专利名称:微燃料电池结构的利记博彩app
技术领域:
本发明涉及燃料电池技术。具体而言,本发明涉及设计用于便携式 应用的燃料电池。
背景技术:
燃料电池使氢气和氧气电化学地结合产生电能。到目前为止,燃料 电池的发展集中在大规模的应用,例如用于电源备用设备的工业尺寸 的发电机。
消费电子产品和其它便携式电源应用当前依赖于锂离子电池和类 似的电池技术。然而替代这些传统电池技术的需求在增加。燃料电池 工业致力于制造足够小的燃料电池来为便携式消费电子装置例如膝上 电脑供电。
燃料电池中产生电能的电化学反应的副产物包括水蒸气和二氧化 碳。该电化学反应也产生热量。在堆叠的板式燃料电池中,多个板堆 叠在一起,并夹着多个电化学层,其中热量从电池堆中的消散问题仍 然是一个挑战。目前的热管理技术依赖于设置于相邻每个电化学层并 位于每组板之间的热量冷却层。对于具有二十个板和十九个电化学层 的燃料电池来说,传统的除热技术则需要十九个冷却层。这些间隔的 散热层明显增加了燃料电池组件的厚度、体积和尺寸。
考虑到前述状况,需要寻找在燃料电池内管理热量的替代技术。另 外,减少组件尺寸的技术也将是大有益处的。
发明内容
本发明涉及产生电能的燃料电池以及用在燃料电池中的组件。本发明的一个方面是改善了燃料电池的热管理。此时,燃料电池堆的双极 板包含一个或多个热量传输附件。在双极板的外部设置一个附件以允 许在该板的内部和外部附件之间传导热量。该附件由此可以对燃料电 池堆内部的热量进行外部调节。该热量传输附件可以与双极板材料成 为一个整体,以促进在双极板的内部和热量传输附件之间进行热量的 传导。
热量传输附件可用于加热或冷却。在氢气消耗和能量产生期间,为 了冷却燃料电池堆的放热的中心部分,燃料电池组件是利用流经热量
传输附件的冷却介质。这样允许在燃料电池内部产生的热量a )从产生 热的膜电极组件向与膜电极组件接触的双极板的中心部分转移,b)从 双极板的中心部分经过双极板基板向热量传输附件转移,以及c)从热 量传输附件向用于加热燃料电池废气的冷却介质转移。
在初始燃料电池预热期间,为了加热燃料电池堆的中心部分,放热 的催化剂与热量传输附件接触或者与其相邻。加热介质流经催化剂与 催化剂反应并产生热量,热量被热量传输附件吸收。这些热量经过双 极板向燃料电池堆的内部例如向膜电极组件传导。在这种方式中,热 催化剂和热量传输附件减少了在燃料电池内开始发电所需的预热时 间。
这里描述的热量传输附件不需要传统的位于双极板之间的除热层。 消除传统的除热层减小了燃料电池堆的厚度,并减小了燃料电池的尺 寸和体积。
此外,消除传统的用在双极板两板之间的除热层可以使具有流场的 双极板,皮设置在一个单板的相对的表面上。使双极板从传统的双板变 化为单板明显减少了燃料电池堆的厚度。由此,燃料电池的尺寸和体 积也被减小。
单板双极板也可以包括交错的通道设计,其降低了单板的厚度。交 错的通道设计允许双极板具有两个相对表面之间的厚度小于2x,其中 x为用在通道场中的通道的大致的深度。这样进一步减小了燃料电池组 件的厚度和尺寸。
由冷却热量传输附件提供的改善的热管理方式也允许新的通道场和气体流动i殳计,其向膜电极组件分配反应气体。例如,这里提供了 平行的、交叉的流动、协同流动和相反的流动通道场设计。
用在双极板中的气体分配通道场也可以包括一个或多个流动緩沖 器,其改善反应气体的传输和反应产物的去除。该流动緩冲器在各个 通道之间为气体流动提供公共的存储区域。如果某一个通道被堵塞或 者相反遇到压力扰动或波动,緩冲器减小流场中的压力变化,避免由 扰动引起下游效应。通过减小供给到膜电极组件的气体的压力变化, 流动緩冲器提高了燃料电池的性能。
这里描述的另一种用于燃料电池的创新涉及预弯曲端板,其在燃料 电池堆上更加均匀地施加压力。
一方面,本发明涉及用于燃料电池的双极板。该双极板包含基板, 在基板的第一表面上具有第一通道场,在基板的第二表面上具有第二 通道场。第一通道场包括一组通道,用于分配用在燃料电池中的一种 气体。第二通道场包括另一组通道,用于分配用在燃料电池中的一种 气体。该双极板也包含与基板热传导地连通的位于第一通道场外部的 热量传输附件。
另一方面,本发明涉及一种用于产生电能的燃料电池。该燃料电池 包含燃料电池堆。该燃料电池堆包括一组双极板。每个双极板包含i) 位于双极板第一表面上的并包括一组用于分配氩气的通道的第一通道 场,ii)位于双极板第二表面上的并包括一组用于分配氧气的第二通 道场,和iii)位于第一通道场外部并与双极板的基板热传导地连通的 热量传输附件。该燃料电池堆还包括位于两个双极板之间的膜电极组 件。该膜电极组件包括氩气催化剂、氧气催化剂和使氢气催化剂和氧 气催化剂电隔离的离子传导膜。
再一方面,本发明涉及用于产生电能的燃料电池。该燃料电池包含 燃料电池堆。该燃料电池堆包括一组双极板。每个双极板包含i )基板, 在基板的第一表面上设有第一通道场,在基板的第二表面上设有第二 通道场。第一通道场包括用于分配氧气的一组通道,第二通道场包括 用于分配氢气的一组通道。每个双极板还包括ii)与双极板的基板热 传导地连通的并位于第一通道场外部的热量传输附件。该燃料电池堆还包括位于两个双极板之间的膜电极组件。该膜电极组件包括氢气催 化剂、氧气催化剂和使氢气催化剂和氧气催化剂电隔离的离子传导膜。
另一方面,本发明涉及用于产生电能的燃料电池。该燃料电池包含 燃料电池堆。该燃料电池堆包括一组双极板。每个双极板包含基板, 在基板的第一表面上设有第一通逸场,在基板的第二表面上设有第二 通道场。第一通道场包括用于分配氧气的一组通道,第二通道场包括 用于分配氢气的一组通道。每个双极板还包括与双极板的基板热传导 地连通的并位于第一通道场外部的热量传输附件。该燃料电池还包括 设置在热量传输附件中或与其接近的热催化剂。该热催化剂遇到加热 介质时产生热。该燃料电池进一步包含氢气催化剂、氧气催化剂和使 氢气催化剂和氧气催化剂电隔离的离子传导膜。
另一方面,本发明涉及用于燃料电池的双极板。该双极板包含位于 双极板第一表面上并包括一组通道的第一通道场。该双极板还包含位 于双极板第二表面上并包括一组通道的第二通道场。该双极板进一步 包含用于从第一组通道中的第一通道接收气体并将该气体输出到第一 组通道中的第二通道的流动緩冲器。
再一方面,本发明涉及用于传输电功率的燃料电池。该燃料电池包 含燃料电池堆。该燃料电池堆包括一组双极板。每个双极板包含位于 该双极板第一表面上的第一通道场。该第一通道场包括一组通道。每 个双极板还包含位于双极板第二表面上的第二通道场。该第二通道场 包括一组通道。每个双极板还包舍位于第一表面上用于减少第一通道 场中气体流动的压力变化的流动緩冲器。该燃料电池堆还包括位于两 个双极板之间的膜电极组件。该膜电极组件包括氢气催化剂、氧气催 化剂和使氲气催化剂和氧气催化剂电隔离的离子传导膜。
再另一方面,本发明涉及用于燃料电池的双极板。该双极板包含具 有第一表面和第二表面的基板。该双极板还包含位于第一表面上的第 一通道场。该双极板进一步包含位于第二表面上的第二通道场。第一 通道场中的通道具有交错的通道深度,其延伸越过第二通道场中的一 个通道的通道深度。
另一方面,本发明涉及一种用于产生电能的燃料电池。该燃料电池
14包含第一双极板,其包括位于该板第一表面上的笫一通道场。该燃料 电池还包含膜电极组件,该膜电极组件包括氢气催化剂、氧气催化剂 和使氢气催化剂和氧气催化剂电隔离的离子传导膜。该燃料电池进一 步包含第二双极板,当第一双极板和第二双极板组装在膜电极组件的
相对的侧面上时,第二双极板包括位于该第二双极板的与第一双极板
的第一表面相对的一个表面上的第二通道场。该燃料电池还包含在第
一双极板上的第一平台,其具有位于第一通道场中的两个通道之间的
第一双极板的表面积。该燃料电池还包含在第二双极板上的第二平台,
其具有位于第二通道场中的两个通道之间的第二双极板的表面积。当
第 一双极板和第二双极板被组装在膜电极组件地相对侧面时,第 一平
台至少部分地与第二平台重叠。
另一方面,本发明涉及一种用于产生电能的燃料电池。该燃料电池
包含一组双极板。每个双极板包舍位于该双极板第一表面上的第一通 道场和位于双极板第二表面上的第二通道场。该第一通道场包括一组 通道,该第二通道场包括一组通道。该燃料电池堆还包括位于两个双 极板之间的膜电极组件。该膜电极组件包括氢气催化剂、氧气催化剂 和使氢气催化剂和氧气催化剂电隔离的离子传导膜。该燃料电池进一 步包含顶部端板。该燃料电池还包含底部端板,其保护顶部端板,并 且当顶部端板和底部端板被固定在一起时,向膜电极组件施加压力。 顶部端板和底部端板之一在被组装到燃料电池中之前成形,其增加了
当顶部端板和底部端板4皮固定在一起时,施加在膜电极组件中心平面 部分的压力。
另一方面,本发明涉及一种用于燃料电池的双极板。该双极板包含 具有第一表面和第二表面的基板。该双极板还包含位于第一表面上的 第一通道场。该双极板进一步包含位于第二表面上的第二通道场。该 双极板还包含用于向第一通道场传送气体或从第一通道场接收气体的 歧管。该双极板还包含朝向第二表面上的歧管、从第一表面向第二表 面橫过基板、并且用于在歧管和第一通道场之间传送气体的歧管通道。
另一方面,本发明涉及一种用于产生电能的燃料电池。该燃料电池
包含第一双极板,其包括i )用于向该板的第一表面上的第一通道场 传送气体或从第一通道场接收气体的歧管,和H)在第一表面上的第
15一垫圏平台,其在外围围绕第一表面上的歧管。该燃料电池还包含第
二双极板,其包括i)与第一板的歧管基本成一直线的歧管,和ii) 在第二双极板的一个表面上的第二垫圏平台,其在外围围绕第二板歧 管。当第一板和第二板彼此接近时,该第二双极板的表面面对第一双 极板的第一表面。该燃料电池进一步包含位于第一双极板和第二双极 板之间的膜电极组件,该膜电极組件包括氢气催化剂、氧气催化剂和 使氢气催化剂和氧气催化剂电隔离的离子传导膜。
另一方面,本发明涉及一种用于产生电能的燃料电池。该燃料电池 包含燃料电池堆。该燃料电池堆包括一组双极板。每个双极板包含i) 位于该双极板的第一表面上并具有一组用于分配燃料的通道的第一通 道场,ii)位于该双极板的第二表面上并具有一组用于分配氧化剂的 通道的第二通道场,和iii )设置在第一通道场外部的与双极板的基板 热传导地连通的热量传输附件。该燃料电池还包括设置在热量传输附 件中或与其接近的热催化剂。该热催化剂遇到加热介质时产生热。该 燃料电池进一步包含阳极催化剂、阴极催化剂和使阳极催化剂和阴极 催化剂电隔离的离子传导膜。
在本发明的下列描述和相关附图中将对本发明的这些以及其它特 征和优点进行描述。
图1A示出了根据本发明一个实施例的一种用于产生电能的燃料电 池系统。
图1B示出了根据本发明的一个具体实施例的图U所示的燃料电池 系统的示意操作。
图2A示出了用于图1A所示根据本发明一个实施例的燃料电池的燃 料电池堆的横截面示意图。
图2B示出了根据本发明另一实施例的燃料电池堆和燃料电池的外 部顶部透视图。
图2C示出了用于图1A所示的根据本发明一个实施例的燃料电池的 聚合物电解质膜燃料电池(PEMFC)结构。图2D示出了根据本发明一个实施例的双极板的顶部透视图。 图2E示出了图2D所示双极板的顶部正视图。
图2F示出了根据本发明 一个实施例的用于燃料电池堆中的湿化板 (HP)。
图2G-2L示出了适用于图1A的燃料电池的多种典型通道场的结构。 图2M示出了包含板/冷却层/板结构的广泛使用的传统的双极板。 图3A示出了根据本发明一个实施例的在每个双极板上包括一个热
量传输附件的燃料电池堆的横截面示意图。
图3B示出了根据本发明一个实施例的热量传输附件和双极板的横 截面示意图。
图4 A示出了根据本发明 一 个实施例的设置在双极板上的交错排列 的通道。
