磁阻效应元件、磁头以及磁盘设备的利记博彩app

文档序号:7230121阅读:245来源:国知局
专利名称:磁阻效应元件、磁头以及磁盘设备的利记博彩app
技术领域
本发明涉及磁阻效应元件、磁头、以及沿垂直于磁阻效应膜的膜表面的方向传输感应电流以检测磁性的磁盘设备。
背景技术
依靠巨磁阻效应(GMR),磁性设备尤其是磁头的性能得以迅速提高。特别是自旋阀(SV)膜在磁头、MRAM(磁性随机存储器)等方面的应用为磁性设备领域带来了巨大的技术进步。
“自旋阀膜”是一种具有将非磁性分隔层夹在两层铁磁层之间结构的分层膜,因而也被称为自旋相依散射单元。这两层铁磁层中的一层(称为“固定层”或“磁化固定层”)的磁化被反铁磁层或之类的物质固定,而另一层(称为“自由层”或“磁化自由层”)的磁化可以根据外部磁场而转动。在自旋阀膜中,通过改变固定层和自由层的磁化方向的相对角度就可以获得巨磁阻变化。
作为使用自旋阀膜的磁阻效应元件,有CIP(电流方向在平面内)-GMR元件、CPP(电流垂直平面)-GMR元件,以及TMR(隧道磁阻)元件。在CIP-GMR元件中,感应电流沿平行于自旋阀膜的表面传导,而在CPP-GMR和TMR元件中,感应电流沿基本垂直于自旋阀膜表面的方向传导。垂直传导感应电流的方法作为未来高记录密度头的技术备受关注。
这里,在由金属层构成自旋阀膜的金属CPP-GMR元件中,由磁化引起的阻抗的变化量很小,因此难以检测出微弱的磁场(例如,在具有高记录密度的磁盘中的磁场)。
作为分隔层,采用含有沿厚度方向的电流通路的氧化层[NOL(nano-oxide layer)]的CPP元件已被提出(参考JP-A2002-208744(KOKAI))。在这种元件中,利用电流限制通路(CCP,current-confined-path)效应可以提高元件阻抗和MR率。在下文中,这种元件被称为CCP-CPP元件。

发明内容
这里,CCP-CPP元件的灵敏度需要提高。CCP-CPP元件灵敏度的一个实例是MR率。此外,在CCP-CPP元件中,电流受限制部分的局部电流密度变成非常大的值,因此实现即使在巨大电流密度下仍然能够保证良好可靠性的膜结构是非常重要的。
本发明的一个目的是提供一种磁阻效应元件、磁头,以及能够提高MR率和可靠性的磁盘设备。
根据本发明一个方面的磁阻效应元件包括磁化固定层、分隔层和磁化自由层,磁化固定层含有磁场方向基本固定在一个方向上的第一晶粒,分隔层配置在磁化固定层上并具有绝缘层和贯通绝缘层的金属导体,磁化自由层含有第二晶粒,该磁化自由层与金属导体相对地配置在分隔层上并且具有随外部磁场而改变的磁场方向。


图1是表示根据本发明第一实施例的磁阻效应元件的立体图。
图2是表示放大图1的分隔层尤其是电流通路附近的放大视图。
图3是表示本发明的第一比较实例的剖面视图。
图4是表示本发明的第二比较实例的剖面视图。
图5是表示分隔层的实例的剖面的剖面视图。
图6是表示分隔层的实例的上表面的俯视图。
图7是表示分隔层的实例的下表面的仰视图。
图8是表示分隔层的另一实例的剖面的剖面视图。
图9是表示分隔层的另一实例的上表面的俯视图。
图10是表示分隔层的另一实例的下表面的仰视图。
图11是表示用三维原子探测器测量得到的在自由层中Ni原子的浓度分布实例的视图。
图12是强调图11中的Ni原子的浓度分布的视图。
图13是表示在自由层中Ni原子的浓度梯度的实例的视图。
图14是表示磁阻效应元件制造步骤的实例的流程图。
图15是表示用于制造磁阻效应元件的沉积设备的概况的示意图。
图16是表示根据本发明实施例的磁阻效应元件被结合在磁头中的状态的视图。
图17是表示根据本发明实施例的磁阻效应元件被结合在磁头中的状态的视图。
图18是说明磁记录/再现设备的概略结构的主要部分立体视图。
图19是表示从磁盘侧观看磁头悬架组件从致动臂到其末端的放大立体图。
图20是表示根据本发明实施例的磁存储器的矩阵结构的实例的视图。
图21是表示根据本发明实施例的磁存储器的另一矩阵结构的实例的视图。
图22是表示根据本发明实施例的磁存储器主要部分的剖面视图。
图23是沿图22中的A-A’线得到的剖面视图。
具体实施例方式
下文将参照附图对本发明的实施例进行说明。注意在下面的实施例中合金的成分用原子%表示。
(第一实施例)图1是表示根据本发明第一实施例的磁阻效应元件(CCP-CPP元件)的立体图。注意图1和下面的附图都是示意图,其中膜厚度之间的比率并不总是与实际的膜厚度之间的比率相对应。
如本图所示,根据本实施例的磁阻效应元件具有磁阻效应膜10,以及将磁阻效应膜10从上下夹在中间的下电极11和上电极20,该磁阻效应元件形成于未在图中示出的基板上。
磁阻效应膜10依次由基层12、固定层13、被固定层14、下层金属层15、分隔层(CCP-NOL)16(绝缘层161,电流通路162)、上层金属层17、自由层18以及覆盖层19构成。其中,被固定层14、下层金属层15、分隔层16、上层金属层17和自由层18对应通过将非磁性分隔层夹在两层铁磁层之间形成的自旋阀膜。注意为了外观上的清晰,分隔层16以从其上下两层分离的状态表示(下层金属层15和上层金属层17)。
下面将说明磁阻效应元件的各组成部分。
下电极11是用于沿垂直于自旋阀膜的方向传导电流的电极。通过在下电极11和上电极20之间施加电压,电流沿垂直于膜表面的方向在自旋阀膜内流动。依靠这个电流,可以通过检测由磁阻效应引起的阻抗的变化来探测磁性。作为下电极11,用具有相对小的电阻抗的金属层在磁阻效应元件中传导电流。
基层12可以划分为例如缓冲层12a和种子层(seed layer)12b。缓冲层12a是用于缓和下电极11表面粗糙程度的层。种子层12b是用于控制晶向和沉积在其上的自旋阀膜的晶粒直径的层。
对于缓冲层12a可以使用Ta、Ti、V、W、Zr、Hf、Cr或其合金。缓冲层12a的膜厚度优选在大约1nm到10nm,更好是在2nm到5nm。如果缓冲层12a太薄,就丧失了它的缓冲效果。另一方面,如果缓冲层12a太厚,就增加了对MR率毫无贡献的串联阻抗。注意如果沉积在缓冲层12a上的种子层12b具有缓冲效果,则缓冲层12a就没有必要形成了。可以用Ta[3nm]作为前述实例中的优选实例。
种子层12b可以使用任何能够控制沉积在其上的层的晶向的材料。作为种子层12b,优选使用具有fcc结构(面心立方结构)、hcp结构(密排六方结构)或bcc结构(体心立方结构)的金属层等。
例如,用具有hcp结构的Ru或具有fcc结构的NiFe作为种子层12b,其上的自旋阀膜的晶向可以是fcc(111)晶向。此外,当固定层13是IrMn时,可以实现良好的fcc(111)晶向,而当固定层13是PtMn时,可以获得规则的fct(111)结构(面心四方结构)。另外,当fcc金属被用作磁性层时,可以实现良好的fcc(111)晶向,而当bcc金属被用作磁性层时,则产生良好的bcc(110)晶向。
为了充分发挥种子层12b在改善晶向方面的作用,种子层12b的膜厚度优选在1nm到5nm,最好是1.5nm到3nm之间。可以用Ru[2n]作为前述实例中的优选实例。
自旋阀膜和固定层13的晶向特性可以用X射线衍射进行测量。通过在自旋阀膜的fcc(111)峰值和固定层13(PtMn)的fct(111)峰值或bcc(110)峰值将摇摆曲线的半值宽度设置为3.5度到6度,则可以获得良好的晶向特性。注意这个方向的散射角也可以用截面TEM从散射斑确定。
作为种子层12b,也可以用NiFe基合金(例如,NixFe100-x(x=90%到50%,优选是75%到85%)或在NiFe中加入第三种物质Z将其变为非磁性的(NixFe100-x)100-yZy(Z=Cr,V,Nb,Hf,Zr,Mo)代替Ru。用NiFe基种子层12b,可以相对容易地获得良好的晶向特性,并且用上述同样的方法测量得到的摇摆曲线的半值宽度可以是3度到5度。
种子层12b不仅具有改善晶向的功能,还具有控制自旋阀膜的晶粒直径的作用。特别地,自旋阀膜的晶粒直径可以控制在5nm到20nm之间,即使当磁阻效应元件的尺寸变小时,也可以实现高MR率而不会造成特性的参差不齐。
自旋阀膜的晶粒直径可以通过配置在种子层12b和分隔层16之间的层的晶粒的直径来确定(例如,可以通过截面TEM等来确定)。例如,当被固定层14是位于低于分隔层16的底型自旋阀膜时,可以通过形成于种子层12b上的固定层13(反铁磁层)或被固定层14(磁化固定层)的晶粒直径来确定。
对应高记录密度的再现头(reproducing head),元件尺寸是确定的100nm或更小的微小尺寸。晶粒直径与元件尺寸的比率大的话会造成元件特性的参差不齐,因此自旋阀膜的晶粒直径大于20nm是不适宜的。
由于元件单位面积上的晶粒的数目较少会造成特性的参差不齐,因此增加晶粒直径是不适宜的。特别对于形成电流通路的CCP-CPP元件,增加晶粒直径就更不适宜了。
另一方面,晶粒直径越大,由于晶粒边界使扩散电子散射和非弹性散射就越小。从而,为了实现大的MR率,优选是晶粒直径比较大,并且有必要达到至少5nm或更大。
