发光二极管及其制造方法

文档序号:6922577阅读:241来源:国知局
专利名称:发光二极管及其制造方法
技术领域
本发明涉及一种发光二极管及其制造方法,更具体地说,涉及这样一种 发光二极管及其制造方法,其中,使用超声波清洗设备通过研磨剂刮擦发光 二极管的表面来提高光出射效率。
背景技术
作为典型发光装置的发光二极管(LED)是具有N型半导体和P型半导 体彼此结合的结构的光电转换半导体装置,并被构造成通过电子和空穴的复 合来发光。
GaN基发光二极管作为上述发光二极管已经众所周知。GaN基发光二极 管是通过在由诸如蓝宝石或SiC的材料制成的基底上顺序地层压GaN基N型 半导体层、有源层(或发光层)和P型半导体层来制造。
近来,已经期望具有高效率的发光二极管来代替荧光灯,更具体地说, 白色发光二极管的效率正接近类似于传统焚光灯的效率的水平。然而,对于 进一步提高发光二极管的效率来说仍然存有余地,因此,更加需要持续提高效率。
为了提高发光二极管的效率,已经尝试了两种主要方法。第一种方法是 提高取决于晶体质量和外延层结构的内量子效率,第二种方法是提高光出射 效率,这是因为从发光二极管产生的所有光不全部出射到外面,而是在内部 损失了大量的光。

发明内容
技术问题
本发明是基于这些需要而构思的。本发明的目的是使用超声波清洗设备 由研磨剂刮擦发光二极管的表面来提高发光二极管的光出射效率。 技术方案
根据用于实现该目的的本发明的一方面,提供了一种制造发光二极管的方法,包括以下步骤在基底上形成化合物半导体层,所述化合物半导体层 包括下半导体层、有源层和上半导体层;通过用研磨剂摩擦所述基底来刮擦 所述基底的表面。
该方法还可以包括以下步骤在执行刮擦步骤之前,在所述上半导体层 上形成电子蜡层。
刮擦步骤包括以下步骤在超声波清洗设备中准备其中混合有所述研磨 剂的溶剂;将其上形成有所述化合物半导体层的所述基底放置在所述超声波 清洗设备中;在所述超声波清洗设备中施加超声波,从而通过激活所述研磨 剂来执行刮擦。
在放置所述基底的步骤中,优选地将所述基底在所述超声波清洗设备中 i文置为面向下。
可以使用直径为l|im至20pm的钻石作为所述研磨剂来执行该方法。 优选的是,所述钻石的直径为2|im至4jim。
可以4吏用直径为O.liim至11.5pm的SiC作为所述研磨剂来l丸行该方法。 优选的是,所述SiC的直径为O.lpm至3jam。
所述研磨剂可以包括钻石、SiC、 cBN (立方氮化硼)和DLC (类钻石 立方晶)中的至少一种。
该方法还可以包括以下步骤在所述化合物半导体层上形成至少一个电 极;在所述电极上形成绝缘层;通过用所述研磨剂摩擦所述绝缘层来刮擦所 述绝缘层的表面。
根据用于实现该目的的本发明的另一方面,提供了一种制造发光二极管 的方法,包括以下步骤在基底上形成化合物半导体层,所述化合物半导体 层包括下半导体层、有源层和上半导体层;在所述化合物半导体层上形成至 少一个电极;在所述电极上形成绝缘层;通过用研磨剂摩擦所述绝缘层来刮 擦所述绝缘层的表面。
所述研磨剂可以包括钻石、SiC、 cBN (立方氮化硼)和DLC (类钻石 立方晶)中的至少一种。
刮擦步骤可以包括以下步骤在超声波清洗设备中准备其中混合有所述 研磨剂的溶剂;将其上形成有所述绝缘层的所述基底放置在所述超声波清洗 设备中;在所述超声波清洗设备中施加超声波,从而通过激活所述研磨剂来 刮擦所述绝缘层。在放置所述基底的步骤中,可以将所述基底放置为使得所述绝缘层在所 述超声波清洗设备中面向下。
形成绝缘层的步骤包括以下步骤在其上形成有所述至少 一个电极的所
述化合物半导体层上形成所述绝缘层;执行图案化工艺,用于保留所述绝缘 层的上面形成有所述电极的部分,并去除所述绝缘层的其它部分,其中,将 所述电极图案化,以暴露所述电极的一部分。所述绝缘层可以包括Si02、 SiNx、 SiOx、 SiOxNy、 InSnOx和BaTiOx中的任何一种。
可以使用直径为2|im至4pm的钻石作为所述研磨剂来执行该方法。优 选的是,所述超声波的施加时间的范围为2分钟至4分钟。
根据用于实现该目的的本发明的又一方面,提供了一种发光二极管,包 括基底;化合物半导体层,所述化合物半导体层包括形成在基底上的下半 导体层、有源层和上半导体层,其中,所述基底具有不规则刮擦的表面。
所述发光二极管还可以包括至少一个电极,形成在所述化合物半导体 层上;绝缘层,形成在所述电极上,其中,所述绝缘层具有不规则刮擦的表 面。
根据用于实现该目的的本发明的又一方面,提供了一种发光二极管,包 括基底;化合物半导体层,所述化合物半导体层包括形成在所述基底上的 下半导体层、有源层和上半导体层;至少一个电极,形成在所述化合物半导 体层上;绝缘层,形成在所述电极上,其中,所述绝缘层具有不规则刮擦的 表面。所述绝缘层可以包括Si02、 SiNx、 SiOx、 SiOxNy、 InSnOx和BaTiOx中 的任何一种。所述绝缘层的被刮擦的表面可以形成有不平坦部分,每个不平 坦部分的尺寸为大于Onm且等于或小于100nm。
有益效果
根据本发明的实施例,使用超声波清洗设备和研磨剂来摩擦要刮擦的发 光二极管的表面,使得从有源层发射的光能够有效地出射到外面。因此,可
以提高发光二极管的光出射效率。
当刮擦蓝宝石基底的表面时,已成功地将发光强度最大化地提高了高达 35°/。。因为与刮擦之前相比,在刮擦之后,衍射范围内的不平坦部分被减少 了,从而变得平坦,所以已减小了朝向基底传播的光的光出射效率。此外, 因为从有源层发射的光与基底的不平坦部分碰撞,并朝向发光二极管的上表 面反射,所以提高了发光二极管的上部处的发光强度。此外,当刮擦形成在透明电极上的Si02绝缘层的表面时,已成功地将发