图4B示出了根据本发明一个实施例的设置在膜电极组件的相对侧 面上的双极板。
图5A示出了根据本发明另一实施例的用于图1A所示的燃料电池的
燃料电池堆的横截面示意图。
图5B示出了气体流过图5A所示隔壁的流动路径的侧视图。
图6示出了适用于根据本发明一个实施例的用于图1A所示燃料电
池的预弯曲的端板。
图7A示出了根据本发明一个实施例包括垫圏平台的双极板的顶部
透视图。
图7B示出了图7A所示顶板上的平台的特写视图。 图7C示出了图7A所示的双极板的前剖视图以及每个板上歧管通道 的交错排列。
图7D示出了截取通过顶板的歧管通道的图7A所示的双极板的侧剖 视图。
图7E示出了截取通过底板的歧管通道的图7A所示的双极板的侧剖 视图。
具体实施方式
结合附图中示出的多个优选实施例对本发明进行详细描述。在下面 的描述中,为了帮助对本发明的全面的理解,披露了很多具体的细节。 然而,对于本领域技术人员来说,很明显的是,没有某些或全部的具 体细节也能够实施本发明。在其它的例子中,为了避免不必要地模糊 了本发明,对于公知的过程步骤和/或结构没有进行详细描述。
1.燃料电池系统
图1A示出了根据本发明的一个实施例的一种用于产生电能的燃料 电池系统10。燃料电池系统10包舍氢燃料供给装置12和燃料电池20。
氢供给装置12向燃料电池20提供氢气。如图所示,供给装置12 包括氢存储装置14和/或"重整"氢供给装置。虽然燃料电池20—般 每次从一个供给处接收氢,但是利用多个供给提供附加的氢气供给的 燃料电池系统10在一些应用中很有用的。氢存储装置14输出氢,其 可以是纯的氢源例如存储在加压容器14内的压缩氢气。固态氢存储系 统例如本领域技术人员公知的金属基氢存储装置也可以用作氢存储装 置14。
"重整"氩供给装置处理燃料源以提供氢。燃料源17作为氢的载 体,可以被处理以分离出氢。燃料源17可包括任何含氢燃料流、烃燃 料或其它氢燃料源例如氨。目前适于本发明的可获得的烃燃料源17包 括例如曱醇、乙醇、汽油、丙烷、丁烷和天然气。多种烃和氨产品也 可以制造合适的燃料源17。液态燃料源17提供高的能量密度并具有易 于保存和运输的性质。存储装置16可包含燃料混合物。当燃料处理器 15包含蒸气重整器时,存储装置16可包含烃燃料源和水的燃料混合物。
个实施例中,燃料源17在水中包含的曱醇或乙醇的浓度范围是1% -99.9%。其它液态燃料例如丁烷、丙烷、汽油、军用级的"JP8"等也 可以存储在存储装置16中,在水中的浓度为5-100%。在一个具体的 实施例中,燃料源17包含体积含量为67 0/。的曱醇。
如图中所示,重整氢供给装置包含燃料处理器15和燃料源存储装 置16。存储装置16存储燃料源17,其可包括便携式和/或一次性燃料元件。 一次性燃料元件为消费者提供即时再充。在一个实施例中,该 元件包括在硬质的塑料储备容器内的可伸缩的嚢设计。 一般由一个单
独的燃料泵控制燃料源17从存储装置16流出。如果系统IO连有负载, 那么燃料源17由控制系统进行计量以向处理器15以燃料电池20的能 量水平输出所需的以流量水平传送燃料源17。
燃料处理器15处理烃燃料源17并输出氢。传统的氢燃料处理器 15在催化剂存在条件下加热并处理燃料源17以产生氢。燃料处理器 15包含重整器,其为一种催化装置,将液态或气态烃燃料源17转化成 氢和二氧化碳。适用于燃料电池系统10的多种类型的重整器包括蒸气 重整器、自热重整器(ATR)或者催化部分氧化器(CP0X)。蒸气重整 器只需要蒸气来产生氢,而ATR和CPOX重整器将空气和燃料和蒸气混 合。ATR和CP0X系统重整的燃料例如曱醇、柴油、普通无铅汽油和其 它烃。在一个具体的实施例中,存储装置16向燃料处理器15提供曱 醇17,处理器在大约250"C或更低温度下重整甲醇,允许燃料电池系 统IO用于温度最小化的应用中。适于本发明的燃料处理器的进一步的 说明包含在标题为"Annular Fuel Processor and Methods"、发明 人为Ian Kaye、提交日与本发明相同的共有未审定的专利申请中。该 申请在此一并作为参引。
燃料电池20将氲和氧电化学地转化为水,在这个过程中产生电功 率和热量。通常由环境空气为燃料电池20提供氧气。纯地或直接氧源 也可以用作氧的供给。水通常是以水蒸气的形式存在,这取决于燃料 电池20组件的温度。对于很多燃料电池,该电化学反应也产生二氧化 碳作为副产物。
在一个实施例中,燃料电池20为小体积聚合物电解质膜(PEM)燃 料电池,适用于便携式应用,例如消费电子装置。聚合物电解质膜燃 料电池包含膜电极组件40,其执行电化学反应产生电功率。该膜电极 组件包括氢催化剂、氧催化剂和离子传导膜,其a)选择性的传导质子 和b)使氢催化剂和氧催化剂电隔离。氢气分配层包含该氢催化剂,允 许氢气在其中扩散。氧气分配层包含该氧催化剂,并允许氧气和氢质 子在其中扩散。该离子传导膜分离该氢气分配层和氧气分配层。从化学的角度,阳极包含该氢气分配层和该氢催化剂,而阴极包含该氧气 分配层和该氧催化剂。
在一个实施例中,膜电极组件位于两个板之间。氬气分配43经一 个板上的通道场进行,而氧气分配45经另一个相对的板上的通道场进 行。具体而言,第一通道场向氢气分配层分配氢气,而第二通道场向 氧气分配层分配氧气。PEM燃料电池通常包括具有一组双极板的燃料电 池堆。术语"双极"板是指将夹在两个膜电极组件层之间的两个表面 上(由一个板或两个板组成)的反应气体流动通道组合的结构。这时, 双极板既作为一个相邻的膜电极组件的负极端,又作为另 一个相邻的 膜电极组件的正极端。
从电学角度,阳极包括氢气分配层、氢催化剂和双极板。阳极作为 燃料电池20的负极,传导从氢分子中脱出的电子,以使得其可以被外 部使用,例如,为外部电路提供电功率。在燃料电池堆中,双极板串 联连接以增加在燃料电池堆中每层获得的电位。从电学角度,阴极包 括氧气分配层、氧催化剂和双极板。阴极代表燃料电池20的正极,将 电子从外部电子电路传送回到氧催化剂,在那里电子可与氢离子和氧 重新结合产生水。
氢催化剂使氢分解为质子和电子。离子传导膜阻挡电子,使化学阳 极(氢气分配层和氢催化剂)与化学阴极(见图2C)电隔离。离子传 导膜也选择性的传导正电荷的离子。电学上,阳极向负栽(产生电能) 或电池(存储电能)传导电子。同时,质子穿过离子传导膜移动,与 氧结合。接着质子和所利用的电子在阴极侧相遇,与氧结合产生水。 氧气分配层中的氧催化剂促进这个反应。 一种常用的氧催化剂包含非 常薄的涂覆在碳纸或碳布上的铂粉末。在很多设计中使用粗糙的多孔 的催化剂以增加暴露于氢和氧中的铂的表面积。
在一个实施例中,燃料电池20包含一组双极板,每个双极板在相 对的表面上包括分配氢气和引起的通道场。 一种通道分配氢而在相对 表面上的另一种通道分配氧。多个双极板可以堆叠在一起以形成"燃 料电池堆"(图2A),其中膜电极组件位于每一对相邻的双极板之间。
由于燃料电池20中的产生电功率的过程是放热的,燃料电池20通过一个热管理系统来使热量从燃料电池消散。燃料电池20也可以利 用多个湿化板(HP)来管理燃料电J^中的湿气水平。
虽然本发明将主要针对PEM燃料电池进行讨论,但是应该理解的是 本发明也可以用于其它的燃料电池结构。燃料电池结构之间的主要区 别在于所使用的离子传导膜的类型。在一个实施例中,燃料电池20为 磷酸燃料电池,其使用液态磷酸进行离子交换。固体氧化物燃料电池 利用硬质的、无孔的陶瓷化合物进行离子交换,其也可适用于本发明。 通常,任何燃料电池结构都可以从本发明中描述的一个或多个双极板 和热管理系统的改善受益。其它这样的燃料电池结构包括直接曱醇、 碱性和熔融碳酸盐燃料电池。
燃料电池20产生直流电压,其可以广泛用于各种用途。例如,燃 料电池20产生的电功率可用于为发动机或灯提供电功率。在一个实施 例中,本发明提供"小型"燃料电池,其设计用来输出小于200瓦的 功率(净的或总的)。这种大小的燃料电池通常是指"微燃料电池", 很适合用于便携式电子装置。在一个实施例中,燃料电池20用于产生 从大约1亳瓦到大约200瓦。在另一实施例中,燃料电池20产生从大 约3W到大约200W。燃料电池20也可以为独立的燃料电池,其为单独 的一个产生功率的单元,只要其具有a )氧气和b )氢气或氢热量供给。 输出大约40W到大约100W的燃料电池20很适合用于为膝上电脑供电。 大于80kW的功率水平可以通过明显使电池的数量增加到100-300个电 池和增加板的表面积而得到。
图1B示出了根据本发明的一个具体实施例的燃料电池系统10的示 意操作。如图中所示,燃料电池系统10包含燃料容器16、氢燃料源 17、燃料处理器15、燃料电池20、多个泵21和风机35、燃料管道和 气体管道、以及一个或多个阀23。
燃料容器16存储甲醇作为氢燃料源17。燃料容器16的出口 26向 氢燃料源管道25中提供甲醇17。如图中所示,管道25分为两种管道 向用于燃料处理器15的燃烧器30传送曱醇17的第一管道27和向燃 料处理器15中的重整器32传送曱醇17的第二管道29。管道25、 27 和29可包含例如塑料管。分离的泵21a和21b分别用于管道27和29,使管道加压,如果需要的话,使燃料源以独立的速度传输。由Instech of Plymouth Meeting , PA生产的P625型泵适用于为本实施例的系统 IO传送液体甲醇。流量传感器或阀23位于管道29上的存储装置16和 燃料处理器18之间,检测和传达在存储装置16和重整器32之间传输 的曱醇17的量。在传感器或阀23以及合适的控制的协同作用下,例 如由从存储软件执行命令的处理器施加的数字控制,泵21b调节甲醇 17从存储装置16向重整器32的供给。风机35a从环境经由管道31向燃料处理器15的热交换器36传送 氧气和空气。风机35b从环境经由管道33向燃料处理器15的热交换 器36传送氧气和空气。在该实施例中,由Adda USA of California 提供的AD2005DX-K70型风机适于为燃料电池系统IO传送氧气和空气。 风机37将冷空气吹过燃料电池20和它的热量传输附件46。在下文中 将参照图2D、2E和3A更详细地描述燃料电池20经由热量传输附件46 的冷却。燃料处理器15从存储装置16接收曱醇17,输出氬。燃料处理器 15包含燃烧器30、重整器32、煮沸器34和热交换器36。燃烧器30 包括从管道27接收曱醇17的入口和在甲醇存在下产生热量的催化剂。 在一个实施例中,燃烧器30包括向管道42排放被加热的气体的出口, 管道41将被加热的气体传送到燃料电池20以经过热量传输附件46来 预热燃料电池,加速初始起动燃料电池20时所需的预热时间。燃烧器 30的出口也可以向周围环境排放被加热的气体。煮沸器34包括从管道29接收曱醇17的入口。煮沸器34的结构允 许在重整器32接收曱醇17之前,在燃烧器30中产生的热量来加热煮 沸器34中的曱醇17。煮沸器34包括向重整器32提供被加热的曱醇 17的出口。重整器32包括从煮沸器34接收被加热的曱醇17的入口。重整器 32中的催化剂与曱醇17反应,产生氢和二氧化碳。该反应轻微吸热, 从燃烧器30吸收热量。重整器32的氢出口向管道39输出氢。在一个 实施例中,燃料处理器15还包括优先氧化器,其中途拦截重整器32 的排放物,减少排放物中一氧化碳的含量。该优先氧化器利用从空气入口进入优先氧化器的氧气与催化剂例如钌或铂,优先氧化一氧化碳 而不是二氧化碳。在一个实施例中,燃料处理器15包括杜瓦容器150,其在空气进 入燃烧器30之前使空气预热。杜瓦容器150还通过在空气离开热量处 理器15之前加热引入的空气而减少了从燃料电池15的热损耗。在一 定程度上,杜瓦容器150作为热交换器,利用燃料处理器15中的废热 提高了燃料处理器的热管理和热效率。