如上所述,MR率的观点和降低各元件中的参差不齐的观点对晶粒直径的要求彼此是矛盾的并且存在平衡的关系。考虑到这种平衡关系晶粒直径的优选范围是5nm到20nm。关于晶粒直径的具体设计方法将在下文详细说明。
为了获得上述5nm到20nm的晶粒直径,作为种子层12b,优选Ru 2nm或在(NixFe100-x)100-yZy(Z=Cr,V,Nb,Hf,Zr,Mo)层的情况下第三元素Z的成分y大约为0%到30%(包括y是0%的情况)。
如上所述,种子层12b的膜厚度优选约为1nm到5nm,最好为1.5nm到3nm。如果种子层12b太薄,则会丧失诸如控制晶向的效果。另一方面,如果种子层12b太厚,则会导致串联阻抗的增加,并且可能会进而造成自旋阀膜界面的不规律。
注意除本文介绍的材料以外的任何材料都可以被用于种子层12b只要它可以用微小的晶粒直径实现良好的种子层12b。
固定层13具有通过给予单向各向异性固定沉积其上将要成为被固定层14的铁磁层磁化的功能。作为固定层13的材料,可以使用诸如PtMn、PdPtMn、IrMn、RuRhMn的反铁磁性材料。其中,IrMn作为对应高记录密度的磁头的材料是很有利的。IrMn能比PtMn用更薄的膜厚度施加单向各向异性,因此适于减小高记录密度所必需的狭缝。
为了给予足够强的单向各向异性,要恰当设置固定层13的膜厚度。当固定层13的材料是PtMn或PdPtMn时,其膜厚度优选大致为8nm到20nm,最好为10nm到15nm。当固定层13的材料为IrMn时,则可以用甚至比PtMn等更小的膜厚度给予单向各向异性,这个厚度优选为2nm到18nm,最好为4nm到15nm。可以用IrMn[7nm]作为前述实例中的优选实例。
作为固定层13,也可以用硬磁层来代替反铁磁层。作为硬磁层,可以用例如CoPt(Co=50%到85%)、(CoxPt100-x)100-yCry(x=50%到85%,y=0%到40%),FePt(Pt=40%到60%)。硬磁层(尤其是CoPt)具有相对较小的电阻率,因此可以抑制串联阻抗和面积阻抗RA的增大。
作为被固定层14,优选实例是由下层被固定层141(例如Co90Fe103.5nm)、磁耦合层142(例如,Ru)以及上层被固定层143(例如,(Fe50Co50[1nm]/Cu
)×2/Fe50Co50[1nm])构成的合成被固定层。固定层13(例如,IrMn)和其上的下层被固定层141通过交换磁耦合而耦合在一起从而具有单向各向异性。位于磁耦合层142上下的下层被固定层141和上层被固定层143很强地磁耦合在一起使得它们的磁化方向相互反向平行。
作为下层被固定层141的材料,例如,可以使用CoxFe100-x合金(x=0%到100%),NixFe100-x合金(x=0%到100%)或者是在它们中的一种中加入非磁性物质。此外,作为下层被固定层141的材料,可以使用单元素Co、Fe、Ni或它们的合金。
下层被固定层141的磁性膜厚度(饱和磁化Bs×膜厚度t(Bs和t的乘积))最好基本等于上层被固定层143的磁性膜厚度。特别地,上层被固定层143的磁性膜厚度和下层被固定层141的磁性膜厚度最好彼此对应。例如,当上层被固定层143是(Fe50Co50[1nm]/Cu
)×2/Fe50Co50[1nm]时,作为膜的FeCo的饱和磁化大约为2.2T,从而磁性膜厚度为2.2T×3nm=6.6Tnm。由于Co90Fe10的饱和磁化大约为1.8T,因此提供与上述相等的磁性膜厚度的下层被固定层141的膜厚度为6.6Tnm/1.8T=3.66nm。因此,更希望用具有大约3.6nm膜厚度的Co90Fe10。
用于下层被固定层141的磁性层的膜厚度优选大约为2nm到5nm。这是基于对固定层13(如,IrMn)的单向各向异性磁场强度和通过磁耦合层142(例如,Ru)耦合在一起的下层被固定层141和上层被固定层143的反铁磁耦合磁场强度的考虑。如果下层被固定层141太薄,则影响MR率的上层被固定层143就必须做得薄,这样MR率就会变小。另一方面,如果下层被固定层141太厚,就会变得难以获得运行器件所必需的足够的单向各向异性磁场。优选实例是膜厚度为3.6nm的Co90Fe10。
磁耦合层142(例如,Ru)具有通过在上下磁性层(下层被固定层141和上层被固定层143)之间产生反铁磁耦合以形成合成的被固定层的功能。作为磁耦合层142的Ru层的膜厚度优选为0.8nm到1nm。注意除了Ru以外任何其它材料都可以使用只要它能够在上下磁性层之间产生足够的反铁磁耦合。还可以使用与RKKY(Ruderman-Kittel-Kasuya-Yosida)耦合的第一峰值对应的0.3nm到0.6nm的膜厚度代替与RKKY耦合的第二峰值对应的0.8nm到1nm的膜厚度。这里,0.9nm的Ru是作为一个实例来介绍的,用它可以获得更可靠耦合的稳定特性。
如上所述,作为上层被固定层143的实例,可以使用诸如(Fe50Co50[1nm]/Cu
)×2/Fe50Co50[1nm]的磁性层。上层被固定层143形成自旋相依散射单元的一部分。上层被固定层143是直接对MR效应作贡献的磁性层,其构成材料和膜厚度都对获取大MR率很重要。尤其是,位于与分隔层16的界面上的磁性材料特别是在自旋相依界面的散射的贡献方面很重要。
接下来将说明使用具有bcc结构的Fe50Co50在本文中作为上层被固定层143的效果。当使用具有bcc结构的磁性材料作为上层被固定层143,则会提供较大的自旋相依界面的散射效果,从而可以实现较大的MR率。具有bcc结构的FeCo基合金的实例包括FexCo100-x(x=30%到100%)和通过向FexCo100-x中加入额外元素制得的物质。其中,易于使用的材料的实例是满足所有特性的Fe40Co60至Fe80Co20。
当上层被固定层143由具有bcc结构的易于实现高MR率的磁性层形成时,这个磁性层的总的膜厚度优选为1.5nm或更大。这是为了保持bcc结构的稳定。由于用于自旋阀膜的金属材料通常是fcc结构或fct结构,所以只有上层被固定层可以具有bcc结构。因此,如果上层被固定层143的膜厚度太薄,则难以保持bcc结构的稳定,并且难以获得高MR率。
这里,作为上层被固定层143,使用含有超薄Cu层的Fe50Co50。现在,上层被固定层143由总膜厚度为3nm的FeCo和在每1nm的FeCo上层叠的0.25nm的Cu构成,并且它的总膜厚度为3.5nm。
上层被固定层143的大的膜厚度使得其易于获得大的MR率,但是对于获得大的被固定磁场来说优选小的膜厚度,因此存在平衡关系。例如,当使用具有bcc结构的FeCo合金层时,则有必要稳定bcc结构,因此优选1.5nm或更大的膜厚度。此外,同样当使用具有fcc结构的CoFe合金层时,为了获得大的MR率,优选1.5nm或更大的膜厚度。另一方面,为了获得大的被固定磁场,上层被固定层143的膜厚度最大优选为5nm或更小,最好为4nm或更小。
如上所述,上层被固定层143的膜厚度优选为1.5nm到5nm,最好为大约2.0nm到4nm。
对于上层被固定层143,可以使用具有fcc结构的Co90Fe10合金、具有hcp结构的Co,以及广泛用于传统磁阻效应元件中的钴合金,代替具有bcc结构的磁性材料。作为上层被固定层143,可以使用诸如Co,Fe,Ni的单金属或包含它们中任意一个的合金材料。如果按照从获取大的MR率最有利的角度排序,则用于上层被固定层143的磁性材料分别是具有bcc结构的FeCo合金材料,钴成分为50%或更高的钴合金,Ni成分为50%或更高的镍合金。
同样的,对于上层被固定层143,可以用诸如Co2MnGe、Co2MnSi、Co2MnAl的霍伊斯勒(Heusler)磁性合金层。
这里举出的实例是磁性层(FeCo层)和非磁性层(超薄Cu层)交互层叠作为上层被固定层143。在具有用非磁性元素材料层叠结构的上层被固定层143中,可以通过超薄Cu层来提高被称为自旋相依体积散射效应的自旋相依散射效应。
“自旋相依体积散射效应”被用作与自旋相依界面散射效应成对出现的术语。自旋相依体积散射效应是MR效应出现在磁性层内部的现象。自旋相依界面散射效应是MR效应出现在分隔层和磁性层之间的界面上的现象。
下文将说明由于磁性层和非磁性层层叠结构而使得体积散射效应提高的情况。
在CCP-CPP元件中,电流被限制在分隔层16的附近,分隔层16界面附近的阻抗的贡献是非常大的。特别是,分隔层16与磁性层(被固定层14,自由层18)之间界面上的阻抗与整个磁阻效应元件的阻抗的比值非常大。这表示在CCP-CPP元件中自旋相依界面散射效应的贡献很大,因此非常重要。特别地,与传统CPP元件的情况相比,对位于分隔层16的界面上的磁性材料的选择意义重大。这是用具有bcc结构的大自旋相依界面散射效应的FeCo合金作为上层被固定层143的原因,如上所述。
