成半导体元件的电路的一面形成缓冲涂膜。作为该缓冲涂膜,可以列举例如由氮化硅膜或聚酰亚胺树脂等耐热树脂形成的缓冲涂膜。另外,半导体元件的三维安装时,各阶段使用的芯片接合薄膜不限于相同组成的芯片接合薄膜,可以根据制造条件或用途等进行适当变更。另外,所述实施方式中,对在衬底等上层压多个半导体元件后,一次性进行丝焊工序的方式进行了说明,但是,本发明不限于此。例如,也可以在每次将半导体元件层压到衬底等上后进行丝焊工序。实施例以下,举例对本发明的优选实施例进行详细说明。但是,该实施例中记载的材料或混合量等,如果没有特别限定的说明,则不应理解为本发明的范围仅限于此,不过是举例说明而已。另外,"份"是指重量份。(实施例1)将环氧树脂(日本化药株式会社制,商品名EPPN501HY,熔融粘度0.7Pa,s)50份、酚树脂(明和化成株式会社制,商品各MEH7800,熔融粘度1.2Pa's)50份、丙烯酸系共聚物(乂力'口^^力/V株式会社制,商品名1/匕'夕》AR31,重均分子量70万,玻璃化转变温度-15"C)100份、及作为填料的球形二氧化硅(7K^亍、;/夕只株式会社制,商品名S0-25R,平均粒径0.5pm)70份溶解于甲乙酮中,得到浓度23.6重量%的胶粘剂组合物溶液。将该胶粘剂组合物溶液涂布到经聚硅氧烷脱模处理的厚度50pm的聚对苯二甲酸乙二醇酯膜形成的脱模处理膜(剥离衬里)上后,在27U0'C干燥2分钟。由此,制作厚度25pm的热固化型芯片接合薄膜。(实施例2)将环氧树脂(日本化药株式会社制,商品名EPPN501HY,熔融粘度0.7Pa's)120份、酚树脂(明和化成株式会社制,商品各MEH7800,熔融粘度1.2Pa's)120份、丙烯酸系共聚物(/力V亇5力小株式会社制,商品名^tf夕》AR31,重均分子量70万,玻璃化转变温度-15。C)100份、固化催化剂(北兴化学株式会社制,商品名TPP-K)0.5份及作为填料的球形二氧化硅(7K7亍、;/夕7株式会社制,商品各S0-25R,平均粒径0.5pm)70份溶解于甲乙酮中,得到浓度23.6重量%的胶粘剂组合物溶液。将该胶粘剂组合物溶液涂布到经聚硅氧烷脱模处理的厚度50(Lim的聚对苯二甲酸乙二醇酯膜形成的脱模处理膜(剥离衬里)上后,在130。C干燥2分钟。由此,制作厚度25pm的热固化型芯片接合薄膜。—(实施例3)将环氧树脂(日本化药株式会社制,商品名EPPN501HY,熔融粘度0.7Pa's)145份、酚树脂(明和化成株式会社制,商品各MEH7800,熔融粘度1.2Pa")145份、丙烯酸系共聚物(乂力'7亇^力汝株式会社制,商品名^匕'夕々AR31,重均分子量70万,玻璃化转变温度-15。C)100份、固化催化剂(北兴化学株式会社制,商品名TPP-K)0.5份及作为填料的球形二氧化硅(7T7亍,夕;^株式会社制,商品各S0-25R,平均粒径0.5ixm)70份溶解于甲乙酮中,得到浓度23.6重量%的胶粘剂组合物溶液。将该胶粘剂组合物溶液涂布到经聚硅氧垸脱模处理的厚度50|um的聚对苯二甲酸乙二醇酯膜形成的脱模处理膜(剥离衬里)上后,在130'C干燥2分钟。由此,制作厚度25pm的热固化型芯片接合薄膜。