具体而言,燃烧器30的废热可用于预热提供到燃烧器的引入空气来减少传导到燃烧器中的空气的热 量,由此更多的热量被传送到重整器32。管道39从燃料处理器15向燃料电池20传送氢气。气体传输管道 31、 33和39可包含例如塑胶管。氢流量传感器(未示出)也可以加在 管道39上来检测和传达传送到燃料电池20的氢的量。在氬输出传感 器和合适的控制的共同作用下,例如由从存储软件执行命令的处理器 施加的数字控制,燃料处理器15调节向燃料电池20的氢气供给。燃料电池20包括氢入口端84 (图2B),其从管道39接收氢,并 将其传送到氢进口歧管(图2E)以便将其传送到一个或多个双极板及 其它们的氢分配通道。氧入口端88 (图2B)从管道33接收氧,并将 其传送到氧进口歧管(图2E)以便将其传送到一个或多个双极板及其 它们的氧分配通道。阳极废气歧管从氢分配通道收集废气,并将其传 送到阳极废气端,将废气排放到周围环境中。阴极废气歧管从氧分配 通道收集废气,并将其传送到阴极废气端。在一个实施例中,阴极废 气进入管道41,管道41将被加热的气体传送经过燃料电池20的热量 传输附件46来预热燃料电池,加速初始起动燃料电池20时所需的预 热时间。图1B所示的燃料电池系统10的操作是一个示例,也已考虑到燃料 电池系统设计的其它变化,例如反应物和副产物管路。在一个实施例 中,本发明使阳极废气从燃料电池20回到燃烧器30。由于燃料电池 20中的氢消耗经常是不完全的,氢分配通道的废气中包括未利用的氢 气,使废气循环回到燃烧器30使燃料电池系统10利用了未被使用的 部分,提高的氢的使用率和系统10的效率。该实施例的进一步说明以及另外的燃料电池系统10的示意举例在上述参引的题为 "Annular Fuel Processor and Methods"的共有未审定的专利申请中有具体描 述。除了图1B所示的组件之外,系统10还可以包括其它元件,例如 本领域技术人员公知的对于系统10的功能有利的电子控制器、附加的 泵和阀、附加的系统传感器、歧管、热交换器和电气互连装置,为了 简化的目的,在此将这些内容省略。2.燃料电池图2A所示为根据本发明一个实施例的用于燃料电池20的燃料电池 堆60。图2B为根据本发明另一个实施例的燃料电池堆60和燃料电池 20的外部顶部透视图。首先参照图2A,燃料电池堆60为双极板堆,其包含一组双极板44 和一组膜电极组件(MEA)层62。两个膜电极组件层62与每个双极板 44相邻。除了最顶部的和最底部的膜电极组件62a和62b,每个膜电 ;欧组件62都位于两个相邻的双极板44之间。对于膜电极组件62a和 62b,顶部端板和底部端板64a和64b,在与膜电极组件62相邻的表 面上包括通道场72。双极板44将参照图2B-2I, 3, 4,和5进4亍进一 步的讨论。膜电极组件62将参照图2C作进一步的描述。参照图2B,顶部端板和底部端板64a和64b为电池堆60提供机械 保护。每个板64还将双极板44和膜电极组件层62固定在一起,并在 每个双极板44和每个膜电极组件62的平面面积上施加压力。端板64 可包含适当刚性的材料,例如不锈钢、钛。铝、组合物或陶瓷。在一 个实施例中,端板64为在组装之前预弯曲的,已减少在膜电极组件层 62的平面面积上的压力变化。预弯曲的端板将参照图6作进一步的讨 论。螺栓82a和82b将顶部和底部端板64a和64b连接和固定在一起。 如图中所示,螺栓82a和82b进入顶部端板64a,螺紋进入底部端板 64b。螺母可以设置在底部端板64b的底面以接收和固定每个螺栓。螺 栓82a和82b可为商业可获得的螺栓、连杆或其它适于连接和固定顶 部和底部端板64a和64b的固定机构。回到图2A,双极板堆60包括12个膜电极组件层62、 ll个双极板 44和2个端板64。堆叠60中的每个双极板44还包括两个热量传输附 件46。更具体而言,每个双极板44包括在板的一侧的热量传输附件 46a和在相对侧的热量传输附件46b。热量传输附件46将参照图2E、 3A和3B作详细的描述。每组中双极板44和膜电极组件层62的数量可以随着燃料电池堆 60的设计而改变。在燃料电池堆60中堆叠平行的层允许有效的利用可 见,增加燃料电池20的能量密度。在一个实施例中,每个膜电极组件 62产生0. 7V,膜电极组件层62和双极板44的数量根据所需的电压进 行选择。另一种可选方式是,膜电极组件层62和双极板44的数量可 根据在电子装置中允许的厚度来选择。利用下述的一种或多种空间节 省技术,燃料电池20可包括超过10个膜电极组件层,而整个组件的 厚度小于l厘米。具有从l个膜电极组件62到几百个膜电极组件62 的燃料电池堆60适用于很多种应用。具有从大约3个膜电极组件62 到大约20个膜电极组件62的电池堆60也适用于多种用途。燃料电池 20的大小和设计也可以被设计并用于输出给定的功率。参照图2B,燃料电池20包括向燃料电池堆60的外部开放的两个 阳极端 一个入口阳极端或入口氬气端84,和一个出口阳极端或出口 氢气端86。入口氢气端84位于顶部端板64a上,与入口管道耦合接收 氢气,并向入口氢气歧管102 (见图2E和2F)开放,其用于向电池堆 60中每个双极板44上的通道场72传送入口氢气。出口端86从阳极废 气歧管104 (见图2E和2F)接收排放气体,其用于从每个双极板44 的阳极通道场72收集废气。出口端86可直接向周围环境排放废气或 者通过与出口端86连接的管道向周围环境排放废气。燃料电池20包括两个阴极部分入口阴极端或入口氧气端88,和 出口阴极端或出口水/蒸气端90。入口氧气端88位于底部端板64b上 (见图2F),与入口管道耦合接收环境空气,并向入口氧气歧管106 开放,其用于向电池堆60中每个双极板44上的通道场72传送入口氧 气和空气。出口水/蒸气端90从阴极废气歧管108 (见图2E和2F)接 收气体,其用于从每个双极板44的阴极通道场72收集水(一般为蒸气)。图2C所示为根据本发明一个实施例的用在燃料电池20中的聚合物 电解质膜燃料电池(PEMFC)结构120。如图中所示,PEMFC结构120 包含两个双极板44和夹在两个双极板44中间的膜电极组件层(或者 MEA) 62。膜电极组件62将氢和氧电化学转化为水,在这个过程中产 生电功率和热量。膜电极组件62包括阳极气体扩散层122、阴极气体 扩散层124、氢催化剂126、离子传导膜128、阳极电极130、阴极电 极132和氧催化剂134。加压的氢气气体(H2),例如由含氢气体流(或"重整产物")提 供的,经由氢端口 84进入燃料电池20,接着经过入口氢气歧管102和 位于双极板44a的阳极表面上的氬通道场72a的氢通道74。氲通道74 向位于双极板44a的阳极表面75和离子传导膜128之间的阳极气体扩 散层122开放。压力促使氢气进入可渗透氬的阳极气体扩散层122,并 越过设置在阳极气体扩散层122上的氢催化剂126。当H2分子与氲催 化剂126接触时,其分解为两个H+离子(质子)和两个电子(e—)。 质子穿过离子传导膜128与阴极气体扩散层124内的氧结合。电子穿 过阳极电极130,在此它们产生用于外部电路的电压(例如膝上电脑的 功率供给)。被外部使用之后,电子流到PEMFC结构120的阴极电极 132。氢催化剂126将氢分解为质子和电子。合适的催化剂126包括例如 铀、钌、和铂黑或铂碳、和/或碳纳米管上的铂。阳极气体扩散层122 包含任何允许氢气扩散并能够担栽氢催化剂126以使该催化剂和氢分 子发生反应的材料。 一种这样的合适的层包含织造的或无纺的碳纸。 其它合适的气体扩散层122材料可包含碳化硅基质和织造的或无纺碳 纸和Teflon的〉'昆合物。在PEMFC结构120的阴极侧,加压的载有氧气(OJ的空气经由氧 端口 88进入燃料电池20,然后经过入口氧气歧管106,并经过位于双 极板44b的阴极表面77上的氧通道场72b的氧通道76。氧通道76向 位于双极板44b的阴极表面77和离子传导膜128之间的阴极气体扩散 层124开放。压力促使氧气进入阴极气体扩散层124,并越过设置在阴极气体扩散层124上的氧催化剂134。当02分子与氧催化剂134接触 时,其分解为两个氧原子。已经穿过离子选择性的离子传导膜128的 两个H+离子和一个氧原子与从外部电路返回的两个电子结合生成水 分子(H20)。阴极通道76排出水,水通常是以水蒸气的形式存在。在 一个单独的膜电极组件层62中该反应产生大约0. 7V的电压。阴极气体扩散层124包含允许氧气和氢质子扩散、并能够担载氧催 化剂134以使该催化剂134与氧和氢发生反应的材料。合适的气体扩 散层124可包含例如碳纸或碳布。其它合适的气体扩散层124材料可 包含碳化硅基质和织造的或无纺碳纸和Teflon的混合物。氧催化剂134 促进氧和氢生成水的反应。 一种常用的催化剂134包含铂。很多设计 中使用粗糙的多孔催化剂134来增加向氢气或氧气暴露的催化剂134 的表面积。例如,铂可以粉末状态非常薄的涂覆在碳纸或碳布阴极扩 散层124上。离子传导膜128通过阻挡电子穿过膜128使阳极和阴极电隔离。由 此,膜128防止电子在气体扩散层122和气体扩散层124之间经过。 离子传导膜128也选择性的从气体扩散层122向气体扩散层124传导 正电荷的离子,例如氢质子。对于燃料电池20,质子移动经过膜128, 而电子被传送到电子负载或电池。在一个实施例中,离子传导膜128 包含电解质。 一种适用于燃料电池20的电解质是PEMEAS USA AG of Murray Hi 11, NJ ( www. pemeas. com )的Celtec 1000。包括该电解质的 燃料电池20通常具有更佳的一氧化碳耐受性,可以不需要湿化。离子 传导膜128还可以使用磷酸基质,其包括充满磷酸的多孔隔板。适用 于燃料电池20的可替代的离子传导膜128可广泛的从例如United technologies, DuPont, 3M公司和其它的本领域公知的制造商那里获 得。例如,WL Gore Associates of Elkton,MD制造primea Series 58,其为适用于本发明的低温膜电极组件。阳极130是指较低电位的或者膜电极组件层62的负极,并传导从 氲分子中脱出的电子以使其可被外部利用。阳极130包含阳极气体扩 散层122、催化剂126和双极板44的电子导电性质。由此,双极板44 作为a)具有形成在其内部的、用于在包括催化剂126的活性区域分配氢气的通道76的板和b)燃料电池20中阳极130的电子导电元件。对 于燃料电池堆60,双极板44串联连接以增加每个膜电极组件62产生 的电压。燃料电池20的累积的阳极130则包括串联的每个双极板44, 并向外部电子负栽(利用电能)或电池(存储电能)传导电子。阴极132代表燃料电池20的正电极,并向催化剂134传导电子, 在此电子可以再与氢离子和氧结合生成水。阴极132包含阴极气体扩 散层124、催化剂134和双极板44的电子导电性质。由此,双极板44 作为a)具有形成在其内部的、用于在包括催化剂134的活性区域分配 氧气和空气的通道76的板和b)燃料电池20中阴极132的电子导电元 件。燃料电池20的累积的阴极132包括串联的每个双极板44,并把电 子从外部电子电路传导回来。在一个实施例中,燃料电池20不需要外部湿化器或者热交换器, 电池堆60只需要氢气和空气来产生电功率。另一种可选方式是,燃料 电池20可利用燃料电池20阴极的湿化来改善性能。对于一些燃料电 池堆60设计,阴极湿化提高了燃料电池的功率和操作寿命。图2F所 示为根据本发明一个实施例的使用在燃料电池堆60中的湿化板160。湿化板160包含基本平面的结构,由两个相对的表面162构成,每 个表面包括湿化流场164设置在每个表面162上(只示出了上表面和 湿化流场164)。