然而,具有大自旋相依体积散射效应的材料的使用是不能被忽视的,这对获取高MR率仍然很重要。用于获得自旋相依体积散射效应的超薄Cu层的膜厚度优选为0.1nm到1nm,最好为0.2nm到0.5nm。如果Cu层的膜厚度太薄,则提高自旋相依体积散射效应的效果就变得很弱。如果Cu层的膜厚度太厚,则自旋相依体积散射效应可能会下降,而且具有非磁性Cu层插在其中的上下磁性层的磁耦合也会变弱,从而使得被固定层14的特性不足。因此,作为优选实例的是使用0.25nm的Cu。
对于磁性层间的非磁性层的材料,可以使用Hf、Zr、Ti等来代替Cu。另一方面,当插入这些超薄非磁性层时,诸如FeCo的磁性层的每一层的膜厚度优选为0.5nm到2nm,最好是大约为1nm到1.5nm。
作为上层被固定层143,可以使用FeCo与Cu合金化制成的层代替FeCo层结构和Cu层的交互层叠结构。这种FeCoCu合金的实例是(FexCo100-x)100-yCuy(大约x=30%到100%,y=3%到15%),但是也可以使用其它成分范围。这里,对于加入到FeCo中的元素,可以使用其它元素如Hf、Zr、Ti代替Cu。
对于上层被固定层143,可以使用由Co、Fe、Ni或它们的合金材料构成的单一层膜。例如,作为具有最简单结构的上层被固定层143,可以用已经广泛使用的2nm到4nm的Co90Fe10单一层。可以向这个材料中加入其它元素。
下层金属层15用于形成电流通路162,同时也是电流通路162的供给源。下层金属层15还具有充当阻止层的作用从而当位于其上方的绝缘层16形成时,抑制位于其下方的上层被固定层143的氧化。
当电流通路162的构成材料是Cu时,则下层金属层15的构成材料最好也是相同的(Cu)。当电流通路162的构成材料是磁性材料时,这种材料既可以与被固定层14的磁性材料相同也可以与之不同。作为电流通路162的构成材料,除了Cu以外也可以使用Au、Ag。
分隔层(CCP-NOL)16具有绝缘层161和电流通路162。
绝缘层161由氧化物、氮化物、氧氮化物等构成。作为绝缘层161,可以是如Al2O3的非晶体结构也可以是如MgO的晶体结构。为了发挥出作为分隔层的功能,绝缘层161的厚度优选在1nm到3nm的范围内,最好是1.5nm到2.5nm。
作为用于绝缘层161的典型绝缘材料有采用Al2O3作为基材料的和含有Al2O3并且其中加入添加元素的。作为添加元素的有Ti、Hf、Mg、Zr、V、Mo、Si、Cr、Nb、Ta、W、B、C、V等。添加这些添加元素的量可以在大约0%到50%的范围内作适当改变。例如,大约2nm的Al2O3可以被用作绝缘层161。
对于绝缘层161,可以使用Ti氧化物、Hf氧化物、Mg氧化物、Zr氧化物、Cr氧化物、Ta氧化物、Nb氧化物、Mo氧化物、Si氧化物、V氧化物代替如Al2O3的Al氧化物。在这些氧化物的情况中,上述材料也可以用作添加元素。此外,添加元素的量可以在大约0%到50%的范围内适当改变。
可以使用如上所述的Al、Si、Hf、Ti、Mg、Zr、V、Mo、Nb、Ta、W、B、C的氧氮化物或氮化物代替这些氧化物,只要它是具有绝缘电流功能的材料。
电流通路162是用于将电流沿垂直于分隔层16的膜表面传输的通路(路径),并且用于限制电流。它们充当允许电流沿垂直于绝缘层161的膜表面的方向流过的导体,且由例如Cu等的金属层构成。特别地,分隔层16具有电流限制通路结构(CCP结构),并且其MR率可以通过电流限制通路效应得到提高。除了Cu以外,用于形成电流通路162(CCP)的材料的实例包括Au、Ag、Ni、Co、Fe以及含有这些元素中的至少一种的合金层。例如,电流通路162可以由含有Cu的合金层形成。也可以使用诸如CuNi、CuCo、CuFe的合金层。这里,为了高MR率和降低被固定层14与自由层18之间层间耦合场(Hin),优选具有50%或更多的Cu的成分。
与绝缘层161相比,电流通路162是氧和氮含量较少的区域(至少氧和氮含量有双倍或更多的不同),并且呈结晶向。结晶向比非晶向具有更低的阻抗,且更易于充当电流通路162。
上层金属层17充当阻挡层用于抑制组成分隔层16的氧/氮扩散到自由层18中同时它也充当种子层用于促进自由层18中良好的晶体生长。
特别地,上层金属层17防止沉积在其上的自由层18接触分隔层16中的氧化物/氮化物/氧氮化物并防止其被氧化或氮化。特别地,上层金属层17限制电流通路162的氧化层中的氧化物与自由层18直接接触。
此外,上层金属层17具有使自由层18良好结晶的功能。例如,当绝缘层161的材料是非晶体(如,Al2O3)时,沉积在其上的金属层的结晶变得很差,但是通过配置可以使结晶良好的超薄种子层(例如,Cu层),则自由层18的结晶效果能够被显著提高。
上层金属层17的材料最好与分隔层16的电流通路162的材料(例如,Cu)相同。这是因为如果上层金属层17的材料与电流通路162的材料不同的话,会导致界面阻抗的增加,但是如果两者是相同的材料,则不会发生界面阻抗的增加。
注意如果采用磁性材料作为电流通路162的构成材料,则该磁性材料可以与自由层18的磁性材料相同或不同。
除了Cu以外,也可以使用Au、Ag等作为上层金属层17的构成材料。
自由层18是具有铁磁性材料的层,这种材料通过外部磁场改变磁化方向。自由层18的实例是使用NiFe并将CoFe插入界面中的Co90Fe10[1nm]/Ni83Fe17[3.5nm]的两层结构。这种情况下,在与分隔层16的界面处,用CoFe合金比NiFe合金更有利于实现大的MR率。为了获得高的MR率,位于分隔层16的界面处的自由层18的磁性材料的选择是很重要的。注意如果不使用NiFe,则可以使用Co90Fe10[4nm]的单层。此外,也可以使用由如CoFe/NiFe/CoFe的三层结构构成的自由层18。此外,如下文所述,可以使用如CoZrNb的非晶体合金层作为自由层18的一部分。
在CoFe合金中,优选Co90Fe10是因为它具有稳定的软磁性特性。当使用接近Co90Fe10的CoFe合金时,其膜厚度最好设定为0.5nm到4nm。除此以外,CoxFe100-x(x=70到90)也是优选使用的成分范围。
此外,可以使用由交替层叠多层1nm到2nm的CoFe层或Fe层和大约为0.1nm到0.8nm的超薄Cu层构成的层作为自由层18。
在形成分隔层16的材料中,当电流流经的电流通路162是由Cu层形成时,与被固定层14相似,也在自由层18中使用bcc的FeCo层作为与分隔层16的界面材料可以增大MR率。也可以使用bcc的FeCo合金替代fcc的CoFe合金作为与分隔层16的界面材料。在这种情况下,可以使用可以很容易地形成bcc层的FexCo100-x(x=30到100)或通过向其中加入添加元素制成的材料。例如,可以使用Co50Fe50[1nm]/Ni85Fe15[3.5nm]。
此外,可以使用CoZrNb等的非晶体磁性层作为自由层18的一部分。
然而,当使用非晶体磁性层时,有必要使用具有晶体结构的磁性层作为与对MR率影响较大的与分隔层16接触的界面。从分隔层16侧来看下列结构可以作为自由层18的结构。特别是,可以考虑用(1)只有晶体层,(2)晶体层/非晶体层的层,(3)晶体层/非晶体层/晶体层的层等作为自由层18的结构。这里重要的是在(1)到(3)的任意一个中,晶体层总是接触与分隔层16的界面。
这里,当形成自由层18时,在部分或整个磁性层形成的阶段进行晶体生长处理。这种晶体生长处理是用于控制其磁性层中的晶体生长或晶粒直径,后面将对此作详细说明。
覆盖层19具有保护自旋阀膜的功能。覆盖层19可以是,例如,多个金属层,如Cu层和Ru层的两层结构(Cu[1nm]/Ru[10nm])。此外,也可以用Ru/Cu层作为覆盖层19,其中Ru配置在自由层18一侧。在这种情况下,Ru的膜厚度最好在大约0.5nm到2nm。这种结构的覆盖层19是比较合适的尤其是当自由层18由NiFe构成时。这是因为由于Ru和Ni是不溶解的关系,这样可以降低在自由层18和覆盖层19之间形成的界面混合层中的磁弹性。
当覆盖层19是Cu/Ru或Ru/Cu时,Cu层的膜厚度最好大约为0.5nm到10nm,而Ru层的膜厚度可以约为0.5nm到5nm。由于Ru具有高的电阻率值,所以不宜使用太厚的Ru层,因此最好是在这样的膜厚度范围内。
可以用除了Cu层或Ru层以外的金属层作为覆盖层19。覆盖层19的结构不局限于此,可以使用其他的材料只要它能够像顶盖一样保护自旋阀膜。然而,覆盖层的选择可能改变MR率或长期稳定性,因此必须谨慎选择。同样从这些观点来看,Cu和Ru是作为覆盖层的材料的较为适宜的实例。
上电极20是用于沿垂直于自旋阀膜的方向传导电流的电极。通过在下电极层11和上电极20之间施加电压,电流在自旋阀膜内部沿垂直于该膜的方向流动。对于上电极20,可以使用低电阻的材料(如,Cu、Au)。
(电流通路162附近的微结构)在CCP-CPP自旋阀膜中,元件的特性(例如,磁场敏感度(MR率),以及在高温高压下的稳定性)取决于电流通路162附近的微结构。特别是,为了确保元件的特性,控制微结构是很重要的。
图2是表示放大分隔层16尤其是电流通路162附近区域的放大视图。