光强度最大化地提高了高达40%。在刮擦之后,形成尺寸范围为0nm至大约 50nm的多个不平坦部分,因此,导致发生瑞利散射。因此,提高了表面的光 出射效率,因而从有源层发射的光能够有效地出射,因此提高了发光二极管 的上侧处的发光强度。


图1是示出根据本发明实施例制造具有刮擦的基底的发光二极管的方法 的剖视图。
图2是示出根据本发明实施例制造发光二极管的方法的流程图。 图3是示出图2的制造方法的发光二极管的剖视图。 图4是用于执行图2的制造方法的超声波清洗设备的示意图。 图5是示出刮擦前后的电致发光(EL)特性的曲线图。 图6是示出刮擦前后的电流-电压(IV)特性的曲线图。 图7是在执行刮擦之前蓝宝石基底的AFM照片(在2frni范围内)。 图8是在执行刮擦之后蓝宝石基底的AFM照片(在2fim范围内)。 图9是在执行刮擦之前蓝宝石基底的AFM照片(在20pm范围内)。 图10是在执行刮擦之后蓝宝石基底的AFM照片(在20|im范围内)。 图11是示出研磨剂的粒径与发光强度之间的关系的曲线图。 图12是示出在使用SiC (0.25(im)执行刮擦达120分钟前后EL特性的 曲线图。
图13是示出在使用SiC ( 3(im)执行刮擦达120分钟前后EL特性的曲 线图。
图14是示出在使用SiC (11.5jim)执行刮擦达120分钟前后EL特性的
曲线图。
图15是根据粒径(0.25|im、 3pm和11.5pm)总结的实验结果的曲线图, 其中,利用这些粒径在已经参照图12至图14示出的实验条件下执行实验。
图16是在使用SiC (0.25(^m)执行刮〗察达120分钟之前蓝宝石基底的 AFM照片(在2pm范围内)。
图17是在使用SiC (0.25pm)执行刮擦达120分钟之后蓝宝石基底的 AFM照片(在2(mi范围内)。图18是在使用SiC (0.25pm)执行刮擦达120分钟之前蓝宝石基底的 AFM照片(在20)am范围内)。
图19是在使用SiC (0.25|im)执行刮擦达120分钟之后蓝宝石基底的 AFM照片(在20pm范围内)。
图20是示出在使用钻石(2(im至4pm )执行刮擦达10分钟前后EL特 性的曲线图。
图21是示出在使用钻石(2|im至4jim)执行刮擦达60分钟前后EL特 性的曲线图。
图22是示出在使用钻石(2)am至4|im)执行刮擦达120分钟前后EL
特性的曲线图。
图23是示出刮擦时间和发光强度之间的关系的曲线图。
图24是示出在使用SiC ( 0.25|im)执行刮^寮达150分钟前后在发光二极
管的上侧测量的EL特性的曲线图。
图25是示出在刮擦前后IV特性的曲线图。
图26是示出在刮擦前后IL特性的曲线图。
图27是示出在刮擦前后基底侧的IL特性的曲线图。
图28是示出根据本发明另 一实施例制造发光二极管的方法的剖视图,其
中,刮擦形成在电极上的绝缘层。
图29是制造在图28中示出的发光二极管的制造方法的流程图。
图30和图31是示出图29的制造方法的示图。
图32是示出在刮#~前后EL特性的曲线图。
图33是示出在刮擦前后IV特性的曲线图。
图34是示出在刮擦前后IL特性的曲线图。
图35是在2|im范围内的透明电极的AFM照片。
图36是在执行刮擦之前绝缘层的AFM照片(在2(im范围内)。
图37是在执行刮擦之后绝缘层的AFM照片(在2|im范围内)。
图38是在执行刮擦之前绝缘层的表面的AFM照片(在20(im范围内)。
图39是在执行刮擦之后绝缘层的表面的AFM照片(在20pm范围内)。
图40是示出刮擦时间和发光强度之间的关系的曲线图。
图41是示出在刮擦前后发光强度的角分布特性的曲线图。
图42是在执行刮擦之前绝缘层的AFM照片(在2!im范围内)。图43是在执行刮擦达3分钟之后绝缘层的AFM照片(在2|am范围内)。
图44是在执行刮擦达6分钟之后绝缘层的AFM照片(在2pm范围内)。
图45是在执行刮擦之前绝缘层的AFM照片(在20(im范围内)。
图46是在执行刮擦达3分钟之后绝缘层的AFM照片(在20(im范围内)。
图47是在执行刮擦达6分钟之后绝缘层的AFM照片(在2(Vm范围内)。
图48是示出根据对比示例的发光二极管的发光角特性的曲线图。
图49是示出根据对比示例的发光二极管的表面的照片。
具体实施例方式
最佳方式
在下文中,将参照附图详细描述本发明的实施例。提供以下实施例仅是 为了举例说明的目的,使本发明技术人员能够充分地理解本发明的精神。因 此,本发明不限于以下实施例,而可以用其它方式来实现。在附图中,为了 便于说明,会夸大元件的宽度、长度、厚度等。在整个说明书和附图中,相 同的标号指示相同的元件。
首先,将描述与发光二极管的光出射效率有关的光学原理。当执行刮擦 时,本发明的各个实施例可以通过这样的光学原理来提高光出射效率。
1、光的折射(Snell,sLaw (斯涅耳定律))
当光穿过折射率彼此不同的两种材料时,光如下被折射 sin 6^ — wB sin 9S
其中,nA是材料A的绝对折射率,nB是材料B的绝对折射率。
此外,当光以等于或大于预定角(即,阈值角)的角入射时,发生全反 射。全反射的阈值角如下表示
当使用斯涅耳定律讨论光出射时,表面的不平坦部分越深,光出射效率 的提高越多。然而,如果该不平坦部分的尺寸小于将发射的光的发光波长, 则光不受不平坦部分的影响,因而诸如折射和反射之类的现象不会发生。即, 如果可以通过刮擦将不平坦部分构造为具有等于或大于发光波长的深度,则 可以提高光出射效率。