水渗透膜168 (例如Nafion)设置于每个湿化板160 之间。阴极废气(从膜电极组件层62的双极板44)经过湿化板160的 一个湿化流场164供给,阴极入口气体(去往膜电极组件层62的双极 板)经过其它湿化流场164供给。膜168允许水蒸气从一股气流经过 另一股,而不允许不同的气流混合。阴极废气的水蒸气和热量由此经 过水渗透膜168供给到阴极入口气流,由此湿化和加热阴极入口气流。 湿化流场164可用于允许阴极入口和出口气流对流、协同流动或者交 叉流动。在一个实施例中,燃料电池堆60包括多个湿化板,大约占双极板 44的总数的25-70 %。湿化板160可为例如模制的或机械制造的塑料 板。湿化板160不需要导热性或导电性。虽然本发明提供在单个板44的相对侧面上具有分配氢气和氧气的通道场72的双极板44,这里描述的很多实施例适于使用传统的双极板 组件,其利用两个单独的板来分配氢气和氧气。图2M所示为广泛使用 的传统的双极板300,其包含板/冷却层/板结构。双极板300包括两个板302a和302b,两者之间夹有冷却层304。 顶板302a在它的上表面308上包括分配氧气的通道场306a。底板302b 在它的细胞膜308上包括分配氢气(或者氧气,当顶板302a分配氬气 时)的通道场306b。冷却层304中具有冷却介质例如去离子水流经冷 却通道310。冷却介质冷却每个板302。冷却介质的流动可以使在与阴 极内氧气分压减小的方向相同的方向上温度升高。与双极板44相似, 双极板300也是"双极板",因为其作为一个膜电极组件的阴极和另 一个膜电极组件的阳极。双极板300对燃料电池的作用与上述双极板 44对于燃料电池的作用相似。顶板和底板302a和302b可以都包含硅, 在它们的表面上蚀刻出通道以提供通道场306。虽然在燃料电池20中使用双极板300导致燃料电池的厚度大于使 用双极板44,但是本发明的很多实施例适合使用双极板300。例如, 参照图2E描述的流动緩冲器很适合使用双极板300。另外,在电池堆 中包括双极板300的燃料电池将会受益于如图6所示的预弯曲的端板 64。双极板300也可以利用这里所述的交错的通道、加热附件和/或流 场。在一个实施例中,燃料电池20包含设置在电池堆中的双极板44, 每个板44具有不同的歧管布置。图2F所示为根据本发明另一个实施 例的燃料电池堆60的设计,其中双极板包括不同的进气和废气分配。对于图2F中的燃料电池堆60,阴极气流170从底板64b (这里可 能与空气供给最近)进入并流经两个湿化板164,与阴极排出气流逆流 流动,由此获得湿化和热量。然后阴极气流170流经三个膜电极组件62 到达阴极排放歧管108,其将气流170返回到湿化板160,在此其流过 引入的阴极气流170。阴极气流170然后从出口端90排放。阳极气流172进入入口端84,连续由一个顶部双极板44流过下一 个双极板,与阴极气流170逆流流动。气流172首先进入阴极气流170 流过的最后一个双极板44。阳极气流172和阴极气流170互相逆流的流动减少了与燃料和氧化剂由于被每个膜电极组件层62消耗而造成浓 度降低有关的电池压力损失。这些燃料电池堆60流动路径允许重整产物和阴极排气气流到达和 流出燃料处理器较短的管路路径。为了能够改善管路,图2J所示的燃 料电池堆60设计示意了双极板44的构造,在燃料电池堆60中每个都 被设计到具体的板44的位置。更具体而言,双极板44m、 44n和44o 可以都包括不同的进气和排气歧管i殳计。例如,双极板44o包括一个 外阴极歧管107,而双极板44m却没有。例如MEMs制造技术考虑到了 与双极板44结合的这样的变化的歧管设计。变化的歧管设计能使设计 者为用最小的附加成本为双极燃料电池堆60开发复杂的流动模式。虽然至今本发明主要针对重整甲醇燃料电池(RMFC)进行讨论,但 是本发明也可以应用到其它类型的燃料电池,例如固体氧化物燃料电 池(S0FC)、磷酸燃料电池(PAFC)、直接甲醇燃料电池(DMFC)或 者直接乙醇燃料电池(DEFC)。这时,燃料电池20包括这些结构所特 有的结构,如同本领域技术人员可以理解的。DMFC或DEFC接收和处理 燃料。更具体而言,DMFC或DEFC分别接收液体曱醇或乙醇,将燃料送 入燃料电池堆60,将液体燃料处理成为分离的氢用于产生电功率。对 于DMFC,双极板44中的通道场72分配液体曱醇而不是氢气。上述的 氢催化剂126则包含适当的用于从甲醇中分离氢的阳极催化剂。氧催 化剂128可包含合适的用于处理氧气或者其它的合适的用于DMFC的氧 化剂例如过氧化物的催化剂。 一般的,氢催化剂126通常也是指其它 燃料电池结构中的阳极催化剂,并且可包含任何例如直接从DMFC燃料 中除去用于在燃料电池中产生电功率的氢的合适的催化剂。氧化剂可 包括任何可将燃料氧化的液体或气体,不限于上述的氧气。诸如S0FC、 PAFC或MCFC也可以从这里所述的本发明中受益。这时,燃料电池20 包含阳极催化剂126、阴极催化剂128、根据具体的S0FC、 PAFC或MCFC 设计的阳极燃料和氧化剂。3.双极板图2D示出了根据本发明一个实施例的双极板44的顶部透视图。图2E示出了双极板44的顶部正视图。双极板44是单独的板44,其具有 分别在单独的板44的相对的表面75a和75b上的第一通道场72a和第 二通道场72b。从功能上,双极板a)向气体分配层122和124以及它们各自的催 化剂传送和分配反应气体,b)在电池堆60中在膜电极组件层62之间 保持反应气体彼此隔离,c)从膜电极组件层62排放电化学反应副产 物,d)促进向和/或从膜电极组件层62和燃料电池堆60的热量传导, e)作为电子导体从阳极向阴极传送电子,和f)包括气体进气和气体 排气歧管,用于向燃料电池堆60的其它双极板44传送气体。结构上,双极板44具有相对平的剖面,并包括相对的上表面和下 表面75a和75b (在图2D和2E中只有上表面75a, 75b见图2C )和多 个侧面78。表面75基本是平面的,除了通道76是作为形成在基板89 内的凹槽。侧面78包含双极板44与两个表面75之间的双极板44的 边缘相邻的部分。如图2E所示,双极板44为大概的四边形,进气歧 管、排气歧管和热量传输附件46使得其偏离四边形。在表面75之间 的厚度从大约0. 125毫米到大约l毫米的双极板44适用于很多种应用。 其它应用可使用厚度在大约0. 25亳米到大约0. 75毫米之间的双极板。 在一个具体的实施例中,板44在板44的剖面的任何点上都具有不大 于大约2亳米的厚度。在另一实施例中,板44具有在任何机械加工之 前最初的lmm的厚度。这时,得到整个组件厚度小于lcm的燃料电池 20。每个板44上的歧管用于向板44的一个表面上的通道场传送气体或 者从通道场72接收气体。双极板44的歧管包括在基板89内的孔或洞, 当在电池堆60中与其它板44组合时,构成板44内气体流通歧管(例 如102、 104、 106和108)。由此,当板44堆叠在一起,它们的歧管 基本在一条直线上,这些歧管允许气体传送到每个板44或者从每个板 44流出。双极板44包括在每个板44的表面上的通道场72或者"流场"。 每个通道场72包括形成在板44的基板89内的一个或多个通道76,以 使得这些通道存在于板44的表面之下。每个通道场72为燃料电池堆60的活性区城85分配一种或多种反应气体。双极板44包括双极板44 的阳极表面75a上的第一通道场72a,其向阳极分配氬气(图2C ), 而在相对的阴极表面75b上的第二通道场72b向阴极分配氧气。具体 而言,通道场72a包括多个通道76,其允许氧气和空气流向阳极气体 分散层122,而通道场72b包括多个其允许氧气和空气流向阴极气体分 散层124。对于燃料电池堆60,每个通道场72用于从进气歧管102或 106接收反应气体,并用于向气体扩散层122或124分配这些反应气体。 每个通道场72还收集反应副产物用于从燃料电池20中排放出去。当 双极板44在前列队查60中被堆叠在一起时,相邻的板44中间夹着膜 电极组件层62,以使得一个双极板44的阳极表面75a在该膜电极组件 层62的相对侧面上与相邻的双极板44的阴极表面75b相邻。每个通道场72包括一组用于向双极板的活性区域分配氧气的通 道。在每个通道场72中通道76的数目和结构可以随设计而改变。图 2G - 2L示出了适用于如燃料电池20的多种通道场72结构。燃料电池20的活性区域85是指燃料电池堆60中发生电化学反应 产生电能的部分。典型地,活性区域85需要膜电极组件层62 (以及它 的组成部分例如气体分配层122和124、相关的催化剂和离子传导膜 128)的功能和由通道场进行气体的分配。由此,由通道场72限定的 膜电极组件层62的区域可以构成活性区域85。相反的,通道场72的 除了分配和平面部分以外的部分不包括在活性区域85内,膜电极组件 层62的除了表面部分以外的部分也不包括在活性区域内。根据构造, 单个的膜电极组件层62可包括多个活性区域85。多个活性区域85不 必是连续的,并且单个的膜电极组件层不需要被限制成只有单个的连 续的活性区域85。通道场72位于板44的中心部分。板44的密封部分87在每个板 44的外围附近包围通道场72。该密封部分87包围着通道场72并包围 着在板44的外围附近的歧管102-108。密封部分87将膜电极组件层 62和歧管102 - 108密封。 一个垫圏可以被设置在相邻的板44的密封 部分87之间以促进紧密的密封。然后从螺栓82和端板64的压力在每 对相邻板44之间的垫圏上施压。由硅酮制成的筛网印刷的垫圏适用于很多燃料电池堆60。在另一实施例中,相对于板44中心部分的基板 89,在密封部分87的基板89被提高。这时,膜电极组件层62存在于 较低的凹部,当由螺栓82和端板64施压时,相邻板44的密封部分87 内被提高的基板89作为密封元件。通道场72会影响燃料电池20的性能。更具体而言,通道场72的 设计可以改变双极板44之间气体分配的平面连续性,其影响电功率的 输出。本发明的一个实施例通过根据燃料电池20的结构设计通道场72 而改善了燃料电池20的性能。通常,由于燃料电池20利用侧部热传 导来除去能量产生期间产生的热量,每个双极板44在基本恒定的温度 下工作,下列参数中的一个或多个可能会影响通道场72的构造和布置 膜电极组件62上的Nernst电位最大化、燃料电池堆60中水管理(水 分压的分配和液态水的去除)最优化、电阻、和/或在单个层中压力一 致性或压降的最优化。图2G- 2L所示为适用于燃料电池20的多种通道场72a-72g的例 子。在一个实施例中,燃料电池20中被设置在相邻双极板44的表面 上的通道场72在相反的方向上分配氧气和氬气气体,以使电池的 Nernst电位最大4匕。如图2G所示,在双极板44a的底部(或顶部)的通道场72a中的 氧气气流从左上角250处开始,在右下角252处结束。这时,氧气进 气管道106向左上角250提供新鲜的氧气,空气排气管道108 (图2E) 从右下角252接收消耗的氧气空气。相反的,在相邻的双极板44b的 顶部(或底部)的相对的通道场72b中的氢气气流从右下角252处开 始,在左上角250处结束。类似的,氢气进气管道102向右下角252 提供新鲜的氢气,氢气排气观点104从左上角250接收消耗的氢气。 图2F所示的流动才莫式是示例性的,可以理解的是通道场72a可以如所 述的分配氧气或者相反的通道场72a可以向阳极分配氬气,而通道场 72b向阴极分配氢气。如图2H所示,在相邻双极板44c和44d的相对表面上的通道场72c 和72d中具有类似的平面流动模式,但是是以相反的方向流动。更具 体而言,通道场72c中的氧气流动在双极板44c左下角254的第一部分254a处开始,在左下角254的第二部分254b处结束。