如图所示,被固定层14(晶粒145)、下层金属层15、电流通路162、上层金属层17,以及自由层18(晶粒185)彼此上下对应配置。被固定层14和自由层18分别由多个晶粒145和185构成。这里,只示出电流通路162附近的晶粒145、185。
当部分自由层18含有非晶体层时,至少与分隔层16的界面附近有必要具有如图2所示的晶体结构。当非晶体层包含在部分自由层18中时,磁性非晶体层层叠在图2中的晶粒145上。
如图所示,根据本实施例所述的CCP-CPP自旋阀膜具有下列结构特性。
(1)被固定层14的晶粒145与电流通路162相对配置。
(2)自由层18的晶粒185与电流通路162相对配置。顺便说一下,“相对”的一个方面是电流通路162至少直接配置在晶粒145或185中一个下面的情况。
(3)自由层18的晶粒185的粒径D18最好比被固定层14的晶粒145的粒径D14小。
(4)晶粒145、185的粒径D14、D18的合适范围-被固定层14的晶粒145的粒径D14的范围优选为5nm到20nm,最好为8nm到20nm。
-自由层18的晶粒185的粒径D18的范围优选为3nm到10nm,最好为3nm到8nm。
-优选3nm到8nm的自由层18的晶粒185与8nm到20nm的被固定层14的晶粒145的组合。
(5)上层金属层17的膜厚度T17最好比下层金属层15的膜厚度T15大。
(6)下层金属层15和上层金属层17的膜厚度T15和T17的合适范围-当下层金属层15的构成材料与被固定层14的构成材料不同时,下层金属层15的膜厚度T15的范围优选为0.1nm到1.0nm,最好为0.1nm到0.5nm。
-当上层金属层17的构成材料与自由层18的构成材料不同时,上层金属层17的膜厚度T17的范围优选为0.2nm到1.5nm,最好为0.3nm到1.0nm。
(7)绝缘层161的膜厚度T16,例如,优选大约是1nm到3nm,最好是1.5nm到2.5nm。电流通路162的直径D16,例如,大约为2nm到6nm。
在下文中将详细介绍上述结构。
(1)电流通路162的对面分别配置有被固定层14和自由层18的晶粒145和185。这里,晶粒145、185的中央部分配置成使得晶粒边界146、186(例如,如图5所示)不位于电流通路162的正上方或正下方。
电流被限制在电流通路162中并且流入磁性层(被固定层14和自由层18),从而实现MR率的提高。这里,降低磁性层中的扩散电子散射对实现高MR率是非常必要的。出于这个目的,除了使磁性层良好结晶外(具有更少的结晶缺陷),晶粒145、185的晶粒边界与电流通路162的位置关系是很重要的。当晶粒边界146存在于电流通路162的正上方或正下方时,在电流通路162中被限制的传导电子就会在磁性层的晶粒边界散射,因此丧失了自旋信息,或缩短了平均自由行程。这意味着降低了MR率。
而且,由于晶粒边界是结晶未完成的区域,当被限制在电流通路162中的大电流密度的电流流入晶粒边界时,由于电迁移容易造成稳定性变差。同样从稳定性的角度考虑在电流密度变大的电流通路162的正上方不存在结晶不完全的晶粒边界是十分重要的。
由于电流通路162配置在被固定层14的晶粒145的中央部分,因此已经通过电流通路162的感应电流流过被固定层14的晶粒145的中央部分。因此,从电流通路162流出(或流向电流通路162)的电子流过结晶良好的区域,因此降低了在晶粒边界中的传导电子的散射(非弹性散射)或传导电子的自旋反转。结果,增大了MR率。用这种方法,为了减少不必要的非弹性散射,不将自由层18的晶粒边界配置在电流通路162的正上方是很重要的。
同样在被固定层14的情况下,考虑到稳定性,不将自由层18的晶粒边界配置在电流通路162的正下方是很重要的。
这里,图2中的参考符号Ie表示电子的流动,因此其方向与感应电流的方向相反(同样在后面介绍的图3和图4中使用)。特别地,电子从自由层18流向被固定层14,而电流从被固定层14流向自由层18。
电流通路162和磁性层的晶粒之间的这样的配置关系在自由层18中比在被固定层14中更为严格。正如下面将要介绍的那样,自由层18的晶粒185的粒径比被固定层14的晶粒145的粒径小。因此,自由层18的晶粒边界在膜表面的二维平面中出现的更为频繁,因此由于晶粒边界而更易受到扩散电子散射(非弹性散射)的影响。特别地,需要对晶粒边界的配置加倍注意,换言之,电流通路162配置在自由层18的晶粒的中央是很重要的。特别地,当自由层18的晶粒185的直径D18用从0到100的相对值表示时,(定义0和100的方法将在后面介绍),则至少电流通路162的一部分正好形成在30到70的范围内以下是很重要的。
(2)自由层18的晶粒185的粒径D18比被固定层14的晶粒145的粒径D14小。
电流通路162和自由层18之间的界面以及电流通路162和被固定层14之间的界面对CPP的MR率都是重要的因素。特别地,从增大MR率的观点优选设计被固定层14的晶粒145的微结构。为了实现大的MR率,晶粒直径最好是尽可能的大。
-在自由层18的材料中,由于磁性很大,对于能够用在与电流通路162的界面的材料的限制条件很大。另一方面,对于被固定层14的材料,它比自由层18有更多的选择。换言之,可以用只在与电流通路162的界面中增加自旋相依界面散射效应的材料作为被固定层14的材料。
由于电流在磁性层中不受限制,因此随着从分隔层16沿膜厚度方向的距离变大,磁性层中的电流扩散。因此,为了实现高MR率,晶粒边界146、186(例如,如图5所示)最好既不在电流通路162的正上方或正下方也不在电流通路162的附近。相应地,为了实现大的MR率,磁性层的晶粒145、185的粒径D14、D18最好做得更大一点从而使晶粒边界不配置在电流通路162的附近。此外,为了充分增加被固定层14的磁化固定能力,制成微小的晶粒是适宜的,最好制成适当大的晶粒直径。
然而,作为元件(或磁头)的性能来说不仅仅只有MR率是重要的。因此,通过放大晶粒145,可能会降低元件的性能。
由于电流通路162被配置成与被固定层14的每一个晶粒145相对应,所以放大晶粒145降低了元件单位面积上的电流通路162的数量。例如,当CCP-CPP-GMR头的元件大小是50×50nm时,假设晶粒145的粒径D14是40nm(晶粒直径由膜表面内部的晶粒的直径来定义。如果不是一个理想的圆,则取直径的最大值),在一个元件中的晶粒145的数目是1或2。这种数量上的参差不齐导致了每个元件阻抗或MR率的参差不齐。为了减少各元件的参差不齐,晶粒145的粒径最好较小。因此,减少各元件中特性的参差不齐和增大MR率的要求是互相矛盾的要求。
-另一方面,在自由层18中,实现良好的软磁性(对于外部磁场反应良好的磁化)也很重要。为了实现良好的软磁性,与元件大小相比晶粒185的粒径D18最好比较小。
考虑到软磁性,作为晶粒185的粒径D18很小的情况的极限,自由层18可以是不具有晶粒185的非晶体结构。
然而,为了保持良好的MR率,整个自由层18都是非晶体结构是不适宜的,因为它在电流通路162附近接收非弹性电子散射。特别地,为了实现高MR率,与电流通路162接触的磁性材料有必要是受非弹性电子散射影响较小并且可以实现低阻抗的晶体结构。
在电流通路162附近,当使用被视为是微小晶粒的最小状态的非晶体结构的磁性层时,该磁性层不能配置在与分隔层16的界面处。在这种情况下,非晶体磁性层通过具有晶体结构的磁性结构配置在分隔层16上。因此,具有晶体结构的磁性层至少存在于自由层18的分隔层16侧的界面附近是很重要的。
-如上,关于磁性层的晶粒直径存在复杂的平衡条件。尤其是,考虑到MR率,磁性层的晶粒直径最好要大。另一方面,为了发挥出被固定层14的磁化固定能力,被固定层14的晶粒145的粒径D14最好是合适的大小。此外,为了减少电流通路162的数量以及其尺寸的参差不齐,作为电流通路162基底的被固定层14的晶粒145的粒径D14最好要小。另一方面,为了使得自由层18的软磁性良好,自由层18的晶粒185的粒径D18最好要小。然而,粒径D18太小会导致MR率的下降。
(3)接下来将说明被固定层14和自由层18的晶粒145、185的粒径D14、D18的合适范围。
-晶粒145的粒径D14的适宜范围是5nm到20nm。当粒径D14小于这个范围时,由于晶粒边界电子的非弹性散射的影响会变大,从而导致MR率的降低。另一方面,例如,如果晶粒145的大小相对于60×60nm的元件大小太大,则会导致源于晶粒145的阻抗RA或MR率的参差不齐。注意这个晶粒范围也与为了保持被固定层14的磁性特性良好的条件匹配。
晶粒145的粒径D14的更为优选的范围是8nm到20nm。
-自由层18的晶粒185的粒径优选是3nm到10nm,最好是3nm到8nm。这是实现软磁性和MR率之间平衡的范围。考虑到软磁性,晶粒直径最好要小,但是当晶粒直径太小时,会导致MR率的下降。考虑到MR率,晶粒直径最好比膜厚度范围大。考虑到实现良好的对磁头的输出有重要贡献的软磁性,优选上述晶粒直径范围。