2、光的散射(Rayleigh Scattering (瑞利散射))瑞利散射是由尺寸小于光的波长的颗粒引起的光散射。通常,瑞利散射 不仅发生在气体中,而且发生在透明液体或固体中。由于这种散射,已经被 全反射的光出射到外面,从而能够期望提高光出射效率。被散射的光的量取 决于颗粒的尺寸和光的波长,散射系数与波长的四次方成反比。瑞利散射的
散射系数ks可以如下表示
<formula>formula see original document page 11</formula>其中,n是颗粒的直径,d是颗粒数量,入是发光波长。
即,随着颗粒数量增多和发光波长变短,更积极地发生散射。然而,为 了产生瑞利散射,需要以下条件。
<formula>formula see original document page 11</formula>
其中,兀D是颗粒的直径,X是发光波长。
当a等于或小于0.4时,会发生瑞利散射。当a大于0.4时,会发生米氏 散射。如果在米氏散射中每个颗粒不是球形的,则不存在散射。因此,根据 本发明,米氏散射不适合进行刮擦。当发光波长为400nm时,产生瑞利散射 所需要的颗粒的最大直径为50nm。因此,随着被刮擦的不平坦部分变大(尺 寸等于或小于50nm),不平坦部分的数量变多,发光波长变短,进一步提高 了光出射效率。
的剖视图,示出了刮擦基底的情形。
参照图1,根据本发明实施例的发光二极管100具有位于基底110上的 半导体层120至140。基底IIO可以是绝缘或导电基底。基底IIO可以是由蓝 宝石(A1203 )、 SiC、 ZnO、 Si、 GaAs、 GaP、氧化铝锂(LiAl203 )、 BN、 A1N 或GaN制成的基底,但不限于此。根据将要形成在基底IIO上的半导体层的 材料,可以以不同方式选择基底110。此外,基底IIO可以是具有图案化的上 表面和/或下表面的基底。
基底110的下表面已经被刮擦。已经使用超声波清洗设备和研磨剂对基 底110的下表面进行了刮擦,稍后将对此加以描述。
半导体层120至140包括下半导体层120、位于下半导体层120的顶部 上的上半导体层140以及设置在下半导体层120和上半导体层140之间的有 源层130。这里,下半导体层120由n型半导体制成且上半导体层140由p型半导体制成,或者,下半导体层120由p型半导体制成且上半导体层140
由n型半导体制成。
下半导体层120、有源层130和上半导体层140可以由氮化镓基半导体 材料(即,(B, Al, In, Ga)N)制成。确定有源层130的组成元素和组成比例, 从而发射波长符合需求的光(例如,紫外线或蓝光)。下半导体层120和上半 导体层140由带隙大于有源层130的带隙的材料制成。
下半导体层120和/或上半导体层140可以被形成为具有单层或多层结 构,如图所示。此外,有源层130可以具有单量子阱结构或多量子阱结构。
同时,緩沖层(未示出)可以设置在半导体层120至140和基底110之 间。采用緩冲层是为了减轻基底IIO和将形成在基底IIO上的下半导体层120 之间的晶才各失配。
此外,透明电极150形成在上半导体层140上。透明电极150使得从有 源层130产生的光透射,并使得电流分散地供给到上半导体层140。同时, 电极焊盘可以形成在透明电极150上,布线(未示出)可以结合到电极焊盘。 同时,电极焊盘(未示出)可以形成在下半导体层120上。电极焊盘与下半 导体层120欧姆接触。另外,布线(未示出)可以与电极焊盘接触,从而电 连接到下半导体层120。
基底110的下表面被形成为具有粗糙的表面,使得从有源层130发射并 朝向基底IIO传播的光可以从粗糙表面反射,从而有效地穿过上半导体层140 出射。
图2是示出根据本发明优选实施例制造发光二极管的方法的流程图,图 3和图4是示出制造方法的示图。
参照图2和图3,准备基底110(S1)。例如,基底110可以是蓝宝石基 底或SiC基底。
然后,在基底IIO上形成下半导体层120、有源层130和上半导体层140 (S2 )。在上半导体层140上形成透明电极150 ( S3 )。在形成有透明电极150 的上半导体层140上形成电子蜡层160 ( S4 )。电子蜡层160用于防止在后面 执行刮擦时透明电极150和上半导体层140被刮擦。这样,完成了还未刮擦 的发光二极管100。
准备研磨剂(S5)。研磨剂由钻石、SiC、立方氮化硼(cBN)、类钻石立 方晶(diamond like cubic, DLC )和它们的混合物中的任何一种制成,这些材料的摩氏硬度等于或大于蓝宝石的摩氏(Mohs,)硬度(即,9)。准备将备好 的研磨剂混合到溶剂中。可以使用曱醇或乙醇作为溶剂。
准备超声波清洗设备300 ( S6 )。如图4所示,可以使用能够在声速、超 声波或兆频超声波区域产生超声波的任何超声波清洗设备作为超声波清洗设 备300。
将其中混合有研磨剂301的溶剂302放入超声波清洗设备300中,把将 要被刮擦的发光二极管100放置在超声波清洗设备300中,然后,产生超声 波,以激活研磨剂301 (S7)。此时,将要被刮擦的基底IIO在超声波清洗设 备300中被放置为面向下。在整个附图中,标号303指示容器,标号304指 示在容器中容纳的水。
当在超声波清洗设备300中产生超声波振动时,研磨剂301在超声波清 洗设备中被激活,从而摩擦基底110的下表面。与研磨剂301的摩擦使得基 底110的下表面^皮不失见则地磨掉,并被粗糙地刮擦,如图1所示。