在相同角落 的起始和结束部分之间,通道场72c沿着示例的覆盖双极板44c的活 性区域的路径在双极板44c上分配氧气。相反的,通道场72d中的氧 气流动在双极板44d左下角254的匹配的第二部分254b处开始,在左 下角254的匹配的第一部分254a处结束。这时,通道场72d与通道场 72c路径相同,但是方向相反。图2G和2H所示的通道分配模式示意了系列流动模式,其中在每个 通道场72a-d中的流动在穿过板44和活性区域时是沿着单独的通道流 动。本发明的双极板44也可以利用平行的通道场设计,其中流动是沿 着在流动路径的一个或多个共用流动终端之间的多个路径进行。如图 21所示,在相邻双极板44e和44f的相对表面上的通道场72e和72f 具有相反平行的流动路径。更具体的说,通道场72e中的氧气流动在 双极板44e的右上角256开始,在左下角258结束。从板44e右上角 256开始的氧气流动在共有的流动终端264被分成6个基本平行的通道 266,其穿过板44e和活性区域传送氧气,在左下角258附近的共有流 动终端268处重新汇合。相反的,从板44f的左上角257开始的氢气 流动在共有流动中断265处被分成6个基本平行的通道267,其穿过板 44f和活性区域传送氧气,在右下角259附近的共有流动终端269处重 新汇合。在这种方式中,通道场72e和72f穿过双极板44e和44f的 活性区域在相反的方向上传送和分配氢气及氧气。图2K所示为在相邻双极板44i和44j的相对表面上的通道场72i 和72j,其中在相同的方向进行"协同流动"。这时,通道场72i和 72j在每个板44的相同的一侧开始和结束氧气流动和氬气流动。图2L 所示为在相邻双极板44i和44k的相对表面上的通道场72i和72k,其 中在垂直的方向进行"协同流动"。燃料电池20的双极板44也可以使用上述技术的组合。例如,图 2J所示为在相邻双极板44g和44h的相对表面上的通道场72g和72g, 其分别利用了平行设计和连续设计。双极板44包含基板89,其表示一种或多种材料,在基板上形成通 道72。基板89材料可以根据用于进行改变。在一个实施例中,基板89包含导热材料。下面会参照图3A、 3B和5说明导热双极板44的优 点和用途。在一个具体的实施例中,每个板44都是导热的,基板的热 导率大于1W/mK。导热性基板89可包含金属例如铝或铜,或者包含石 墨复合材料。其它适用于基板89的材料包括316SS或316SSL不锈钢、 50/50镍铬合金、钬、Fe、 Ni、 Cr及其合金。在另一实施例中,基板89包舍导电材料。由此金属例如铝和铜适 用于双极板44。另一种可选方式是,基板89可包含非导电性材料,例 如硅或玻璃。这时,板44被涂覆导电层,其增加双极板44的导电性。 导电性的基板89允许双极板44具有基本上小于石墨组合物板的整体 厚度,其降低了电池堆60的厚度和尺寸。双极板44还可以包括一个或多个施加在基板89上的涂层。例如, 可以附加一个涂层作为金属基板的止蚀层。合适的止蚀涂层可包含诸 如非腐蚀聚合基质或者纯的聚合材料。双极板44还可以被涂覆导电金属合金或者聚合材料来提高导电 性。导电涂层a)增加在基板中心部分和包括热量传输附件46的外围 部分中间的双极板44的平面导电性,并且b)提高双极板44和膜电极 组件66之间的电流传输。当板44由非导电材料构成时,导电涂层也 作为电子导电路径。导电层可包括例如石墨、导电金属合金。在一个 实施例中,双极板44的平面电导率通常小于10Om0hm cm2,通过导电 基板89或者经由外部导电涂层实现。可以施加一些涂层作为止蚀层和作为导电层。例如, 一种具有高导 电性的非腐蚀材料既可以增加导电性,又可以作为止蚀层。类似的, 一种与导电性掺杂物例如石墨粉末或者不同或类似尺寸的碳纳米管混 合的聚合材料也可以既作为止蚀层又作为导电层。表面电导率小于 100mQcm2的用于板44的导电的耐腐蚀涂层材料包括绝大多数金属、 导电陶瓷和聚合物、纯的化学品或合金。 一些具体的例子包括碳化钛、 碳氮化钬、铌、铼、硼化钛、氮化铬、Au、 Ni、 Cu、 Ti、 CR、 Mo及其 合金、导电陶瓷、石墨复合材料,导电聚合物包括聚吡咯、聚亚苯基、 聚苯胺(polyanilne)等、均聚物和共聚物化合物。燃料电池20和双极板44的相对小的尺寸允许在双极板44上使用非传统的、相对昂贵的涂层。相对昂贵的涂层可包含例如金、碳化钛、氮化钬或者复合材料。大尺寸燃料电池(2kW以上)的制造商由于很多 平方米涂层的高成本而一般避免高成本的极板涂层。然而,对于小型 的燃料电池20,与整个板的模制板的低成本和增加的性能(提高的性 能降低了板44的整体尺寸、降低了膜电极组件62的尺寸和所需催化 剂的量)胜过了涂层的成本。对于燃料电池20,金和其它高造价的涂 层的使用由此进一步显示了燃料电池20相对于传统的大型燃料电池技 术的新颖性,在大型燃料电池中极板上使用金的面积大于两平方英尺, 其造价是很高的。双极板44可通过多种技术制造。在一个实施例中,金属双极板44 由金属片微机械制造。金属片也可以是经模制、浇铸、模压或机械加 工(例如铣成)形成双极板44、通道76和流场72。 MEMs制造技术有 利的允许双极板44随着燃料电池与燃料电池地不同而改变特征,例如, 如图2G-2L所示那样变化通道场72可以容易地实现。另外,对于单 独的燃料电池堆60的个别的双极板44,进气和排气歧管和气体端口可 以定位于不同地位置,以适应具体的燃料电池20设计的方向或者允许 在板44之间按照设计好的路径流动(见对于图2F的讨论)。4、交错排列的通道在本发明的一个实施例中,双极板44包括"交错排列的"通道76, 其a)减少双极板44的厚度和/或b)减少由相邻的双极板44施加在 膜电极组件层62组件上的局部作用力。图4A所示为根据本发明一个 实施例的设置在双极板44上的交错的通道76。图4B所示为根据本发 明另一实施例的设置在膜电极组件层62上的双极板44c和44d。图2A 所示的双极板燃料电池堆60也包括交错的通道76。通道76a的深度270由到达与板44的表面垂直的、通道底部275 穿过的基板或者开口朝向的基板的距离决定。如图2A所示,在单个的 双极板44的相对的表面75a和75b上的通道76a和76b向互相偏移以 使得当它们穿过基板89时,通道75a和75b不会互相交叉。这样允许 在上表面上的包含在笫一通道场72a中的通道76a具有通道深度270,其延伸经过在同一个双极板的相对表面上的通道场72b中的通道76b 的通道深度272。由此双极板44的一个表面上的通道场72a的通道76a 都是交错的,使得它们横向不会截断任何通道场72b中通道72b(沿着 表面75a的共面方向)。交错部分的深度数值276为一个通道76a的 通道底部大约延伸超过在共有双极板的相对表面上通道76b通道底部 的深度。交错的深度数值276可以由设计中预期的数值或者制造和实 施中的平均数值来表示。相反,图3A的双极板44所示为传统的、非交错的通道76。这时, 同样的双极板44的相对表面上的通道垂直地成一直线。那么双极板44 厚度局限于至少 一个表面上的通道的深度加相对表面上的通道的深 度加两通道76之间的基板材料的厚度。例如,具有20密耳通道深度, 两通道之间的基板89材料厚10密耳的传统的、非交错的双极板,提 供50密耳厚度的双极板。然而,图4B所示的交错的通道76可以互相 错开,可使双极板44更薄。例如,当为10密耳交错深度276时,具 有相同的20密耳深度的通道76的双极板44的厚度只是30密耳,其 在厚度上节省了40%。对于具有50个双极板44的燃料电池堆60,这 使得燃料电池堆60和燃料电池20在厚度上减小了 1英寸。本发明的交4晉的通道由此允许双极板44包括通道底部275延伸经 过板44中部的通道76b。通常,本发明的交错的通道76允许双极板 44具有小于2x的厚度280,其中x为双极板44的每个表面上的通道 的大约深度。在一个实施例中,本发明的双极板44包括在板44的每 个表面75上的具有大于10密耳的通道深度270和272的通道76。这 时,双极板44的厚度280小于20密耳。在另一实施例中,本发明的 双极板44包括在板44的每个表面上的大于20密耳的通道深度270 和272的通道76。这时,双极板44的厚度280小于40密耳。板44的表面75上的平台区域274代表和量化在相对表面75a和 75b上通道76a和76b之间的^f黄向偏移量。平台表面区域274的平面区 域跨越双极板44的相对表面之间的板44的厚度。当双极板44在燃料 电池堆60中层叠时,如图4B和2A所示,双极板44的相对表面上的 相对的通道76 (例如通道76c和76d)交错,使得它们不会交叠。这允许相邻双极板44的相对表面上的平台表面区域274在膜电极组件层 62的相对侧面至少部分的交叠。通道宽度277为通道76相对于板44的平面宽度。在一个实施例中, 横向偏移量274 (A)相对于通道宽度277 (B)的比例与电池堆60的 传导率成正比。在某些时候,A/B与最大电流密度成反比。A/B比例位 于大约1/10到大约3之间对于很多用途来说是合适的。大约1/2的A/B 比例也是可以接受的。图3A的双极板44所示为传统的、非交错的通道76,其中通道基 本成一直线。图3A为了示意而夸大了膜电极组件层62的厚度,实际 上图3A的厚度常常是最小的(小于1毫米),并且通常压缩相邻双极 板44的通道76。例如,膜电极组件层62可包含一个或多个柔顺碳层 作为气体扩散层122和124。由于由螺栓80施加在电池堆60的层上的 压力会超过100psi,膜电极组件层会被容易地压入通道76中、被压缩、 挤压和被损坏。相反,图4B中在相邻双极板44c和44d上的平台表面区域274c 和274d在板44表面的一个或多个侧面方向91上至少部分的重叠。这 提供了在板44c和44d之间膜电极组件62共有的接触侧面表面93。 这个共有的表面增加了相邻板44之间的接触的表面积,允许共同进行 机械支撑并减小了双极板44c和44d之间的压力。这样减小了膜电极 组件层62上的局部应力。在一个实施例中,共有的侧部表面93包括位于板44c上的通道76c 和最近的在板44d上的通道76d之间的双极板44c的表面积的至少一 半。在另一实施例中,共有的侧部表面93包括位于板44c上两相邻通 道76之间的双极板44c的表面积的至少百分之十。5、流动緩沖器本发明还提供这样的双极板,其包括流动緩冲器来改善反应气体的 传送和反应产物的除去。图2E所示为根据本发明一个实施例的在燃料 电池中用于改善气体流动的流动緩冲器150。板44包括被分成四组通 道76e-76i的通道场72。每组通道包括多个基本直的并基本平行的通道76。双极板包括四个緩沖器150a-d。流动緩冲器150a用于从四个从氧 气进气歧管106接收氧气的歧管通道76e接收氧气。歧管通道76e在 流动緩冲器150a和氧气歧管106之间提供气体流通。流动緩冲器150a 也用于向横跨板44的宽度的五个通道76f输出氧气,并在流动緩冲器 150a和流动緩冲器150b之间提供气体流通。流动緩冲器150b用于从 五个通道76f接收氧气并向五个通道76g输出氧气(经由通道76f中 比通道76g中高的压力)。流动緩冲器150c用于从五个通道76g接收 氧气并向五个通道76h输出氧气。流动緩冲器150d用于从五个通道76h 接收氧气并向三个通道76i输出氧气,其向输出歧管108提供氧气。由于双极板44阴极侧的每个通道76也收集电化学反应产生的水, 图2E所示的每个通道76也用于收集废气产物。由此流动緩冲器150 也促进从膜电极组件62除去副产物。另外,虽然相对于双极板44的 阴极侧描述了流动緩沖器150a-d,可以理解的是双极板44的相对的侧 面也可以包括一个或多个緩冲器150,来改善阳极侧的气体流动和氩气 的传输。