如已经介绍过的,在自由层18中,作为粒径D18较小情况的极限,部分自由层18可能是非晶体结构(考虑到软磁性)。然而,如上所述,至少在电流通路162的正上方,最好具有这里所示的晶粒直径(考虑到实现高MR率)。
(4)将说明下层金属层15的膜厚度T15。
当下层金属层15的构成材料与被固定层14的构成材料不同时,下层金属层15的膜厚度T15优选是0.1nm到1.0nm,最好是0.1nm到0.5nm。
图3是表示本发明的第一比较实例的剖面视图,与图2对应。在这个实例中,下层金属层15的膜厚度T15x比1.0nm厚。
为了在CCP-CPP元件中获得高MR率,限制在分隔层16中的电流在仍被限制时到达磁性层(被固定层14或自由层18)是很有必要的。当下层金属层15很厚时,限制在电流通路162中的电流在到达磁性层之前在低阻抗的下层金属层15内扩散。因此,通过电流通路162中的电流限制通路结构造成的增加MR率的效果降低了,这导致了MR率的降低。为了避免这个问题,下层金属层15的膜厚度T15最好是1nm或更小。
另一方面,即使在半原子层中诸如Cu的层的存在可以避免被固定层14和绝缘层161的直接接触,并且可以确保作为被固定层14的金属材料的稳定性。因此,最好存在0.1nm或更大的下层金属层15。然而,当下层金属层15的构成材料与被固定层14的相同时,就不再定义下层金属层15的膜厚度T15,因此不局限于此。
(5)接下来将说明上层金属层17的膜厚度T17。
当上层金属层17的构成材料是Cu等物质时,换言之,与构成自由层18的磁性材料不同时,上层金属层17的膜厚度T17优选为0.2nm到1.5nm,最好是0.3nm到1.0nm。
图4是表示本发明的第二比较实例的剖面视图,与图2对应。在这个实例中,上层金属层17的膜厚度T17x比1.5nm厚。
当上层金属层17很厚时,限制在电流通路162中的电流在到达磁性层之前在低阻抗的上层金属层17中扩散。因此,通过电流通路162中的电流限制通路造成的增加MR率的效果降低了,这导致了MR率的降低。为了避免这个问题,上层金属层17的膜厚度T17最好是1.5nm或更小。
另一方面,当上层金属层17的膜厚度T17比0.2nm薄时,会很难使在其上结晶成长的自由层18的结晶性良好。因此,上层金属层17的膜厚度T17最好是0.2nm或更大。然而,当上层金属层17的构成材料和自由层18相同时,就不再定义上层金属层17的膜厚度,因此不局限于此。
(6)上层金属层17的膜厚度T17最好比下层金属层15的膜厚度T15大。
当自由层18的晶粒185的粒径D18很小时,在电流通路162的上或下具有低阻抗的金属层内的电流的扩散的影响也很小。由于阻抗在晶粒边界很大,所以二维平面方向中电流的扩散的影响很小。因此,可以使得与具有小晶粒直径的磁性材料接触的上层金属层17的膜厚度T17比与具有大晶粒直径的磁性材料接触的下层金属层15的膜厚度T15大。例如,当下层金属层15的膜厚度T15是0.2nm时,上层金属层17的膜厚度T17可以是0.3nm或更大。
此外,考虑作为种子层提高自由层18中的晶体生长,上层金属层17最好很厚。自由层18的特性影响元件的动态性能。因此,利用上层金属层17,可以改善自由层18的结晶性,并且可以提高元件的整体性能。
如上,上层金属层17的膜厚度T17允许比下层金属层15的膜厚度T15稍大。这与上层金属层17对应的自由层18的晶粒直径比与下层金属层15对应的被固定层14的晶粒直径小对应。
(7)下面将说明绝缘层161的膜厚度T16以及电流通路162的直径D16。
当绝缘层161的膜厚度T16在大约1.0nm到3.0nm(最好是1.5mm到2.5nm)的范围内时,可以用后面将要介绍的PIT较为容易地制造绝缘层161和电流通路162。此外,在这个范围内的膜厚度T16对于电流限制通路效应方面也是有利的。
贯通绝缘层161的电流通路162的直径大于等于1nm小于等于10nm,最好是大约2nm到6nm。直径大于10nm的电流通路162是不可取的,因为当元件尺寸作得很小时,会导致各元件的特性参差不齐,最好不要存在直径大于6nm的电流通路162。
图5、图6、图7分别是表示分隔层16的实例的剖面、顶面、底面的剖面视图、俯视图和仰视图。顶面和底面分别表示从自由层18侧和被固定层14侧看到的状态。注意与图2相比,在这些视图中放大倍数较小。
图6和图7不仅显示自由层18和被固定层14的晶粒185、145,还投影显示电流通路162从而显示垂直位置关系。这个微结构可以通过后面介绍的三维原子探测器得到确认。
如图5到图7所示,电流通路162配置在被固定层14和自由层18的晶粒145、185的中央部分的膜厚度方向的延长线上。这个位置关系可以通过观察投影结构得到确认。
如图5到图7所示,在位于电流通路162上方的晶粒之间也可以配置自由层18的晶粒185。电流通路162的正上方的晶粒185是用电流通路162作为起点通过晶体生长形成的,从而其结晶性相对较好。但是,考虑到在自由层18中实现良好的软磁性,除了电流通路162正上方的以外,使绝缘层161(氧化材料)上方的晶粒185良好结晶也是很重要的。这是因为在电流通路162中限制的传导电子不仅流向自由层18的单个晶粒185也会通过晶粒边界186流向周围的晶粒185。
如上,与电流通路162正上方的晶粒185相邻的晶粒185的结晶性也很重要。此外,自由层18的软磁性不仅由电流通路162正上方的晶粒185决定,也由那些除了电流通路162正上方的晶粒185以外的晶粒185决定。特别是,考虑到软磁性,它被决定反映所有晶粒185的特性,因此控制所有磁性层的晶粒185的微结构是很重要的。
除了电流通路162正上方的晶粒以外的晶粒185的结晶性不仅取决于电流通路162的形成过程也取决于自由层18的形成过程。通过后叙的晶体生长处理,可以改善除了电流通路162正上方的晶粒185以外的晶粒185的结晶性。
此外,图8到图10分别显示分隔层16的另一实例的剖面、顶面、底面的剖面视图、俯视图和仰视图,与图5到图7对应。
在图8到图10的结构中,电流通路162所占据的面积比在图5到图7的结构中小。结果,图8到图10中的结构是面积阻抗RA比在图5到图7中的结构高的情况的例子。
与图5到图7中的结构相比,各电流通路162的面积比在图8到图10中的结构要小。此外,在图8到图10的结构中,小的电流通路162不见了且其数量也降低了。除了这几点以外,图8到图10的结构与图5到图7的结构相同。
这种电流通路162可以通过增加非氧化材料的膜厚度来形成。特别地,不仅可以通过形成完全垂直贯通氧化层的电流通路162来调节阻抗,也可以通过形成不完全贯通的电流通路162或贯通部分的面积较小的电流通路162来调节阻抗。这种情况在图8到图10中显示。
这里,晶粒185、145的中央部分可以定义如下。如图5、图6、图7所示,划出一条直线横断自由层18和被固定层14的晶粒185、145。此时,划出横跨晶粒185、145的具有最长长度的一条直线。在直线上,晶粒边界186、146的一端G0和另一端G1分别定义为坐标0和坐标100。同时,位于坐标30和70之间的位置定义为中央部分。
将电流通路162配置于自由层18的晶粒185中央部分的正下方对于实现高MR率是很重要的。如上所述,为了实现高MR率,限制在电流通路162内的电流通过晶粒而在晶粒边界中传导电子没有非弹性散射,这是很重要的。此外,如上所述,将电流通路162配置于被固定层14的晶粒145的中央部分的正上方对于实现高MR率也很重要。
然而,在自由层18中,晶粒185很小且晶粒边界靠近电流通路162。因此,在自由层18中,比被固定层14更需要将电流通路162配置于晶粒中央部分,这种位置关系是很重要的。
相对于被固定层14的晶粒145的中央部分的位置,电流通路162的位置很大程度上取决于电流通路162的形成条件。另一方面,相对于自由层18的晶粒185的中央部分的位置,电流通路162的位置除了取决于电流通路162的形成条件以外还取决于自由层18的形成条件。自由层18的晶体结构不能由电流通路162的形成条件控制,因此自由层18的形成条件也很重要。通过后叙的晶体生长处理,可以对应电流通路162形成晶粒185,且除了电流通路162正上方的晶粒185以外的晶粒的结晶性可以被良好地保持。
晶粒边界可以定义为具有相同晶向的部分(晶粒)和与该部分(晶粒)的晶向不同的部分(另一晶粒)之间的边界部分。晶向是否相同可以通过TEM图像中的电子衍射斑识别。顺便说一下,用暗场图像也是用于识别晶粒的有效方法。
这里,当晶粒很小时,可能会难以从电子衍射斑上识别各个晶粒。这是因为电子显微镜是对具有深度方向的厚度的观测样本进行二维投影的画面。当被测量样本的深度方向存在多个晶粒时,由于这些晶粒的电子束彼此互相干扰因此难以识别各个晶粒。
在这种情况下,可以用三维原子探测器通过合金材料的组成分布识别出晶粒边界。
图11、图12、图13是表示部分自由层18由NiFe形成的情况下晶粒边界的实例的视图。该自由层18从分隔层16侧由CoFe/NiFe构成。