根据研磨剂301的粒径和超声波清洗设备300的超声波产生时间,基底 表面的粗糙度和形状可以不受限制地改变。
然后,将已经形成在透明电极150和上半导体层140上的电子蜡层160 除去,将上半导体层140和有源层130部分地蚀刻掉,以部分地暴露下半导 体层120。在被暴露的下半导体层120上形成其它电极(未示出)。
然后,通过钻石或激光划线,将发光二极管IOO分成单个的发光二极管, 从而完成发光二极管的制造。
在下文中,将通过各个实验示例示出根据本发明实施例的改善性能的发 光二极管。
<实验1〉
使用钻石作为研磨剂来刮擦发光二极管的基底的下表面,然后,测量发 光二极管的发光强度在刮擦之后比刮擦之前提高了多少。 [实验条件]
-LED:蓝光(N1374) -曱醇10 cc
-钻石(尺寸为2(mi至4(im): 500mg
-刮擦时间150分钟
-超声波清洗设备的频率28 KHz[实验结果]
图5是示出在执行刮擦前后的EL特性的曲线图,而图6是示出在执行 刮擦前后的IV特性的曲线图。
参照图5,可以看出,与刮擦之前相比,在刮擦之后,发光强度提高了 大约30%。另外,对于不同的图案,可以从相同的测量获得基本相同的结果。
同时,参照图6,可以看出,IV特性在刮擦前后没有变化。IV特性在刮 擦前后不变化是因为在上半导体层上形成了电子蜡层,因此,在执行刮擦的 同时,上半导体层或电极不受损坏。在为了执行刮擦而形成电子蜡层之后, 当检测IV特性时,保持或去除电子蜡层。可以确定,不管是保持还是去除电 子蜡层,IV特性均不发生改变。
参照图5,可以看出,通过刮擦提高了发光效率。为了确定刮擦的哪一 操作使得发光效率提高,将蓝宝石基底在刮擦前后的AFM照片进行了相互比 较。
以两个范围拍摄蓝宝石基底的AFM照片。即,为了研究导致光散射的 不平坦部分的分布,拍摄2pm范围内的AFM照片,以彼此进行比较。另夕卜, 为了研究导致光折射或反射的不平坦部分的分布,拍摄20|im范围内的AFM 照片,以彼此进行比较。
图7是在执行刮擦之前蓝宝石基底的AFM照片(在2(im范围内),而图 8是在执行刮擦之后蓝宝石基底的AFM照片(在2|am范围内)。
当将图7和图8相互进行比较时,可以看出,在刮擦之前,21im范围内 的蓝宝石基底的表面非常平坦,如图7所示,然而,在刮擦之后,2(im范围 内的蓝宝石基底的表面具有尺寸为0-100nm的多个不平坦部分,如图8所示。 在尺寸等于或小于2pm的发光波长的不平坦部分中,既没有发生光折射现象, 也没有发生光反射现象,然而发生了光散射现象。因此,确定出刮擦使得散 射更积极地发生,因此,可以提高光通过基底出射的光出射效率。
图9是在执行刮擦之前蓝宝石基底的AFM照片(在20)mi范围内),而 图10是在执行刮擦之后蓝宝石基底的AFM照片(在20fim范围内)。
20(im范围内的不平坦部分导致光折射和反射。当将图9和图IO相互进 行比较时,如在刮擦之前拍摄的图9所示,20imi范围内的蓝宝石基底的表面 是粗糙的;然而,如在刮擦之后拍摄的图10所示,20jam范围内的蓝宝石表 面中的不平坦部分的数量非常少,因此,蓝宝石的表面是平坦的。根据斯涅耳定律,当表面中的每个不平坦部分变深时,进一步提高了光
出射效率。因此,20(am范围内的蓝宝石基底的AFM照片示出了蓝宝石基底 的表面(其在刮擦之前是粗糙的)通过刮擦而被磨掉,从而变得非常平坦, 因此,由于光折射和光反射,通过基底出射的光的光出射效率会减小。
图11是示出研磨剂的粒径与发光强度的关系的曲线图,其中,根据钻石 的粒径(0.2(im、 4(im和20^im)总结了发光强度的效率的提高。从这些结果, 可以看出,当使用粒径范围为2pm至4(im的钻石作为研磨剂时,极大地提高 了发光强度。
<实验2〉
使用SiC作为研磨剂来刮擦发光二极管中的基底的下表面,然后,测量 发光二极管的发光强度在刮擦之后与刮擦之前相比提高了多少。 [实验条件]
-LED:蓝光(N1371 ) -曱醇20 cc
-SiC (尺寸为0.25pm、 3)im和11.5pm): lg
-刮^^时间120分钟
-超声波清洗设备的频率28 KHz
图12是示出在使用SiC (0.25|im)执行刮擦达120分钟前后EL特性的 曲线图。
参照图12,可以看出,与刮擦之前相比,在刮擦之后,发光强度提高了 大约30%。
图13是示出在使用SiC ( 3(mi)执行刮擦达120分钟前后EL特性的曲线图。
参照图13,可以看出,与刮擦之前相比,在刮擦之后,或多或少提高了 发光强度,但发光强度几乎没有改变。
图14是示出在使用SiC (11.5(im)执行刮擦达120分钟前后EL特性的
曲线图。
参照图14,发光强度在刮擦前后没有改变。图15是根据粒径(0.25|im、 3(im和11.5(im)总结的实验结果的曲线图,其中,利用这些粒径在已经参照 图12至14示出的实验条件下执行实验。从以上结果可以看出,随着作为研磨剂的SlC的粒径变小,进一步提高了发光强度。
图16是在使用SiC (0.25|am)执行刮擦达120分钟之前蓝宝石基底的 AFM照片(在2iim范围内),图17是在使用SiC (0.25)ini)执行刮擦达120 分钟之后蓝宝石基底的AFM照片(在2pm范围内)。
当将图16和图17相互进行比较时,可以看出,在刮擦之前,2pm范围 内的蓝宝石基底的表面非常平坦,如图16所示,然而,在刮擦之后,2(mi范 围内的蓝宝石的表面具有尺寸为100nm至200nm的多个不平坦部分,如图 17所示。在2pm范围内,在尺寸等于或小于发光波长的不平坦部分中,没有 发生光散射现象,但发生了光折射现象。然而,该刮擦角太浅,难以提高发 光强度。即,在被刮擦的不平坦部分中,通过基底出射到外面的光的光出射 效率没有提高。