流动緩冲器15 0提供通道76之间用于氧气流动的共有的存储区域, 并向每个通道场72提供更加稳定的气体流动。如果个别的通道76被 阻塞或者遇到压力扰动或波动,下游緩沖器150使由压力扰动造成的 对下游的干扰最小化。下游150c通过允许在向緩冲器150c提供气体 通道组76g中的四个其它的通道76向全部五个通道提供气体,来消除 在通道组76g中的个别通道76中的压力变化。传统的, 一个通道连续 的横过具有多处弯曲的板的一大部分并用于一个膜电极组件的大部 分。当被阻塞时,这个连续通道的全部下游部分都被影响,导致膜电 极组件的大部分缺少气体传输及其功能(尤其是如果阻塞很早地发生 时)。相反的,如果通道组76g中的一个通道76被阻塞或者被改变, 在流动緩冲器150c中累积的气体防止局部扰动影响向板44的其余部 分的气体供给。流动緩冲器150c具有一定的容留,其在向通道组76f 中的通道76输出氧气前,降低被阻塞的通道76和通道组76g中其它 通道之间的压力差。在一个实施例中,流动緩冲器具有一个单独的流动通道的IO倍的容量。对于具有与流动通道76相同深度的流4&緩冲 器150,流动緩冲器则可包括单个流动通道IO倍的表面积。当流动緩 冲器150和流动通道76具有相同的深度时,也可以使用通道76厚度 (d)与緩沖器厚度(D)之间的比例。从大约1/2到大约1/20的厚度 比例(d/D)对于一些用途来说是合适的。另外,上游緩沖器也有助于克J3良在通道中的压力扰动或波动,通过 根据压力变化被动的向其它通道供应气体。在前面的例子中,如果通 道组76g中通道76中的一个被阻塞或者被改变,緩冲器150b由于上 游的阻塞而遇到压力增加,使气体向下进入通道组76g中的其它四个 通道76。尽管存在阻塞,但是緩冲器150c仍然处于基本相同的压力下。 通过使局部压力扰动的影响最小化,緩冲器150由此平衡了压力的 分配,并降低了双极板44活性区域的压力变化。这提供了燃料电池20 的性能。虽然图2E所示的双极板44包括四个流动緩冲器150,可以理 解的是双极板44根据通道场72的设计可包括更多或更少的緩冲器 150。在一个实施例中,双极板44包括1个到10个緩沖器150。6、热管理本发明还改善了燃料电池的热管理。为了达到这个目的,双极板可 包括一个或多个热量传输附件。图2E所示为包括一个热量传输附件46 的双极板44的示意图。图3A所示为根据本发明一个实施例在每个双 极板44上包括一个热量传输附件46的燃料电池堆60的截面示意图。 图3B所示为根据本发明一个实施例的热量传输附件46和板44的截面 示意图。图2A所示为在每个双极板44上包括两个热量传输附件46的 燃料电池堆60的截面示意图。热量传输附件46允许对燃料电池堆60的内部进行外部热管理。更 具体而言,附件46可用于加热或冷却燃料电池堆60的内部,例如每 个双极板44和任何相邻的膜电极组件层62。热量传输附件46在侧部 排列于通道场72的外部。侧部排列是指相对于板44的平面表面的位 置或排列。平面坐标例如在板44的表面上的直线坐标91a和91b (图 2E)有助于表征板44的平面排列。由此,通道场72外部的侧部排列是指根据平面坐标91a和91b设置于通道场72的外部的热量传输附件 46。在一个实施例中,附件46被^殳置在双极板44的外部。双极板44 的外部包括与包含在板44内的基板的侧面或边缘邻近的板44的任何 部分。双极板44的外部一般不包括通道场72。对于图2E所示的实施 例,热量传输附件46基本横跨板44的不包括进气歧管和排气歧管 102-108的一侧。对于图2A所示的实施例,板4包括两个热量传输附 件46a和46b,其基本横跨板44不包括气体歧管的两侧。在外围设置热量传输附件46允许在板44的内部和在外部设置的附 件46之间经由基板89进行热量的传输。热传导是指相互接触的或者 形成为一个整体的本体之间的热量传输。由此,在板44的外部与双极 板44的中心部分之间进行的热量的侧部传导经由基板89进行。在一 个实施例中,热量传输附件46与基板89的材料在板44中形成为一体。 这时整体是指附件46和板44之间的材料的连续性。 一体形成的附件 46可与板44 一起通过对一个金属片进行一次模制、冲压、机械加工或 MEMs处理形成。 一体形成的附件46和板44允许在板44的内部和热量 传输附件46之间经由基板89进行热传导和热量传输。在另一实施例 中,附件46包含不同于用于附在板44上的基板89的材料,在两种附 接的材料之间的连接处发生导热连通和热量传输。热量可以传到热量传输附件46或者构成热量传输附件46。换句话 说,附件46可用作散热设备或者热源。由此,热量传输附件46可用 作散热设备来冷却双极板44或膜电极组件62的内部。燃料电池20 利用冷却介质从附件46除去热量。另一种可选方式是,热量传输附件 46可用作热源来向双极板44或膜电极组件62的内部提供热量。这时, 在附件46上设置催化剂以在加热介质存在时产生热量。对于冷却,热量传输附件46允许从板44的内部向外部设置的附件 46整体地传导热量。在氢气消耗和电功率产生期间,在每个膜电极组 件62中地电化学反应产生热量。由于双极板44的内部与膜电极组件 62接触,双极板44上的热量传输附件46由此冷却与板相邻的膜电极 组件62,经由a)从膜电极组件62向双极板44传导热量和b)从与 膜电极组件62相接触的双极板44的中心部分向包括附件46的板44的外部进行外部热量传导和热量传输。这时,热量传输附件46从位于 板W的一个表面75上的第一通道场72和板44的另一相对表面75上 的第二通道场72之间的基板89散热,在与板44的表面75相平行的 方向上向热量传输附件传热。当燃料电池堆60包括多个膜电极组件层 62时,以这种方式经过每个双极板44的侧部热传导,提供在燃料电池 堆60中多个膜电极组件层62之间的层间冷却-燃料电池堆60的中心 部分包括这些层。燃料电池20利用流经热量传输附件46的冷却介质。该冷却介质从 附件46接收和除去热量。在燃料电池堆60中产生的热量由此经过双 极板44传导到附件46,并经由在附件46和冷却介质之间传送热量加 热冷却介质。空气适于用作该冷却介质。如图3B所示,热量传输附件46可具有小于板44两相对表面75 之间厚度196的厚度194。在一个实施例中,厚度194小于大约厚度 196的一半。在另一实施例中,厚度194大约是厚度196的三分之一。 在燃料电池堆60中相邻的双极板44上,附件的被减小的厚度构成通 道190 (见图3A)。电池堆中的多个相邻的双极板44和附件46构成 多个通道190。每个通道190允许冷却介质流过并经过热量传输附件 46。在一个实施例中,燃料电池堆60包括机械壳体197,其封闭并保 护电池堆60 (见图5)。壳体197的壁199也通过在相邻附件46和壁 197之间形成管道提供热介质的附加的管道。冷却介质可为气体或液体。通过高导热性双极板44得到的热量传 输允许空气用作冷却介质来冷却热量传输附件46和电池堆60。例如, 一个直流风机可以附加在机械壳体的外表面上。该风机使空气经过机 械壳体上的孔进入,经过通道190冷却热量传输附件46和燃料电池堆 60,在机械壳体上的排气孔或排气端流出。提高或降低冷却风机的速 度可调节从电池堆60除去的热量的量和电池堆60的操作温度。在空 气-冷却的燃料电池堆60—个实施例中,冷却风机速度相对于所需温 度的设定点增加或降低实际的阴极排出温度。经过双极板44的热传导和每个双极板44中的高导热性提供了电池 堆60的改善的热一致性。在一个实施例中,每个双极板的导热性大于lV/mK。举例来说,这个范围内的高导热性使得在每个板44之间最大 为小于2下的温度梯度。经过双极板44的热传导由此增加了电池堆60 的热稳定性,其提高了燃料电池20的性能和寿命。热量传输附件46 也使得电池堆60相对于利用传统的在双极板44之间设置间隔除热层 的方法得到的燃料电池堆尺寸更小。对于加热,热量传输附件46允许从外部设置的附件46向板44的 内部整体传输热量。消耗氢气并产生电功率的电化学反应一般需要较 高的温度。通常需要大于150摄氏度的起始温度。在一个实施例中,燃料电池包含设置在热量传输附件46内的或者 与其邻近的催化剂192。当加热介质流经催化剂192时产生热量。典型 的,催化剂192和加热介质利用放热化学反应来产生热。热量传输附 件46和板44接着将热量传输到例如燃料电池堆60中,以加热内部膜 电极组件层62。例如,催化剂192可包含铂,加热介质包括供应到燃 料处理器15的烃燃料源17 (图1A )。在一个实施例中,燃料源17在 进入燃料电池20之前,被加热,并作为气体进入燃料电池20。与前述 的冷却介质类似,设置在壁199之一上的风机除去壳体197中的气态 加热介质。在一个具体的实施例中,用于与催化剂192反应的烃燃料 源17来自燃料处理器15的重整废气。这有利地预热了进入燃料电池 20之前的燃料源17,并在被燃料处理器15利用之后,利用了或燃烧 了残留在重整废气中的任何燃料。另一种可选方式是,燃料电池20包 括分离的烃燃料源17供给,其直接向燃料电池20供应烃燃料源17, 用于加热和与催化剂192反应。其它合适的催化剂192包括钯、铂/钯 混合物、铁、钌及其组合。这些中的每一种将与烃燃料源17反应产生 热。其它合适的热催化剂192包括例如氧化铝上的铂和氧化铝上的柏/ 钯。如图2A所示,催化剂192被设置在每个热量传输附件46b上并与 其接触。这时,加热介质经过每个附件46并与催化剂192反应。这样 产生热,热经由冷却附件46的热传导吸收。冲洗式涂覆可用于在每个 附件46上设置催化剂。陶瓷载体也可以用于在附件46上键合催化剂 192。图5A所示为两个例子,其中热催化剂192被设置接近于热量传输 附件46。这时的接近是指相对接近热量传输附件46,以使得由催化剂 192产生的热通过传导或者对流和/或辐射传到附件46。如图5A所示, 燃料电池20包含壁195,其包含催化剂192。壁195与端板64接触(例 如经由诸如kapton粘结带)并形成用于容纳催化剂192和每个附件46 的空间。催化剂颗粒192则被设置在壁195上。该壁195允许加热介 质经过并与催化剂192反应。图5所示为经过壁195的气体流动的侧 视图。在混合气体流过热量传输附件46之前,空气和燃料进入混合室 191。在与催化剂192反应后接着从一个或多个出口端排出气体。如图2A所示,燃料电池20包括机械壳体197,其封闭和保护电池 堆60。壳体197的壁199和附件46组合成管道193。内部-附件管道 193允许a )催化剂192装入管道193和b )允许加热介质流经管道193 并经过催化剂192。这时,催化剂192被装入管道93,其装填密度是 足够松散的以允许气体经过而不会遇到额外的阻力。然后利用一个风 机向管道193提供加热介质。对于基于催化剂的加热,热量接着a)从催化剂192传输到附件46, b )经热传导从包括热量传输附件46的板的侧部向双极板44与膜电极 组件层62接触的中心部分,从侧部流经双极板44,和c)从双极板44 向膜电极组件层62传导。当燃料电池堆60包括多个膜电极组件层62 时,经过每个双极板44的侧部加热提供了燃料电池堆60种多个膜电 极组件层62之间的内层加热,其加速了燃料电池的预热。图2A所示的双极板44包括在每个侧面上的热量传输附件46。这 时, 一组热量传输附件46a用于冷却,而另一组热量传输附件46b用 于加热。虽然图5A所示的热量传输附件46具有经由催化剂192的两 种不同类型的加热(即,通过进入管道193和存储在壁195上),可 以理解的是燃料电池20不必包括热量传输附件46的多种方法,而可 以包括前述技术之一。