图11是表示用三维原子探测器测量得到的自由层18的Ni原子的浓度分布的实例的视图。图12是强调图11的Ni原子的浓度分布的视图。图11中Ni的成分浓度更清晰地强调出来。图13是表示在自由层18的膜表面中Ni原子的浓度梯度的实例的视图。
如图13所示,对于Ni的浓度梯度,差值在3%或以上的富含Ni的部分被定义为晶粒边界186。即,镍浓度的峰值P1到P3对应晶粒边界186,且两者间的距离L1、L2对应晶粒185的粒径D18(此处,大约为6nm)。
此外,如图13所示,富含Ni的位置Fe匮乏。即,晶粒内部和晶粒边界在微结构上是不同的,因此局部成分上产生分布。由于在晶粒和晶粒边界中都有存在概率高的元素,因此可以通过成分映射识别晶粒区域和晶粒边界区域。
在晶粒具有是本实施例目标这样的3nm或更大的粒径的情况下,与晶粒内部相比晶粒边界具有更小的体积。因此,如图13所示,可以只把含有不同成分的一些区域定义为晶粒边界并将含有基本固定成分的大部分区域定义为晶粒内部。
当晶粒的大小是1nm或更小时或者当其是非晶体结构时,在这个场所就不会出现成分的浓度分布,因此变得平坦。这里,对成分的浓度分布的存在定义为浓度分布是3原子%或更多的情况。
这个定义可以被扩展到磁性材料的成分是不同的情况。总的来说,可以把其中合金磁性材料的成分有3原子%或更多的差异的闭合区域(环形、方形、六角形等的环)定义为晶粒。例如,在FeCo合金的情况中,可以把在膜表面中Fe和Co的成分有3原子%或更多差异的二维闭合区域的内部定义为晶粒。
在图12中,除了用这种方法定义的晶粒边界186以外,也通过投影示出了构成电流通路162的Cu。如图12所示,形成电流通路162的Cu被配置于自由层18的晶粒185的中央部分,即在坐标30到坐标70的范围内至少电流通路162的一部分存在的位置。此外,在自由层18的晶粒185的中央部分,即坐标30到坐标70的位置,存在电流通路的Cu的纯度最高的区域。这里,未示出下层金属层15和上层金属层17。只示出了电流通路162的中央部分,即只示出了Cu的纯度最高的区域。
下面将详细描述使用能够对图11到图13进行结构观察的三维原子探测显微镜的观察方法。
三维原子探测显微镜是一种能够按原子顺序对材料的成分信息进行三维映射的测量方法。具体是,对测量目标样本施加高电压,该目标样本被加工成末端的曲率半径为30nm到100nm,高约100μm的针状。然后,用二维探测器探测从测量目标样本的末端被电场蒸发的原子的位置。通过跟踪在用二维探测器探测到的(x,y)二维平面中的原子的位置信息的时间经过(时间轴),可以获得Z方向上的深度信息,从而使得(x,y,z)三维结构的观察成为可能。
如图2到图6所示的结构可以通过,例如,意象科学仪器公司(Imago ScientificInstruments Corporation)的局部电子探测仪(Local Electrode Atom Probe)得到确认。
图11只表示出自由层18的Ni的状态,图12表示出自由层18的Ni和只具有高浓度Cu的区域。同样在电流通路162的内部,存在Cu的浓度梯度。因此,如果显示出即使很少量的Cu,上层金属层17中的Cu和下层金属层15中的Cu也可以被显示出来。在图12中,为了只强调电流通路162,只显示在1nm3的立方中含有50%或更高浓度Cu的区域。结果,设置为不显示厚度为0.5nm或更小的上层金属层17或下层金属层15的状态。与电流通路162的大小相比,下层金属层15和上层金属层17更薄。因此,当只显示具有高纯度Cu的区域时,只有电流通路162的中央部分被显示出来。
应该注意到尽管这里使用意象科学仪器公司的设备,但是也可以使用牛津仪器、Cameca或具有同等功能的三维原子探测器进行分析。
此外,一般来说电场蒸发是由施加电压脉冲造成的,然而可以用激光脉冲代替电压脉冲。无论是在哪种情况,都要使用直流电压增加偏置电场。在电压脉冲情况下,电场蒸发所需要的电场通过电压施加。在激光脉冲的情况下,通过提高局部的温度从而制造电场蒸发容易发生的状态来产生电场蒸发。
在超薄层的情况下,定义原子成分本身是很困难的。因此,可以基于存在Cu的区域来定义膜厚度。在不同的层中,易于对与存在Cu的区域对应的膜厚度进行相对地比较。例如,甚至可以用0.1nm数量级的膜厚度来确定下层金属层15中的Cu和上层金属层17中的Cu哪个更厚。
(磁阻效应元件的制造方法)下文将说明本实施例所述的磁阻效应元件的制造方法。
图14是表示磁阻效应元件的制造步骤的实例的流程图。此外,图15是表示用于制造磁阻效应元件的沉积设备的概况的示意图。
如图15所示,用过渡腔(TC)5O作为中心,通过闸门阀分别提供负载固定腔51、预清洗腔52、第一金属膜沉积腔(MC1)53、第二金属膜沉积腔(MC2)54、以及氧化层/氮化层形成腔(OC)60。在这个沉积设备中,基板可以在与闸门阀相连的各个腔之间的真空中传送,因此基板的表面要保持干净。
金属膜沉积腔53、54具有多个(5到10个)目标。沉积方法的实例包括诸如DC磁控溅射、RF磁控溅射等的溅射方法,离子束溅射方法,气相沉积方法,CVD(化学气相沉积)方法,MBE(分子束外延)方法等。
如图14所示,从基层12到覆盖层19依次被形成。(步骤S11到步骤S17)。
在基板(未示出)上,依次形成下电极11、基层12、固定层13、被固定层14、下层金属层15、分隔层16、上层金属层17、自由层18、覆盖层19、上电极20。
基板设置在负载固定腔51上,金属的沉积是在金属沉积腔53、54中进行的,而氧化是在氧化层/氮化层形成腔60中进行的。金属膜沉积腔所达到的真空等级最好是1×10-8Torr或更低,一般大约为5×10-10到5×10-9Torr。过渡腔50所达到的真空等级为10-9Torr数量级。氧化层/氮化层形成腔60所达到的真空等级最好是8×10-8Torr或更低。
(1)基层12的形成(步骤S11)通过微加工处理预先在基板(未示出)上形成下电极11。
在下电极11上,例如,沉积Ta[5nm]/Ru[2nm]作为基层12。正如已经介绍的那样,Ta是用于缓和下电极表面粗糙程度的缓冲层12a。Ru是用于控制沉积其上的自旋阀膜的晶向和晶粒直径的种子层12b。
(2)固定层13的形成(步骤S12)固定层13沉积在基层12上。可以用诸如PtMn、PdPtMn、IrMn、RuRhMn的铁磁性材料作为固定层13的材料。
(3)被固定层14的形成(步骤S13)被固定层14在固定层13上形成。被固定层14可以是,例如,由下层被固定层141(Co90Fe10[3.6nm])、磁耦合层142(Ru
)以及上层被固定层143(FeCo[1nm]/Cu
/FeCo[1nm]/Cu
/FeCo[1nm])构成的合成被固定层。
(4)分隔层16的形成(步骤S14)接着,形成具有电流限制通路结构(CCP结构)的分隔层(CCP-NOL)16。为了形成分隔层16,使用氧化层/氮化层形成腔60。
为了形成分隔层16,使用如下方法。这里将会说明一个实例,在该实例中在由具有非晶体结构的Al2O3形成的绝缘层161中形成含有由具有金属晶体结构的Cu构成的电流通路162的分隔层16。
1)在上层被固定层143上,沉积成为电流通路的供给源的下层金属层15(第一金属层,例如Cu),然后在下层金属层15上沉积将被变换为绝缘层161的待氧化的金属层(第二金属层,例如AlCu或Al)。
待氧化的金属层通过在其上照射稀有气体(如Ar)的离子束进行预处理。这种预处理称为PIT(预离子处理)。作为PIT的结果,产生部分下层金属层15被吸收进入到待氧化金属层内的状态。在用这种方法进行氧化处理之前,在第二金属层沉积后进行诸如PIT的能量处理是非常重要的。用稀有气体的RF等离子体代替离子束进行PIT可以达到同等效果。
此外,作为具有与PIT同等效果的处理,可以在氧化之前进行预热处理。在这种情况下,对于其温度,最好在100℃到400℃的温度范围进行处理。无论是PIT还是预热处理的情况,在真空中进行原位(in-situ)是很重要的,并且最好不要将样本暴露在空气中。
在进行PIT之前沉积下层金属层15的时候,第一金属层(下层金属层15Cu层)就以二维膜的形式存在了。通过PIT步骤,第一金属层内的Cu被吸收到AlCu层中并进入其内部。进入AlCu层的Cu即使在进行了随后的氧化处理后仍保持金属状态,或者利用氧化时的能量促进氧化物Al2O3和金属Cu的分离,从而变成电流通路162。PIT对实现具有高纯度Cu的电流限制通路(CCP)结构是很重要的。
在PIT步骤中,在加速电压30V到150V、电子束电流20mA到200mA以及处理时间30秒到180秒的条件下照射Ar离子。在加速电压中,优选40V到60V的电压范围。在电压范围高于这个值的情况下,由于PIT之后受表面粗糙度等的影响可能会出现MR率的下降。也可以用30mA到80mA的范围内的电流值和60秒到150秒的范围内的照射时间。注意当使用RF等离子体时,优选相似的条件范围。