图18是在使用SiC (0.25pm)执行刮擦达120分钟之前蓝宝石基底的 AFM照片(在20(im范围内),图19是在使用SiC ( 0.25|im)执行刮擦达120 分钟之后蓝宝石基底的AFM照片(在20|im范围内)。
当将图18和图19相互进行比较时,如在刮擦之前拍4聂的图18所示,20pm 范围内的蓝宝石基底的表面是粗糙的;然而,如在刮擦之后拍摄的图19所示, 20)am范围内的蓝宝石表面中的不平坦部分的数量非常少,因此,蓝宝石的表 面是平坦的。
根据斯涅耳定律,当表面中的每个不平坦部分变深时,进一步提高了光 出射效率。因此,20pm范围内的蓝宝石基底的AFM照片示出了蓝宝石基底 的表面(其在刮擦之前是粗糙的)通过刮擦而被磨掉,从而变得非常平坦, 因此,由于光折射和光反射,通过基底出射的光的光出射效率会减小。
<实验3>
在实验3中,当使用钻石作为研磨剂来刮擦发光二极管中的基底的下表 面时,测量刮擦时间和发光强度之间的关系。 [实验条件]
-LED:蓝光(N1374) -曱醇10 cc
-钻石(尺寸为2(im至4(mi): 500mg -刮擦时间IO分钟、60分钟和120分钟 -超声波清洗设备的频率28 KHz[实验结果]
图20是示出在使用钻石(2pm至4pm)执行刮擦达10分钟前后EL特 性的曲线图。
参照图20,在执行刮擦达10分钟前后,发光强度的特性几乎没有改变。 图21是示出在使用钻石(2jim至4(im)执行刮擦达60分钟前后EL特 性的曲线图。
参照图21,在执行刮擦达60分钟前后,发光强度的特性几乎没有改变。 图22是示出在使用钻石(2(am至4|im)执行刮擦达120分钟前后EL特
性的曲线图。参照图22,与刮擦之前相比,发光强度在刮擦之后提高了大约
15%。
图23是示出刮擦时间和发光强度之间的关系的曲线图,其中,根据刮擦 时间UO分钟、60分钟、120分钟和150分钟)总结出这些结果,利用这些 刮擦时间在已经参照图20、图21、图22和图5示出的实验条件下执行实验。
参照图23,在执行刮擦达100分钟之后,发光强度开始提高。这应该是 因为蓝宝石具有相对较高的硬度,所以很难被刮擦。
<实验4>
在实验1至3中,从发光二极管的上表面测量发光强度。然而,在实验 4中,除了从发光二极管的上表面测量发光强度之外,还从发光二极管的下 部测量了发光强度。
通过该实验,将确定通过基底的下部出射的光是从外部朝向发光二极管 的上部反射,还是光不准许穿过基底的下部而是与基底的不平坦部分碰撞, 从而朝向发光二极管的上部反射,并通过发光二极管的上部出射。
该实验仅在提高了发光强度的研磨剂(SiC, 0.25!im)的条件下执行。
-LED:蓝光(N1371 ) -曱醇20 cc
-SiC (尺寸为0.25,): lg
-刮擦时间150分钟
-超声波清洗设备的频率28 KHz
图24是示出在使用SiC (0.25(xm)执行刮擦达150分钟前后在发光二极管的上侧测量的EL特性的曲线图。
参照图24,可以看出,与刮擦之前相比,在刮擦之后,发光强度提高了 大约18%。
图25是示出在刮擦前后IV特性的曲线图。参照25,电流-电压特性在 刮擦前后没有变化。
图26是示出在刮擦前后IL特性的曲线图。参照图26,与刮擦之前相比, 在刮擦之后,提高了从发光二极管的上侧发射的光的量。
图27是示出在刮擦前后基底侧的IL特性的曲线图。参照图27,与刮擦 之前相比,在刮擦之后,减少了从基底侧发射的光的量。
在对发光二极管的基底执行刮擦之后,减少了从基底侧发射的光的量, 然而,提高了发光二极管的上侧的发光强度。这意味着,由于刮擦,通过基 底出射的光不导致在发光二极管的上侧测量的发光强度提高,但由于刮擦, 改变了基底的表面特性,从而减少了未通过基底出射的光,因此,光朝向发 光二极管的上侧出射。
可以看出,通过在实验1至4中执行基底刮擦而形成在基底的表面上的 不平坦部分的尺寸不大于100nm (其比400nm的波长小)。另夕卜,在执行刮 擦之后,将在很大程度上减少了尺寸大于400nm的不平坦部分。因此,明白 的是,减少了在衍射范围内通过基底出射的光,而是在与基底碰撞之后,光 返回朝向发光二极管的上表面。
此外,由于基底刮擦,或多或少地产生了尺寸等于或小于50nm的小的 不平坦部分,因此可以理解的是,由于瑞利散射,将提高基底侧的光出射效 果。然而,因为衍射更具影响力,所以可理解的是总体上减小了基底侧的光 出射效果,然而形成在基底上的不平坦部分导致光返回朝向发光二极管的上 侧,从而提高了发光二极管的上表面处的光出射效率。
图28是示出根据本发明另一实施例制造发光二极管的方法的剖视图,其 中,刮擦形成在电极上的绝缘层,该图示出了刮擦绝缘层的情形。
参照图28,根据本发明另一实施例的发光二极管200具有位于基底210 上的半导体层220至240。基底210可以是绝缘基底或导电基底。基底210 可以是由蓝宝石(A1203 )、 SiC、 ZnO、 Si、 GaAs、 GaP、氧化铝锂(LiAl203 )、 BN、 A1N或GaN制成的基底,但不限于此。根据将要形成在基底210上的 半导体层的材料,可以以不同方式选择基底210。此外,基底210可以是具有图案化的上表面和/或下表面的基底。