此外,虽然图2A和图3A所示的双极板44所示 为只具有一个或两个设置在电池堆60侧面上的热量传输附件46的板 44,但是附件46的排列可以根据其它特殊的设计进行变化,以影响和 改善燃料电池堆60的热量消散和热管理。例如,在一个板44上可以使用两个以上的热量传输附件46来增强板44内部和外部之间的热量 传输。此外,附件46不需要如所示的那样横跨板的一个侧面,也可以 根据加热的流体如何通过壳体197来进行设计。7、改善的板间密封本发明还改善了相邻的双极板44的密封。如同上文中对于图2E 的描述,板44包括密封部分87,其在每个板44的外围包围通道场72。 密封部分87在板44的外围包围着通道场72并包围着歧管102-108。 密封部分87密封膜电极组件层62和歧管102-108。当要密封的匹配表面基本为平面并且不具有与平面或配套的安装 相互交叉的结构时,密封良好。对于图2E所示的双极板44,从歧管 102延伸出来朝向緩冲器150a的歧管通道76e防止表面75a的连续部 分在歧管102周围密封和通道场72周围密封。图7A所示为根据本发明的一个实施例在板的密封部分87上包括垫 圏平台400的双极板44的示意图。图7B所示为400a的近视图。垫圏 平台400a-d都祐:设置在板44p的上表面75a上并在表面75a上在外围 包围歧管。在板44的下表面上也具有类似的平台。这里所述的术语, 垫圏平台400是指双极板表面75的在平面75上具有连续平面通道的 一部分。 一般的,该垫圏平台400通道在歧管的整个外围包围歧管, 由此达到完全的外周密封。例如,垫圏平台400a在板44p的表面75a 上完全地包围氢进气歧管102的平面外周,垫圏平台400b在板44p的 表面75a上完全地包围阴极废气歧管108的平面外周,垫圈平台400c 在板44p的表面75a上完全地包围阳极废气歧管104的平面外周,垫 圏平台400d在板44p的表面75a上完全地包围氧进气歧管106的平面外周,当双极板44p和44q彼此相邻的堆叠在一起时,每个平台400提供 连续的和不间断的在板44p和44q的相对表面之间的平面接触。如图 7C所示,垫圈406祐:设置在相邻板44p和44q的平台400之间。来自 螺栓82和端板64 (图2A)的压力接着在板44之间和连续的平台400 之间进行压缩。垫圈406的材料可包括选自下面的高温和化学稳定材料硅酮、聚(四氟乙烯)(Teflon PTFE )、聚(全氟烷氧基)(Teflon PFA)、氟化乙烯丙烯(FEP)、聚偏二氟乙烯(PVDF)、聚硅氧烷(硅 橡胶/密封剂)、聚酰亚胺(Kapton )、聚酰胺(尼龙)、聚酯(Mylar )、 环氧、聚苯醚(PP0)、磺化聚苯醚、聚苯乙烯氧化物、聚曱基丙烯酸 酯、聚醚醚酮(PEEK)及其共聚物和混合物。垫圈406可以通过丝网 印刷来安装平台400的非对称的几何结构。该垫圈材料也可以由沖切 垫圏膜、直接丝网印刷、喷涂、铸造或者高性能垫圈溶液的过成型进 行力口工。
如上所述,在密封部分87处的基板89也可以相对于板44中心部 分的基板89升高,并且在板44之间不使用垫圏。这时,当由螺栓82 和底板64压在一起时,相邻板44的平台400起密封作用,而不需要 设置垫圈。
为了形成平台400,每个板44包括歧管通道402,其a)开口朝向 歧管,b)从上表面75a到下表面75b跨越双极板44的基板,c)用于 在歧管和通道场之间传送气体。图7D所示为双极板44p和通过板44p 的歧管通道402a的44q的侧视图。图7E所示为双极板44p和通过板 44q的歧管通道402d的44q的侧视图。如图中所示,在上表面75a歧 管通道402a开口进入歧管104,向下转过90度从上表面75a延伸到下 表面75b,并沿着下表面到达流动緩冲器150或者下表面75b上的通道 场中的通道。类似的,在板44q的上表面75a歧管通道402b开口进入 歧管104,向下转过90度从上表面75a延伸到下表面75b,并沿着下 表面到达下表面75b上的通道场中的通道76。由此,每个歧管通道402 在一个表面上开始气体流动,将气体送至板44的另一个表面。虽然图 7E和7F所示的歧管402包括表面75之间的正交维数,但是也可以具 有其它的结构,例如圆角或非90度转角。
通过使通道402经过板,在歧管和板44的两个表面上的通道场之 间形成平面空间。该平面空间构成在每个歧管周围的连续的平台400 表面。由此垫圏平台400避免了与每个表面75上的歧管通道402相互 交叉。相反的,歧管通道402避免了在形成该歧管通道的板44的两个 表面上与垫圈平台400相互交叉。如图中所示,每个歧管向三个歧管通道402传送气体。通道402 在相邻的板44p和44q之间在侧部互相交错以防止当板44p和44q在 电池堆60中彼此相邻时,相邻板上的通道发生交叠。图7C所示为双 极板44p和44q的前部的截面视图,其中示出了在板44p和44q上歧 管104周围歧管通道402a-f的交错。
8、预弯曲端板
回到图2A,膜电极组件层62的操作需要压力。电池堆60利用螺 栓82a和82b在顶部端板和底部端板64a和64b上压缩来进行施压。 紧固螺栓82a和82b增加了由端板64在膜电极组件层62的平面区域 提供的压力。螺栓82由此使得电池堆60在端板64的压缩之下固定在 一起。利用扁平的端板64经常会导致燃料电池堆60中在膜电极组件 层62上的压力分配不平均。更具体而言,在螺栓82施加局部压力处 周围或者附近的电池堆60中压力常常大于电池堆中心平面部分的压 力。这种压力变化会影响燃料电池20的性能。为了降低电池堆60中 的压力变化,图6示出根据本发明的一个实施例的适用于燃料电池20 中的预弯曲端板64a和64b。
顶部端板和底部端板64a和64b之一在被组装到燃料电池20中之 前4皮赋予一定的形状,当顶部端板64a和底部端板64b ^皮固定在一起 时,其增加施加在膜电极组件层62的中心平面部分的压力。"预弯曲" 端板,这里所述的术语是指在组装之前被赋予一定形状的端板64,在 燃料电池堆69中顶部端板64a和底部端板64b被固定在一起时,其基 本变平。预弯曲端板64在組装到入口端持大60中之前被弄弯以使得 电池堆60的组件具有由端板64施加的压力来增加电池堆60的中心平 面区域的压力,在螺栓82相对于与螺栓82较近的膜电极组件62的平 面部分之间。这样降低了燃料电池堆60中贯穿膜电极组件62的平面 压力变化。
如图中所示,预弯曲端板64a和64b在组装前具有一凸曲率,当顶 部端板和底部端板64#_固定在一起时,凸曲率减小。对于图6所示的 一维凸曲线,螺栓82穿过每个端板64相对侧面上的孔。通过加大螺栓82施加在中心平面上的血力,该曲率改变在预弯曲端板64的每个 端部的局部压力。起初,预弯曲端板64的形状造成燃料电池堆60中 每个膜电极组件62的中心平面部分的压力增大。随着螺栓82的紧固, 板64的凸曲率减小。另外,凸曲率成比例的较小了从每个螺栓82到 膜电极组件层62的中心平面的压力。当整个螺栓82完全紧固时,每 个膜电极组件层62的中心平面部分的压力平衡膜电极组件62与螺栓 82邻近的部分的压力。这样减小了膜电极组件层62和电池堆60中平 面压力的变化。
除膜电极组件层62中的平面压力变化减小之外,在燃料电池堆60 中组装预弯曲端板64导致产生如图2A中所示的电池堆60。预弯曲端 板64由此将双极板44和膜电极组件层62保持在一起,并在每个双极 板44的平面区域上施加压力,且每个膜电极组件层62具有减小的平 面压力变化。
一个或两个端板64a和64b可以被预弯曲或者在组装前成形。对于 弯曲的板,每个端板64的弯曲度用于使得燃料电池堆6G的膜电极组 件层62中的平面压力变化最小化。端板64的厚度、端板64的材料以 及所需的施加在电池堆60上的压力影响每个端板64的弯曲度。在一 个实施例中,端板具有从大约1/2mm到大约3mm的厚度。端板64可包 含合适的刚性材料,例如不锈钢、钛、铝、复合材料或者陶瓷。在一 个实施例中,每个膜电极组件62利用从大约30psi到大约400psi的 操作压力。大约100psi的操作压力也适用于一些电池堆60的设计。
9、结论
虽然参照多个实施例对本发明进行了描述,但是为了简化目的而在 本说明书中省略的多种替换、变换和等同方式也落在本发明的范围内。 例如,虽然本发明的一些实施例中具有预弯曲端板64,并不是本发明 的所有实施例都需要包括预弯曲端板64,而是也可以利用传统的平面 的端板。此外,虽然本发明的一些实施例中具有用于平衡气体分配的 一个或多个流动緩沖器,但是包括热量传输附件的双极板也可以不需 要流动緩冲器。因此,本发明的范围应当参照所附的权利要求书进行限定。
权利要求
1、一种用于燃料电池的双极板,所述双极板包括基板;在基板的第一表面上的第一通道场;在基板的第二表面上的第二通道场,第一通道场包括用于分配用在燃料电池中的第一气体的第一组通道,第二通道场包括用于分配用在燃料电池中的第二气体的第二组通道,被包括在所述第一通道场中的通道具有重叠通道深度,所述重叠通道深度延伸经过用于被包括在第二通道场中的通道的深度;在所述第一表面上的第一歧管构造为输送第一气体到第一通道场或者接收来自第一通道场的第一气体;通向在第二表面上的第一歧管的第一歧管通道从第一表面到第二表面穿过所述基体,并且被构造为在所述歧管和所述第一通道场之间连通第一气体;在第二表面上的第二歧管构造为输送第二气体到所述第二通道场或者接收来自所述第二通道场的第二气体;通向在第一表面上的第二歧管的第二歧管通道从第二表面到第一表面穿过所述基体,并且被构造为在所述第二歧管和所述第二通道场之间连通第二气体;第一流动缓冲器,其形成为在位于所述第一表面上的所述基体中的凹槽,并且构造为接收来自在第一组通道中的第一通道的第一气体的第一气体流动和来自在第一组通道中的第二通道的第一气体的第二气体流动,并且构造为将在第一组通道中的第一气体的第一和第二气体流动输出到在第一组通道中的第三通道,所述第一流体缓冲器构造为在输出第一组通道中的第一气体的第一和第二气体流动到第一组通道中的第三通道之前降低在第一组通道中的第一气体的所述第一和第二气体流动之间的压力差;第二流动缓冲器,其形成为在位于所述第二表面上的所述基体中的凹槽,并且构造为接收来自在第二组通道中的第一通道的第二气体的第一气体流动和来自在第二组通道中的第二通道的第二气体的第二气体流动,并且构造为将在第二组通道中的第二气体的第一和第二气体流动输出到在第二组通道中的第三通道,所述第二流体缓冲器构造为在输出第二组通道中的第二气体的第一和第二气体流动到第二组通道中的第三通道之前降低在第二组通道中的第二气体的所述第一和第二气体流动之间的压力差;以及与基板导热连通且设置在第一通道场外部的热量传输附件。
2、 根据权利要求1所述的双极板,其中热量传输附件用于在与 第一表面平行的方向上,从第一通道场和第二通道场之间的基板向热 量传输附件散热。
3、 根据权利要求1所述的双极板,其中热量传输附件的厚度比第一表面和第二表面之间的基板的厚度小。
4、 根据权利要求3所述的双极板,其中热量传输附件厚度小于第 一表面和第二表面之间的基板的厚度的一半。
5、 根据权利要求1所述的双极板,其中热量传输附件包含与基板 相同的材料。
6、 根据权利要求5所述的双极板,其中热量传输附件与基板成为 一体。
7、 根据权利要求1所述的双极板,其中热量传输附件设置在该双 极板的侧面或边缘。
8、 根据权利要求1所述的双极板,其中在第一表面上第一通道场 形成在基板内,使得第一通道场存在于基板的表面之下。
9、 根据权利要求1所述的双极板,其中基板包含金属。
10、 根据权利要求9所述的双极板,其中每个双极板包含金涂层。
11、 根据权利要求1所述的双极板,其中热量传输附件横跨该板的 不包括进气或排气歧管的侧面。