此外,除了PIT,还有通过偏压溅射的方法在被转变为诸如AlCu或Al的绝缘层161之前形成金属层的方法。在这种情况下,DC偏压下偏压溅射的能量可以是30V到200V而RF偏压下为30W到200W。此外,也可以在进行能量辅助(energy assist)时通过离子束进行沉积。在这种情况下,离子束的能量最好约为30V到200V。
作为PIT的结果,下层金属层15的最终膜厚度T15变得比沉积开始时的膜厚度T15s(初始膜厚度)薄。这是因为下层金属层15进入位于其上的非氧化金属并且被吸入其中。为了恰当地保持最终膜厚度T15,有必要考虑由于PIT而使膜厚度的降低。具体地,下层金属层15的初始膜厚度T15s是根据待氧化金属层的膜厚度而调整的。特别地,当待氧化金属层的膜厚度增加时,必须在PIT步骤时增加允许进入待氧化金属层的下层金属层15的成分,因此有必要增厚下层金属层15的初始膜厚度T15s。例如,当待氧化金属层是膜厚度为0.6nm到0.8nm的AlCu时,初始膜厚度T15s被设置为大约0.1nm到0.5nm。当待氧化金属层是膜厚度为0.8nm到1nm的AlCu时,初始膜厚度T15s被设置为大约0.3nm到1nm。
为了实现具有良好结构的高纯度的电流通路162,最好进行PIT。然而,也可以在氧化处理之后进行用于进行离子束或RF等离子体处理的AIT代替PIT。这将在后面介绍。
如果下层金属层15的初始膜厚度T15s太薄,则在PIT步骤中就不会为待氧化金属层提供足够的下层金属层15的成分,这就难以允许电流通路162贯通到待氧化金属层的上部。造成的结果是,面积阻抗RA变得非常高,并且MR率变成不足的值。
另一方面,如果下层金属层15的初始膜厚度T15s太厚,则下层金属层15的最终膜厚度T15有可能太大。正如已经描述的,下层金属层15的最终膜厚度T15最好是1nm或更小。如果膜厚度大于这个值,则会丧失电流限制通路效应,并且丧失MR率的增加效应。
2)接着,向待氧化金属层提供氧化气体(如,氧气)以形成绝缘层161。同时,选取的条件使得电流通路162不被氧化且保持原态。通过氧化,待氧化金属层转化为由Al2O3构成的绝缘层161,从而形成贯通绝缘层161的电流通路162并形成分隔层16。
例如,在照射一束稀有气体(如Ar、Xe、Kr、He)离子束的同时提供氧化气体(如,氧气),从而氧化待氧化金属层(离子束辅助氧化(IAO))。通过这种氧化处理,具有由Al2O3构成的绝缘层161和由Cu构成的电流通路162的分隔层16就形成了。这是利用氧化能量差异的处理,使得Al易于被氧化而Cu不易被氧化。最好是将氧化气体直接引入氧化腔,但是在使用离子枪氧化的情况下,氧气可能被引入到离子源中。
在这一步中,当供给氧气时,在加速电压为40V到200V、电子束电流为30mA到200mA,以及处理时间为15秒到300秒的条件下照射Ar离子。在上述加速电压中,电压范围最好是50V到100V。如果加速电压高于这个值,则在IAO处理中由于受表面粗糙等的影响会出现MR率的降低。也可以采用40mA到100mA的电子束电流和30秒到180秒的照射时间。
对于通过IAO的氧化处理中的氧气供给量,2000L到4000L是优选的范围。在IAO处理中,如果不仅是Al还有下层磁性层(被固定层14)也被氧化的话,就会降低耐热性和CCP-CPP元件的稳定性,因此不可取。为了提高稳定性,位于分隔层16下方的磁性层(被固定层14)不被氧化且处于金属状态是非常重要的。为了实现这一点,氧气供给量需要处于上述范围内。
此外,为了利用供给的氧气形成稳定的氧化物,最好只当离子束在基板表面被照射时才允许氧气流过。即,当离子束没有在基板表面上被照射时最好不允许氧气流过。
可以使用Au、Ag等替代Cu作为形成电流通路162的第一金属层(下层金属层15)的材料。然而,与Au、Ag相比,Cu在热处理时具有更高的稳定性,因此更为可取。可以使用磁性材料替代那些非磁性材料作为第一金属层的物质。这些磁性材料的实例包括Co、Fe、Ni和它们的合金。
当用于被固定层14的磁性材料和用于电流通路162的磁性材料相同时,就没有必要在被固定层14上为电流通路162沉积供给源(第一金属层)。特别地,在将要被转换为绝缘层161的第二金属层被沉积在被固定层14上以后,通过进行PIT步骤使得被固定层14的材料进入了第二金属层,从而形成由磁性材料构成的电流通路162。
当第二金属层使用Al90Cu10时,在PIT处理中不仅第一金属层中的Cu被吸收,而且在AlCu中的Cu也被与Al分离。特别地,从第一金属层和第二金属层上形成电流通路162。当在PIT步骤之后进行离子束辅助氧化(IAO)时,在利用离子束的辅助效应的氧化处理中,在促进Al2O3和Cu的分离的同时进行氧化。特别地,通过利用离子束的能量辅助效应,Al很容易被氧化而Cu很容易被还原,并且易于形成具有高纯度Cu的CCP。
这里,虽然用离子束作为IAO,但是也可以用RF等离子体代替离子束。同样在这种情况下,电压、电流、氧气量、处理时间的合适范围与那些用于IAO的情况类似。
可以用不含电流通路162的构成材料的Cu的Al的单金属代替Al90Cu10作为第二金属层。在这种情况下,用作电流通路162的构成材料的Cu只能从作为基底的第一金属层供给。当用AlCu作为第二金属层时,用作电流通路162的材料的Cu也可以在PIT步骤中从第二金属层供给。因此,当形成厚的绝缘层161时,可以相对容易地形成电流通路162。当用Al作为第二金属层时,Cu就难以与氧化形成的Al2O3混合,因此具有高电压阻抗的Al2O3可以很容易地形成。由于Al和AlCu具有各自的优点,因此可以根据情况合理使用。
当用AlCu作为第二金属层时,优选具有用AlxCu100-x(x=100%到70%)表示的成分的AlCu。对于AlCu,可以加入诸如Ti、Hf、Zr、Nb、Mg、Mo、Si的元素。在这种情况下,添加元素的成分最好约为2%到30%。当添加了这些元素后,会使CCP结构的形成变得简单。此外,当这些添加元素在Al2O3的绝缘层161与Cu的电流通路162的边界区域比其他区域分布地丰富时,绝缘层161和电流通路162的粘着性提高,同时也提高了电子迁移阻抗(electro-migration resistance)。在CCP-CPP元件中,在分隔层16的金属通路中流过的电流密度变成很大的值达到107A到1010A/cm2。因此,电子迁移阻抗高是很重要的,同时也可以确保在传导电流时Cu电流通路162的稳定性。然而,当形成了适当的CCP结构时,可以实现足够好的电子迁移阻抗而不需要向第二金属层添加元素。
第二金属层的材料不局限于用于形成Al2O3的Al合金,也可以是以诸如Hf、Mg、Zr、Ti、Ta、Mo、W、Nb、Si为主要成分的合金。此外,从第二金属层转变而来的绝缘层161也不局限于氧化物,也可以是氮化物或氧氮化物。
当任意一种材料用作第二金属层时,其沉积时的膜厚度最好是0.5nm到2nm。此外,在转变为氧化物、氮化物或氧氮化物时的膜厚度优选约为1.0nm到3.0nm,最好是1.5nm到2.5nm。
绝缘层161可能不仅是含有单元素的氧化物,也可以是合金材料的氧化物、氮化物、氧氮化物。例如,用Al2O3作为基底材料,可以用Ti、Mg、Zr、Ta、Mo、W、Nb、Si等中的任意一种元素或在Al中含有0%到50%多种元素的材料的氧化物等。
如上所述,通过PIT从下层金属层15中吸收的成分组成了电流通路162。此时,在被固定层14的晶粒145正上方的下层金属层15被优先吸收成为电流通路162,因此晶粒145和电流通路162应彼此对应配置。
通过PIT,下层金属层15中的Cu被集中到被固定层14的晶粒145(下层金属层/非氧化金属层是相同的晶粒)的中央部分,并且被从晶粒145的中央部分吸收到非氧化金属层表面,然后出现到上层。特别地,位于非氧化金属层下方的下层金属层15转变为下层金属层15的材料在晶粒145的中央部分沿膜厚度方向被吸收、在膜厚度方向贯通或半贯通的状态。
在该处理之后通过IAO,富含Al的区域被氧化。另一方面,汇集到晶粒145中央部分的下层金属层15的构成材料的富含Cu的区域保持未被IAO处理氧化,从而形成电流通路162。
绝缘层161的膜厚度T16由第二金属层(待氧化金属层)的膜厚度决定。在AlCu的情况下第二金属层的膜厚度为0.6nm到2nm,而对于Al的情况大约为0.5nm到1.7nm。通过第二金属层氧化形成的绝缘层161的膜厚度T16优选约为1.0nm到3.0nm,最好为1.5nm到2.5nm。
为了实现良好的电流通路162的结构,这里电流通路162通过PIT/IAO形成。
然而,在IAO后通过用诸如Ar、Xe、Kr的稀有气体的离子束或稀有气体的离子体进行处理可以替代PIT形成良好的电流通路162。这种处理由于是在氧化后进行的处理,因此叫做AIT(后离子处理)。特别地,也可以通过IAO/AIT形成电流通路162。
在PIT中,Cu和Al的分离是在氧化之前实现的。另一方面,在AIT中,通过IAO处理将Al氧化成Al2O3后,促进Al2O3和Cu的分离。也可以在AIT处理中通过离子束或等离子体的能量碰撞来促进这种分离。