半导体层220至240包括下半导体层220、位于下半导体层220的顶部 上的上半导体层240以及设置在下半导体层220和上半导体层240之间的有 源层230。这里,下半导体层220由n型半导体制成且上半导体层240由p 型半导体制成,或者,下半导体层220由p型半导体制成且上半导体层240 由n型半导体制成。
下半导体层220、有源层230和上半导体层240可以由氮化镓基半导体 材料(即,(B,Al, In, Ga)N)制成。确定有源层230的组成元素和组成比例, 从而发射波长符合需求的光(例如,紫外线或蓝光)。下半导体层220和上半 导体层240由带隙大于有源层230的带隙的材料制成。
下半导体层220和/或上半导体层240可以被形成为具有单层或多层结 构,如图所示。此外,有源层230可以具有单量子阱结构或多量子阱结构。
同时,緩冲层(未示出)可以设置在半导体层220至240和基底210之 间。采用緩冲层是为了减轻基底210和将形成在基底210上的下半导体层220 之间的晶格失配。
此外,透明电极250形成在上半导体层240上。透明电极250使得从有 源层230产生的光透射,并使得电流分散地供给到上半导体层240。
绝缘层260形成在每个透明电极250上。绝缘层260可以由Si02、 SiNx、 SiNx、 SiOxNy、 InSnOx和BaTiOx中的任何一种形成。绝缘层260覆盖透明电 极250,以暴露透明电极250的一部分。刮擦绝缘层260的表面。使用超声 波清洗设备和研磨剂来刮擦绝缘层260的表面,稍后将对此加以描述。因为 绝缘层260的表面被构造成具有粗糙的表面,所以从有源层230发射的光或 从基底210反射的光能够有效地出射。
同时,电极焊盘可以形成在透明电极250上,布线(未示出)结合到电 极焊盘。同时,电极焊盘(未示出)可以形成在下半导体层220上。电极焊 盘与下半导体层220欧姆接触。另外,布线(未示出)可以与电极焊盘接触, 从而电连接到下半导体层220。
图29是在图28中示出的发光二极管的制造方法的流程图,图30和图 31是示出制造方法的示图。
参照图29和图30,准备基底210 ( S21 )。例如,基底210可以是蓝宝石 基底或SiC基底。然后,在基底210上形成下半导体层220、有源层230和上半导体层240 (S22)。在上半导体层240上形成透明电极250 ( S23 )。在形成有透明电极 250的上半导体层240上形成绝缘层260 (S24)。这里,使用Si02作为绝缘 层260。在绝缘层260上形成抗蚀层270 ( S25 )。此时,抗蚀层270覆盖每个 透明电极250上的绝缘层的一部分,但除了将要暴露的一部分从而可以稍后 暴露透明电极250的这部分之外。
在将抗蚀层270形成在绝缘层260上之后,执行氬氟酸处理,因而绝缘 层260的仅由抗蚀层270限定的一部分保留,而绝缘层260的剩余部分被图 案化,以部分地暴露透明电极250,如图31所示(S26)。当执行氢氟酸处理 达20秒时,能够有效地去除绝缘层260。然后,去除抗蚀层270 (S27)。这 样,完成了还未刮擦的发光二极管200。
准备研磨剂(S28)。研磨剂由钻石、SiC、立方氮化硼(cBN)、类钻石 立方晶(DLC)和它们的混合物中的任何一种制成,这些材料的摩氏硬度等 于或大于蓝宝石的摩氏硬度(即,9)。准备将备好的研磨剂混合到溶剂中。 可以使用曱醇或乙醇作为溶剂。
准备超声波清洗设备(S29)。如图4所示,可以使用能够在声速、超声 波或兆频超声波区域产生超声波的任何超声波清洗设备作为超声波清洗设 备。
将其中混合有研磨剂301的溶剂放入超声波清洗设备300中,将在透明 电极上形成绝缘层的基底放置在超声波清洗设备300中,然后,产生超声波, 以激活研磨剂301 (S30)。此时,将要被刮擦的绝缘层260在超声波清洗设 备300中被;故置为面向下。
当在超声波清洗设备300中产生超声波振动时,研磨剂301在超声波清 洗设备中被激活,从而摩擦形成在透明电极250上的绝缘层260的表面。与 研磨剂301的摩擦使得绝缘层260的表面被不规则地磨掉,并被粗糙地刮擦, 如图28所示。
根据研磨剂301的粒径和超声波清洗设备的超声波产生时间,绝缘层表 面的粗糙度和形状可以不受限制地改变。然后,将上半导体层240和有源层 230部分地蚀刻掉,以部分地暴露下半导体层220。在被暴露的下半导体层 220上形成其它电极(未示出)。
然后,通过钻石或激光划线,将发光二极管200分成单个的发光二极管,从而完成发光二极管的制造。
改善性能。
<实验5>
在实验5中,使用钻石作为研磨剂来刮擦形成在发光二极管的透明电极 上的绝缘层的表面,然后,测量发光二极管的发光强度在刮擦之后比刮擦之 前提高了多少。
-LED:蓝光(N1622) -曱醇10 cc
-钻石(尺寸为2)am至4pm): 500mg
-刮^^时间3分钟
-超声波清洗设备的频率28 KHz
-氢氟酸处理时间20秒
.Si02的沉积厚度15pm
图32是示出在刮擦前后EL特性的曲线图,图33是示出在刮擦前后IV 特性的曲线图,图34是示出在刮擦前后IL特性的曲线图。
参照图32,可以看出,与刮擦之前相比,在刮擦之后,发光强度提高了 大约25%。
同时,参照图33,与刮擦之前相比,在刮擦之后,电流-电压特性发生 改变。理解到,因为绝缘层没有被形成为全部覆盖透明电极,而是部分地暴 露透明电极,所以当执行刮擦时,刮擦了透明电极的一部分,因此,当执行 氢氟酸处理时,上半导体层会受到影响。
同时,参照图34,在刮擦之后,由于EL特性,发射的光的量提高了大 约20%。