(比较例1)将环氧树脂(JER株式会社制,商品名EpicoatlOOl,熔融粘度1.5Pa")33份、酚树脂(明和化成株式会社制,商品名MEH7851,熔融粘度3.4Pa's)33份、丙烯酸系共聚物(乂力'7亇3力》株式会社制,商品名^匕'夕》AR31,重均分子量70万,玻璃化转变温度-15匸)100份及作为填料的球形二氧化硅(7卜、'7于,夕只株式会社制,商品名S0-25R,平均粒径0.5iam)58份溶解于甲乙酮中,得到浓度23.6重量%的胶粘剂组合物溶液。将该胶粘剂组合物溶液涂布到经聚硅氧垸脱模处理的厚度50)im的聚对苯二甲酸乙二醇酯膜形成的脱模处理膜(剥离衬里)上后,在13(TC干燥2分钟。由此,制作厚度25pm的热固化型芯片接合薄膜。(比较例2)'将环氧树脂(JER株式会杜制,商品名EpicoatlOOl,熔融粘度1.5Pa.s)13份、酚树脂(明和化成株式会社制,商品名MEH7851,熔融粘度3.4Pa's)13份、丙烯酸系共聚物(乂力V亇^力小株式会社制,商品名1/tf夕々AR31,重均分子量70万,玻璃化转变温度-15'C)100份及作为填料的球形二氧化硅(了K7亍、乂夕7株式会社制,商品名S0-25R,平均粒径0.5pm)75份溶解于甲乙酮中,得到浓度23.6重量%的胶粘剂组合物溶液。将该胶粘剂组合物溶液涂布到经聚硅氧垸脱模处理的厚度50pm的聚对苯二甲酸乙二醇酯膜形成的脱模处理膜(剥离衬里)上后,在13(TC干燥2分钟。由此,制作厚度25pm的热固化型芯片接合薄膜。(重均分子量的测定方法)含羧基丙烯酸系共聚物的重均分子量是通过凝胶渗透色谱法测定的聚苯乙烯换算值。凝胶渗透色谱法中,将TSKG2000HHR、G300OHHR、G4000HHR及GMH-HHR四根柱(均为东曹株式会社制)串联连接而使用,洗脱液使用四氢呋喃,在流速lml/分钟、温度4(TC、样品浓度O.l重量%四氢呋喃浓度、样品注入量50(^1的条件下进行,检测器使用差示折射仪。(熔融粘度的测定)对于制作的各热固化型芯片接合薄膜,分别测定12013(TC的熔融粘度。即,层压芯片接合薄膜至厚度2mm。然后,切割为())8mm,使用固体粘弹性测定装置(RheometicScientific公司制,ARES),在升温速度10'C/分钟、频率lMHz下测定5015(TC下的熔融粘度,并求出12013(TC下熔融粘度的平均值。结果示于下表l。另外,对于环氧树脂及酚树脂的12013(TC的熔融粘度,使用固体粘弹性测定装置(RheometicScientific公司制,ARES),在升温速度10'C/分钟、频率lMHz下测定这些树脂的5015(TC下的熔融粘度,并求出12013(TC下熔融粘度的平均值。(微孔产生的确认)将制作的各热固化型芯片接合薄膜各自在温度40'C的条件下粘贴到10mm见方、厚度75pm的半导体芯片上。进而,通过各芯片接合薄膜将半导体芯片安装到BGA衬底上。安装条件是温度120'C、压力O.IMPa、1秒。然后,将安装了半导体芯片的BGA衬底用干燥机在15(TC下热处理1小时,之后用密封树脂(日东电工株式会社制,商品名GE-100)进行封装。密封条件是加热温度175'C、180秒。接着,用玻璃刀切割密封后的半导体装置,用红外显微镜观察半导体芯片的边缘部(宽度0.5mm的框状区域),计数微孔的个数。(耐湿回流焊接性)将制作的各热固化型芯片接合薄膜各自在温度4(TC的条件下粘贴到lOmm见方、厚度75Mm的半导体芯片上。进而,通过各芯片接合薄膜将半导体芯片安装到BGA衬底上。安装条件是温度120°C、压力O.lMPa、1秒。