12、 根据权利要求1所述的双极板,其中所述基板具有大于1W/mK 的热导率。
13、 根据权利要求1所述的双极板,其中双极板包含减弱基板腐蚀的涂层。
14、 一种用于产生电能的燃料电池,所述燃料电池包括 a)—组双极板,燃料电池堆中的每个双极板包含i) 设置在该双极板的第一表面上的并包括第一组用于分配氢气 的通道的第一通道场,ii) 设置在该双极板的第二表面上并包括第二组用于分配氧气的 通道的第二通道场;和被包括在所述笫一通道场中的通道具有重叠通道深度,所述重叠通 道深度延伸经过用于被包括在第二通道场中的通道的深度;iii) 在所述第一表面上的第一歧管构造为输送氢到第一通道场或 者接收来自第一通道场的氢;iv) 通向在第二表面上的第一歧管的第一歧管通道从第一表面到第 二表面穿过所述基体,并且被构造为在所述歧管和所述第一通道场之 间连通氢;v) 在第二表面上的第二歧管构造为输送氧到所述第二通道场或者 接收来自所述第二通道场的氧;vi) 通向在第一表面上的第二歧管的第二歧管通道从第二表面到第 一表面穿过所述基体,并且被构造为在所述第二歧管和所述第二通道 场之间连通氧;vii) 第一流动緩沖器,其形成为在位于所述第一表面上的所述基体 中的凹槽,并且构造为接收来自在第一组通道中的第一通道的氢的第 一气体流动和来自在第一组通道中的第二通道的氢的第二气体流动, 并且构造为将在第一组通道中的氢的第一和第二气体流动输出到在第 一组通道中的第三通道,所述第一流体緩冲器构造为在输出第一組通 道中的氢的第一和第二气体流动到第一组通道中的第三通道之前降低 在第一组通道中的氢的所述第一和第二气体流动之间的压力差;viii)第二流动緩冲器,其形成为在位于所述第二表面上的所述 基体中的凹槽,并且构造为接收来自在第二组通道中的第一通道的氧 的第一气体流动和来自在第二组通道中的第二通道的氧的第二气体流 动,并且构造为将在第二组通道中的氧的第一和第二气体流动输出到在第二组通道中的第三通道,斜迷第二流体緩沖器构造为在输出第二 组通道中的氧的第一和第二气体流动到第二组通道中的第三通道之前降低在第二组通道中的氧的所述第一和第二气体流动之间的压力差; 以及ix)设置在第一通道场外部的、与双极板的基板导热连通的热量 传输附件;以及b)设置在两个双极板之间的膜电极组件,该膜电极组件包括氩催 化剂、氧催化剂以及将氢催化剂与氧催化剂电分离的离子传导膜。
15、 根据权利要求14所述的燃料电池,其中双极板包括单个的板, 并且第一通道场和第二通道场被设置在该单个的板的相对的表面上。
16、 根据权利要求15所述的燃料电池,其中热量传输附件用于在 与第一表面平行的方向上,从第一通道场和第二通道场之间的基板向 热量传输附件散热。
17、 根据权利要求15所述的燃料电池,其中热量传输附件的厚度 比第一表面和第二表面之间的基板的厚度小。
18、 根据权利要求14所述的燃料电池,其中双极板包括 包括第一表面的第一板;和 包括第二表面的第二板。
19、 根据权利要求14所述的燃料电池,其中在燃料电池堆中设置 相邻的双极板,以使得相邻双极板上的热量传输附件形成用于加热或冷却介质流过的通道。
20、 根据权利要求14所述的燃料电池,其中热量传输附件包含与基板相同的材料。
21、 根据权利要求20所述的燃料电池,其中热量传输附件与基板成为一体o
22、 根据权利要求14所述的燃料电池,其中热量传输附件被设置 在板的侧面。
23、 根据权利要求14所述的燃料电池,其中热量传输附件横跨该 双极板的不包括进气或排气歧管的侧面。
24、 根据权利要求14所述的燃料电池,其中所述基板具有大于1W/mK的热导率。
25、 根据权利要求24所述的燃料电池,其中基板包含金属。
26、 根据权利要求14所述的燃料电池,其中电池堆中的双极板包 含减弱基板腐蚀的涂层。
27、 根据权利要求14所述的燃料电池,其中电池堆中的双极板包 含增加双极板导电性的涂层。
28、 根据权利要求14所述的燃料电池,其中基板被涂覆导电的金 属合金、陶瓷合金或者聚合物材料。
29、 根据权利要求14所述的燃料电池,其中双极板具有小于100米 欧姆每平方厘米的平面电导率。
30、 根据权利要求14所述的燃料电池,其中第一通道场用于向包 括氢催化剂的膜电极组件中的气体分配层分配氢气。
31、 根据权利要求30所述的燃料电池,其中第二通道场用于向包括氧催化剂的膜电极组件中的气体分配层分配氧气。
32、 根据权利要求31所述的燃料电池,其中第一通道场中分配氧气的方向与第二通道场中分配氢气的方向相反。
33、 根据权利要求32所述的燃料电池,其中第一通道场分配氧气 的方向与包含氧催化剂的气体分配层的方向平行。
34、 根据权利要求14所述的燃料电池,其中燃料电池用于产生低 于200W的功率。
35、 根据权利要求14所述的燃料电池,其中所述组双极板中的第 一双极板和第二双极板各自包括不同的歧管设置。
36、 一种用于产生电能的燃料电池,该燃料电池包括 a)—组双极板,每个双极板包含i)基板,其具有设置在基板第一表面上的第一通道场和设置在基板第二表面上的笫二通道场,第一通道场包括第一组用于分配氧气的通道,第二通道场包括第二组用于分配氢气的通道,被包括在所述第一通道场中的通道具有重叠通道深度,所述重叠通道深度延伸经过用于被包括在第二通道场中的通道的深度;ii)在所述第一表面上的第一歧管构造为输送氧到第一通道场或者 接收来自第一通道场的氧;iii) 通向在第二表面上的第一歧管的第一歧管通道从第一表面到 第二表面穿过所述基体,并且被构造为在所述歧管和所述笫一通道场之间连通氧;iv) 在第二表面上的第二歧管构造为输送氢到所述第二通道场或者 接收来自所述第二通道场的氢;v) 通向在笫一表面上的第二歧管的第二歧管通道从第二表面到第 一表面穿过所述基体,并且被构造为在所述第二歧管和所述第二通道 场之间连通氢;,vi) 第一流动緩冲器,其形成为在位于所述第一表面上的所述基体 中的凹槽,并且构造为接收来自在第一组通道中的第一通道的氧的第 一气体流动和来自在笫一组通道中的第二通道的氧的第二气体流动, 并且构造为将在第一组通道中的氧的第一和第二气体流动输出到在第 一组通道中的第三通道,所述第 一流体緩冲器构造为在输出第 一组通 道中的氧的第一和第二气体流动到第一组通道中的笫三通道之前降低 在第一组通道中的氧的所述第一和笫二气体流动之间的压力差;vii) 第二流动緩沖器,其形成为在位于所述第二表面上的所述基体 中的凹槽,并且构造为接收来自在第二组通道中的第一通道的氢的第 一气体流动和来自在第二组通道中的第二通道的氢的第二气体流动, 并且构造为将在第二组通道中的氢的第一和第二气体流动输出到在第 二组通道中的第三通道,所述第二流体緩冲器构造为在输出第二组通 道中的氢的第一和第二气体流动到第二组通道中的第三通道之前降低 在第二组通道中的氢的所述第一和笫二气体流动之间的压力差;以及viii)与基板导热连通的、设置在第一通道场外部的热量传输附件; 以及b)设置在两个双极板之间的膜电极组件,该膜电极组件包括氢催 化剂、氧催化剂以及将氢催化剂与氧催化剂电分离的离子传导膜。
37、 根据权利要求36所述的燃料电池,其中热量传输附件用于在 与第一表面平行的方向上,从第一通道场和第二通道场之间的基板向 热量传输附件散热。
38、 根据权利要求36所述的燃料电池,其中热量传输附件的厚度比第一表面和第二表面之间的基板的厚度小。
39、 根据权利要求36所述的燃料电池,其中在燃料电池堆中设置 相邻的双极板,以使得相邻双极板上的热量传输附件形成用于加热或 冷却介质流过的通道。
40、 根据权利要求36所述的燃料电池,其中热量传输附件与基板 成为一体。
41、 根据权利要求36所述的燃料电池,其中热量传输附件被设置 在板的侧面。
42、 根据权利要求36所述的燃料电池,其中热量传输附件横跨该 双极板的不包括进气或排气歧管的侧面。
43、 根据权利要求36所述的燃料电池,其中该基板具有大于1W/mK 的热导率。
44、 根据权利要求36所述的燃料电池,其中燃料电池包括10个以 上的膜电极组件层,并且组件的厚度小于l厘米。
45、 根据权利要求36所述的燃料电池,其中所述组双极板中的第一双极板和第二双极板各自包括不同的歧管设置。
46、 一种用于产生电能的燃料电池,该燃料电池包括a)—组双极板,燃料电池堆中的每个双极板包含i) 设置在该双极板的第一表面上的并包括第一组用于分配燃料 的通道的第一通道场,ii) 设置在该双极板的第二表面上并包括第二组用于分配氧化 剂的通道的第二通道场被包括在所述第一通道场中的通道具有重叠通 道深度,所述重叠通道深度延伸经过用于被包括在第二通道场中的通 道的深度;i i i)在所述第 一表面上的第 一歧管构造为输送燃料到第 一通道 场或者接收来自第一通道场的燃料;iv) 通向在第二表面上的第一歧管的第一歧管通道从第一表面 到第二表面穿过所述基体,并且被构造为在所述歧管和所述第一通道 场之间连通燃料;v) 在第二表面上的第二歧管构造为输送氧化剂到所述第二通道 场或者接收来自所述第二通道场的氧化剂;Vi)通向在第一表面上的第二歧管的第二歧管通道从第二表面到第一表面穿过所述基体,并且^L构造为在所述第二歧管和所述第二 通道场之间连通氧化剂;vii) 第一流动緩沖器,其形成为在位于所述第一表面上的所述 基体中的凹槽,并且构造为接收来自在第一组通道中的第一通道的燃 料的第一气体流动和来自在第一组通道中的第二通道的燃料的第二气 体流动,并且构造为将在第一组通道中的燃料的第一和第二气体流动 输出到在第一组通道中的第三通道,所述第一流体緩冲器构造为在输 出第一组通道中的燃料的第一和第二气体流动到第一组通道中的笫三 通道之前降低在第一组通道中的燃料的所述第一和第二气体流动之间 的压力差;viii) 第二流动緩冲器,其形成为在位于所述第二表面上的所述 基体中的凹槽,并且构造为接收来自在第二组通道中的第一通道的氧 化剂的第一气体流动和来自在第二组通道中的第二通道的氧化剂的第 二气体流动,并且构造为将在第二组通道中的氧化剂的第一和第二气 体流动输出到在第二组通道中的第三通道,所述第二流体緩冲器构造 为在输出第二组通道中的氧化剂的第一和第二气体流动到第二组通道 中的第三通道之前降低在第二组通道中的氧化剂的所述第 一和第二气 体流动之间的压力差;以及ix) )设置在第一通道场外部的、与双极板的基板导热连通的热 量传输附件;以及b)设置在两个双极板之间的膜电极组件,该膜电极组件包括阳极 催化剂、阴极催化剂以及将阳极催化剂与阴极催化剂电分离的离子传 导膜。
47、 根据权利要求46所述的燃料电池,其中所述双极板包括单个 的板,并且第一通道场和第二通道场被设置在该单个的板的相对的表 面上。
48、 根据权利要求46所述的燃料电池,其中所述燃料电池为直接 曱醇燃料电池,所述燃料包含液体曱醇。
49、 根据权利要求46所述的燃料电池,进一步包含与热量传输附件相接触或者与其邻近设置的当暴露于加热介质中时产生热量的热催 化剂。
全文摘要
本发明涉及燃料电池以及用于燃料电池的组件。热量传输附件用于改善燃料电池的热管理。每个热量传输附件被设置在双极板的外部,允许在双极板的内部和双极板与该附件邻近的外部之间进行热量传输。该热量传输附件可用于加热或冷却燃料电池堆的内部。由冷却该热量传输附件提供的改善的热管理也允许进行新式的向膜电极组件分配反应气体的通道场设计。流动缓冲器可以改善反应气体的传送和反应产物的去除。单个板的双极板还可以包括减小单个板厚度的交错的通道设计。
文档编号H01M8/04GK101593838SQ20091014540
公开日2009年12月2日 申请日期2004年6月25日 优先权日2003年6月27日
发明者I·W·凯 申请人:超电池公司