参照图32至图34,可以看出,通过刮擦提高了发光效率。为了确定刮 擦的哪一操作使得发光效率提高,将基底在刮擦前后的AFM照片进行了相互比较。
以两个范围拍摄蓝宝石基底的AFM照片。即,为了研究导致光散射的 不平坦部分的分布,拍摄2(im范围内的AFM照片,以彼此进行比较。另夕卜,为了研究导致光折射或反射的不平坦部分的分布,拍l聂20pm范围内的AFM 照片,以彼此进行比较。
图35是在2jim范围内的透明电极的AFM照片,图36是在执行刮擦之 前绝缘层的AFM照片(在2(mi范围内),图37是在执行刮擦之后绝缘层的 AFM照片(在2iim范围内)。
当将图35和图36相互进行比较时,可以看出,在图35所示的透明电极 的基础上,沉积图36所示的绝缘层。另外,当将图36和图37相互进行比较 时,可以看出,在刮擦之后,尺寸为0-100nm的多个不平坦部分形成在绝缘 层的表面上。理解到,这些不平坦部分导致发生瑞利散射,由此提高了发光 强度。
图38是在执行刮擦之前绝缘层的表面的AFM照片(在20pm范围内), 图39是在执行刮擦之后绝缘层的表面的AFM照片(在20|am范围内)。
当将图38和图39相互进行比较时,与刮擦之前相比,在刮擦之后,表 面没有显著变化。
即,根据图35至图39显示的结果,理解到,发光强度提高了25%,这 主要是受在2fim范围内的瑞利散射的影响。 <实验6>
通过刮擦形成在透明电极上的绝缘层来提高发光强度,因此,为了研究 哪一操作使得发光强度提高,在实验6中,在0-180度的范围内测量了发光 强度的角分布。
-LED:蓝光(N1622) -曱醇10 cc
-钻石(尺寸为2jam至4jim): 500mg
-刮擦时间3分钟和6分钟
-超声波清洗设备的频率28 KHz
-氬氟酸处理时间20秒
國Si02的沉积厚度15|im
图40是示出刮擦时间和发光强度之间的关系的曲线图,图41是示出在 刮擦前后发光强度的角分布特性的曲线图。参照图40和图41,当执行刮擦达3分钟时,最大化地提高了发光强度。此外,当执行刮擦达6分钟时,与 刮擦之前相比,发光强度提高了,但是与执行刮擦达3分钟的情况相比,发
光强度减小了。另外,可以确定,在3分钟和6分钟刮擦的两种情况下,各 向同性地提高了发光强度。
图42是在执行刮擦之前绝缘层的AFM照片(在2|im范围内),图43 是在执行刮擦达3分钟之后绝缘层的AFM照片(在2(im范围内)。图44是 在执行刮擦达6分钟之后绝缘层的AFM照片(在2|im范围内)。
当将图43和图44相互进行比较时,可以确定,与图44所示的6分钟的 刮擦相比,在图43所示的3分钟的刮擦之后,在绝缘层的表面上形成了更深 的不平坦部分。这是因为,如果执行刮擦达6分钟,则完全擦掉了绝缘层。 因为在3分钟的刮擦的情况下最大化地提高了发光强度,所以理解到发光强 度主要是瑞利散射的作用。
图45是在执行刮擦之前绝缘层的AFM照片(在20(im范围内),图46 是在执行刮搭v达3分钟之后绝缘层的AFM照片(在20pm范围内),图47是 在执行刮擦达6分钟之后绝缘层的AFM照片(在20|im范围内)。
当将图46和图47相互进行比较时,可以看出,通过刮擦或多或少地形 成了不平坦部分,但是与在实验1至4中描述的在刮擦之后形成在蓝宝石基 底上的不平坦部分相比,差异不显著。因此,可以理解,由于衍射,将或多 或少地减小光出射效果。然而,因为瑞利散射更具影响力,所以理解到提高 了绝缘层的光出射效率。
如在实验5和实验6中所描述的,与在基底上刮擦不同,在对形成在透 明电极上的绝缘层进行刮擦的情况下,在衍射范围内几乎检测不到不平坦部 分的减少。可见,在对蓝宝石基底进行刮擦的情况下,不平坦部分的减少导 致基底侧的光出射效果劣化,但是在对绝缘层的表面进行刮擦的情况下,不 平坦部分的减少比较小,因此,由于瑞利散射而提高了光出射效率。此外, 关于发光强度的角分布,与刮擦之前相比,在执行刮擦之后,各向同性地提 高了发光强度。
图48是示出根据对比示例的发光二极管的发光角特性的曲线图,图49 是示出根据对比示例的发光二极管的表面的照片。
图48和图49示出了台湾国立成功大学的J.K. Sheu的实验结果,其中, 在J.K. Sheu的实验中,P层被损坏,不平坦部分均匀地形成在表面上,如图49所示。因此,从J.K. Sheu的实验可以看出,仅沿特定的方向提高了发光强 度,如图48所示。然而,在图41所示的根据本发明的发光二极管的发光角 特性的曲线图中,各向同性地提高了发光角。发光角特性的差异是因为对比 示例中的不平坦部分是均匀分布的,从而沿特定的方向提高了发光强度,而 在根据本发明的发光二极管中,使用超声波来激活研磨剂,从而在绝缘层的 表面上不规则地形成不平坦部分,由此各向同性地提高了发光强度。
然而,本发明不限于上述实施例,而是本领域技术人员可以以不同方式 修改和改变本发明。这些修改和改变包括在由权利要求书限定的本发明的精 神和范围内。
例如,已经描述了在本发明的实施例中刮擦蓝宝石基底。然而,可以看 出,因为可以使用任何其它基底来取代蓝宝石基底,所以本发明可以用于任 何其它常规使用的基底,只要可以使用超声振动由研磨剂刮擦该基底即可。
另外,已经描述了在本发明的实施例中使用Si02作为绝缘层。然而,本 发明不限于此,而是可以应用于由其它材料制成的任何其它绝缘层。
此外,已经描述了在本发明的实施例中使用超声波清洗设备来刮擦基底 的表面或绝缘层的表面。然而,本发明不限于此,因为可以使用任何其它超 声波振动设备,所以本发明可以应用于任何其它超声波振动设备,只要其能 够使研磨剂振动从而刮擦发光二极管的表面即可。