然后,用干燥机将安装了半导体芯片的BGA衬底在15(TC下热处理1小时,之后用密封树脂(日东电工株式会社制,商品名GE-100)进行封装。密封条件是加热温度175'C、180秒。然后,在60°C、80%Rh、168小时的条件下进行吸湿,进而将安装了所述半导体芯片的BGA衬底载置于设定为260'C以上、保持10秒的IR回流炉中。之后,用玻璃刀切割密封后的半导体装置,用超声显微镜观察其断面,确认各热固化型芯片接合薄膜与BGA衬底的交界处有无剥离。对20个半导体芯片进行确认,产生剥离的半导体芯片为l个以下时记为O、1个以上时记为X。结果示于下表l。(玻璃化转变温度(Tg)的测定)各实施例及比较例中使用的丙烯酸系共聚物的玻璃化转变温度,使用粘弹性测定装置(RheometicScientific公司制,ARES),由升温速度10。C/分钟、频率lMHz下的Tan(G"(损耗弹性模量)/G,(储存弹性模量))测定。(结果)从下表l的结果可知,如比较例1和2那样,当环氧树脂与酚树脂的总含量对丙烯酸系共聚物含量的比(X/Y)小于0.7时,确认半导体芯片的边缘部产生大量微孔。另外,在耐湿回流焊接性方面,也确认热固化型芯片接合薄膜与BGA衬底之间产生了剥离。与此相对,如实施例1和2那样,当所述X/Y为0.7以上时,半导体芯片的边缘部完全没有产生微孔。另外确认,树脂密封后的热固化型芯片接合薄膜与BGA衬底之间不产生剥离,耐湿回流焊接性优良。表1<table>tableseeoriginaldocumentpage32</column></row><table>表中的X(重量份)表示环氧树脂与酚树脂的总重量,Y(重量份)表示丙烯酸系共聚物的重量。3权利要求1.一种热固化型芯片接合薄膜,在制造半导体装置时使用,其中,至少包含环氧树脂、酚树脂及丙烯酸系共聚物,并且当设所述环氧树脂与酚树脂的总重量为X、丙烯酸系共聚物的重量为Y时,其比率X/Y为0.7~5。2.如权利要求1所述的热固化型芯片接合薄膜,其中,120-130'C下的熔融粘度在500~3500Pas范围内。3.如权利要求l所述的热固化型芯片接合薄膜,其中,所述丙烯酸系共聚物包含10~60重量%丙烯酸丁酯和40~90重量%丙烯酸乙酯。4.如权利要求1所述的热固化型芯片接合薄膜,其中,所述丙烯酸系共聚物的玻璃化转变温度在-303(TC范围内。5.如权利要求1所述的热固化型芯片接合薄膜,其中,所述环氧树脂的12013(TC下的熔融粘度在0.057Pas范围内。6.如权利要求l所述的热固化型芯片接合薄膜,其中,所述酚树脂的120130。C下的熔融粘度在0.335Pa's范围内。7.—种切割/芯片接合薄膜,其具有权利要求1所述的热固化型芯片接合薄膜层压在切割薄膜上的结构。全文摘要本发明提供在将半导体元件芯片接合到被粘物上时,抑制其边缘部产生微孔或局部收缩,结果能够提高半导体装置的制造成品率的热固化型芯片接合薄膜。本发明的热固化型芯片接合薄膜,是制造半导体装置时使用的热固化型接合膜,其中,至少包含环氧树脂、酚树脂及丙烯酸系共聚物,并且当设所述环氧树脂与酚树脂的总重量为X、丙烯酸系共聚物的重量为Y时,其比率X/Y为0.7~5。文档编号H01L23/00GK101661909SQ20091016597公开日2010年3月3日申请日期2009年8月20日优先权日2008年8月28日发明者三隅贞仁,松村健,菅生悠树申请人:日东电工株式会社