此外,虽然已经描述了在本发明的实施例中在基底上形成下半导体层、 有源层、上半导体层和电极,然后刮擦基底,但是可以准许任何修改的实施 例,其中,执行刮擦,形成电极,并暴露下半导体层,以形成下电极。另夕卜, 也可以准许任何实施例,其中,在基底上形成下半导体层、有源层、上半导 体层和电极,暴露下半导体层以形成下电极,并使用电子蜡层保护上层,然 后刮擦基底。
另外,虽然已经描述了在本发明的实施例中刮擦基底的表面或绝缘层的 表面,但是可以看出,在对基底刮擦之后通过其它工艺刮擦绝缘层的表面也 包括在本发明的精神和范围内。此外,例如,在基底上形成下半导体层、有 源层、上半导体层和电极,暴露下半导体层以形成下电极,并使用电子蜡层 保护上半导体层,刮擦基底,去除覆盖上半导体层的电子蜡,然后刮擦绝缘 层的表面,因此,通过刮擦基底可以提高光出射效率,且通过刮擦绝缘层可 以提高光出射效率。
权利要求
1、一种制造发光二极管的方法,包括以下步骤在基底上形成化合物半导体层,所述化合物半导体层包括下半导体层、有源层和上半导体层;通过用研磨剂摩擦所述基底来刮擦所述基底的表面。
2、 如权利要求l所述的方法,还包括以下步骤在执行刮擦步骤之前, 在所述上半导体层上形成电子蜡层。
3、 如权利要求l所述的方法,其中,刮擦步骤包括以下步骤 在超声波清洗设备中准备其中混合有所述研磨剂的溶剂; 将其上形成有所述化合物半导体层的所述基底放置在所述超声波清洗设备中;在所述超声波清洗设备中施加超声波,从而通过激活所述研磨剂来执行 刮擦。
4、 如权利要求3所述的方法,其中,在放置所述基底的步骤中,将所述 基底在所述超声波清洗设备中放置为面向下。
5、 如权利要求3所述的方法,其中,所述研磨剂是直径为1^im至20(im 的钻石。
6、 如权利要求5所述的方法,其中,所述钻石的直径为2jim至4jim。
7、 如权利要求3所述的方法,其中,所述研磨剂是直径为O.liim至11.5jrni 的SiC。
8、 如权利要求7所述的方法,其中,所述SiC的直径为O.l(mi至3jim。
9、 如权利要求1所述的方法,其中,所述研磨剂包括钻石、SiC、 cBN 和DLC中的至少一种。
10、 如权利要求3所述的方法,还包括以下步骤 在所述化合物半导体层上形成至少一个电极; 在所述电极上形成绝缘层;通过用所述研磨剂摩擦所述绝缘层来刮擦所述绝缘层的表面。
11、 一种制造发光二极管的方法,包括以下步骤 在基底上形成化合物半导体层,所述化合物半导体层包括下半导体层、有源层和上半导体层;在所述化合物半导体层上形成至少一个电极; 在所述电极上形成绝缘层;通过用研磨剂摩擦所述绝缘层来刮擦所述绝缘层的表面。
12、 如权利要求11所述的方法,其中,所述研磨剂包括钻石、SiC、 cBN 和DLC中的至少一种。
13、 如权利要求11所述的方法,其中,刮擦步骤包括以下步骤 在超声波清洗设备中准备其中混合有所述研磨剂的溶剂; 将其上形成有所述绝缘层的所述基底放置在所述超声波清洗设备中; 在所述超声波清洗设备中施加超声波,从而通过激活所述研磨剂来刮擦所述绝缘层。
14、 如权利要求13所述的方法,其中,在放置所述基底的步骤中,将所 述基底放置为使得所述绝缘层在所述超声波清洗设备中面向下。
15、 如权利要求11所述的方法,其中,形成绝缘层的步骤包括以下步骤 在其上形成有所述至少一个电极的所述化合物半导体层上形成所述绝缘层;执行图案化工艺,用于保留所述绝缘层的上面形成有所述电极的部分, 并去除所述绝缘层的其它部分,其中,将所述电极图案化,以暴露所述电极的一部分。
16、 如权利要求11所述的方法,其中,所述绝缘层包括Si02、 SiNx、 SiOx、 SiOxNy、 InSnOx和BaTiOx中的任何一种。
17、 如权利要求16所述的方法,其中,所述研磨剂是直径为2(im至4jim 的钻石。
18、 一种发光二极管,包括 基底;化合物半导体层,所述化合物半导体层包括形成在基底上的下半导体层、 有源层和上半导体层,其中,所述基底具有不规则刮擦的表面。
19、 如权利要求18所述的发光二极管,还包括 至少一个电极,形成在所述化合物半导体层上; 绝缘层,形成在所述电极上,其中,所述绝缘层具有不规则刮擦的表面。
20、 一种发光二极管,包括 基底;体层、有源层和上半导体层;至少一个电极,形成在所述化合物半导体层上;绝缘层,形成在所述电极上,其中,所述绝缘层具有不规则刮擦的表面。
21 、如权利要求19或20所述的发光二极管,其中,所述绝缘层包括Si02、 SiNx、 SiOx、 SiOxNy、 InSnOx和BaTiOx中的任何一种。
22、如权利要求19或20所述的发光二极管,其中,所述绝缘层的被刮 擦的表面形成有不平坦部分,每个不平坦部分的尺寸为大于0nm且等于或小 于100nm。
全文摘要
本发明提供了一种制造发光二极管的方法,该方法包括以下步骤在基底上形成化合物半导体层,所述化合物半导体层包括下半导体层、有源层和上半导体层;通过用研磨剂摩擦所述基底来刮擦所述基底的表面。根据本发明,使用所述研磨剂来摩擦并刮擦发光二极管的表面,由此可以使得从所述有源层发射的光有效地出射到外面。因此,可以提高发光二极管的光出射效率。
文档编号H01L33/00GK101689584SQ200880016875
公开日2010年3月31日 申请日期2008年5月16日 优先权日2007年5月22日
发明者直井美贵, 酒井士郎 申请人:首尔Opto仪器股份有限公司;德岛大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1