此外,可以在部分被氧化的电流通路162的形成部分还原氧。特别是,当电流通路162的构成材料是Cu时,在用IAO形成的CuOx中通过AIT还原氧可以形成金属态的Cu。
在AIT处理中,在加速电压为50V到200V、电流为30mA到300mA以及处理时间为30秒到180秒的条件下,在第二金属层的表面照射含有诸如Ar、Kr、He、Ne、Xe的稀有气体的离子束或等离子体(如RF离子体)。
在离子束的情况下,加速电压和电流可以独立控制。另一方面,在RF等离子体等的情况下,当输入的RF功率确定时,自动确定加速电压和电流,因此难以对加速电压和电流进行独立控制。
但是,RF等离子体具有易于设备维护的优点。因此,根据设备的状况,可以使用离子束或RF等离子体。
在IAO/AIT处理中,IAO的优选条件与上述情况相同。此外,膜结构和材料与上述PIT/IAO的情况相同。
在AIT处理中,在氧化后相比于PIT有必要进行相对更强能量的处理,因此被固定层14和自由层18之间的层间耦合场很容易变大。这是因为由于AIT处理增加了分隔层16的绝缘层161表面的不平坦,这可能会增加Neel耦合(neel coupling)(桔皮耦合)(orangepeel coupling)。PIT中不存在这种问题,因此PIT是更为可取的处理。
除了取代PIT而进行AIT的情况外,也可以在进行PIT处理的情况进行AIT处理。换言之,可以进行三种处理PIT/IAO/AIT。
在这种情况下,为了允许分离IAO处理后残留的微量吸收浮动的氧的目的,最好用与没有PIT的情况相比相对较弱的能量进行AIT处理。这种情况下AIT条件的具体例子如下。即,在加速电压为50V到100V、电流为30mA到200mA以及处理时间为10秒到120秒的条件下,在表面上照射含有如Ar、Kr、He、Ne、Xe的稀有气体的离子束或等离子体(如RF等离子体)。
电流通路162的直径D16按如下1)、2)确定。
1)通过截面TEM观察,可以确定电流通路162的直径D16。通过截面TEM观察,可以识别出具有晶体结构的电流通路162和氧化绝缘材料。特别地,当氧化绝缘材料具有非晶体结构时,可以识别出电流通路162和氧化材料161。
然而,用这种方法,可以识别出直径D16较大的电流通路162,而检测不出直径D16较小的电流通路162。这是因为,如上所述,由于TEM测量图像是实际在观察的深度方向上具有厚度的物体的二维投影,因此小的晶粒的信息就消失了。考虑到这个问题,对于电流通路162的直径D16,可以识别出大约为4nm或更大的直径。
2)利用三维原子探测器的观察可以确定电流通路162的直径D16。
在这种情况下,电流通路162的构成材料和氧化绝缘材料可以被识别为成分浓度梯度。当电流通路162由含有Cu作为主要元素的材料形成时,在膜的平面方向调查一维浓度分布,且直径D16可以用从Cu浓度最大点的浓度的半值宽度来定义。
(5)上层金属层17、自由层18的形成(步骤S15)在分隔层16上沉积,例如,Cu作为上层金属层17。该上层金属层17由于发挥出充当种子层用于促进将要沉积于其上的自由层18的晶向的功能因而显得很重要。此外,它也发挥出充当阻挡层以防止由氧化材料形成的绝缘层161的氧(或氮)直接接触自由层18的功能。
只考虑这些功能,上层金属层17变厚是有好处的,但是随着它变厚扩散电流的影响就会增加。在CCP-CPP元件中,通过分隔层16内限制的电流流入被固定层14或自由层18,提高了MR率。然而,当电流在上层金属层17内扩散时,通过CCP提升MR率的优点就丧失了。
因此,由于上层金属层17的膜厚度是一种平衡关系,因此存在最适宜的膜厚度。具体说来,该厚度优选是0.2nm到1.5nm,最好为0.3nm到1.0nm。
在上层金属层17上,形成自由层18,例如,Co90Fe10[1nm]/Ni83Fe17[3.5nm]。
为了获得高MR率,对位于与分隔层16的界面上的自由层18的磁性材料的选择是很重要的。在这种情况下,在与分隔层16的界面上,最好用CoFe合金而不是NiFe合金。在CoFe合金中,可以使用具有特别稳定软磁性的Co90Fe10[1nm]。也可以使用不同成分的CoFe合金。
当使用接近Co90Fe10的CoFe合金时,其膜厚度最好是0.5nm到4nm。当使用不同成分的CoFe合金(如,Co50Fe50)时,其膜厚度最好是0.5nm到2nm。当使用例如Fe50Co50(或FexCo100-x(x=45到85))作为自由层18为了提高自旋相依界面散射效应时,使用如被固定层14那样厚的膜厚度来保持作为自由层18的软磁特性是很难的。因此,0.5nm到1nm是适当的膜厚度范围。当使用不含Co的Fe时,由于它具有相对较好的软磁特性,所以其适宜的膜厚度可以约为0.5nm到4nm。
将要被置于CoFe层之上的NiFe层是由具有稳定软磁特性的材料构成。CoFe合金的软磁特性不太稳定,但是可以通过在其上设置NiFe合金来弥补软磁特性。利用NiFe作为自由层18允许使用能够在与分隔层16的界面上实现高MR率的材料,从而对自旋阀膜的整体特性来说是更为适宜的。
NiFe合金的成分最好是NixFe100-x(x=大约75%到90%)。这里,最好使用富含Ni的成分(例如Ni83Fe17)而不是通常使用的NiFe的成分Ni81Fe19。这是为了实现零磁致伸缩(zero magnetostriction)。在沉积于CCP结构的分隔层16上的NiFe中,磁弹性比在沉积于金属Cu制成的分隔层上的NiFe中更加偏移到了正侧。为了消除向正侧的磁弹性的偏移,在负侧使用具有比通常情况更多Ni成分的NiFe成分。
NiFe层的整体膜厚度最好约为2nm到5nm(例如,3.5nm)。当不使用NiFe层时,可以使用由交替层叠1nm到2nm的多层CoFe层或Fe层或约为0.1nm到0.8nm的多层超薄Cu层构成的自由层18。
晶体生长处理是在自由层18上进行的。该晶体生长处理是一种能量处理,通过这种处理促进电流通路162上的自由层18的晶粒185的形成。
作为晶体生长处理,可以使用用离子或等离子体的处理和热处理,但是前者更好。这是因为在前者中可以对处理范围进行控制。
特别是,在利用离子束或等离子体进行的处理中,可以通过选择处理条件只对膜表面进行处理而不处理其下层。另一方面,在热处理中,很难控制处理范围。通过热处理,会在分隔层16下方的层叠膜的界面上出现扩散或之类的情况,这会使自旋阀膜的特性恶化。
利用离子或等离子体进行处理的实例不仅包括沉积之后进行能量处理的方法还包括在诸如利用偏压溅射的沉积、在沉积过程中离子束或等离子体的照射等的沉积处理的同时进行能量处理的方法。
作为分别进行沉积和能量处理的方法,可以进行如下步骤(1)到(4)。
(1)自由层的部分(或全部)的沉积(2)能量处理(离子束、RF等离子体、热处理)(3)自由层的部分(或其余的全部)的沉积(4)能量处理(离子束、RF等离子体、热处理)这里,当整个自由层18在处理(1)、(2)中形成时,则处理(3)、(4)可以省略。也可以执行处理(1)、(2)、(3)而省略处理(4)。
另一方面,作为同时进行沉积和能量处理的方法,有在在沉积处理的同时应用离子束、RF等离子体或DC偏压或加热基板的方法。
如上所述,这种晶体生长处理可以与自由层18的沉积分开处理也可以与沉积同时处理。
通过用离子、等离子体、或加热的方法对自由层18的构成材料进行处理,自由层18的晶粒185在电流通路162上生长。
例如,在CoFe沉积了1nm后,NiFe沉积了2.5nm,作为晶体生长处理,进行60秒到120秒30W到150W的RF等离子体处理。之后,NiFe沉积了2nm,作为晶体生长处理,进行60秒到120秒30W到150W的RF等离子体处理。
自由层18的晶粒185的直径D18用晶体生长处理的条件来控制。例如,在晶体生长处理采用相对较强的能量时,可以使自由层18的晶粒直径大一些,而当晶体生长处理较弱时,自由层18的晶粒直径就变得较小。
然而,当晶体生长处理太弱或太强时会出现问题,因此必须注意它的条件。首先,如果处理太弱,则自由层18的结晶性就倾向于很差。电流通路162正上方的晶粒185的结晶性相对较好,但是不在电流通路162正上方的自由层18的晶粒185的结晶性就倾向于很差。尤其是,当绝缘层161的构成材料是非结晶体时,其结晶性的恶化就更明显了。因此,为了获得良好的自由层18,晶体生长处理是很必要的。
另一方面,当这种处理太强时,自由层18的表面就会变得粗糙。最坏的情况下,绝缘层161的氧化状态甚至会遭到破坏。
这里,强的条件在离子束或RF等离子体的情况下意味着大的加速电压或大的离子电流,在热处理的情况下意味着高的温度。在偏压溅射等的情况下,可能是大的RF功率、大的DC偏压、大的离子束加速电压、大的电流量等。
(6)覆盖层19和上电极20的形成(步骤S16)在自由层18上,例如层叠Cu[1nm]/Ru[10nm]作为覆盖层19。在覆盖层19上,形成用于将电流垂直传导到自旋阀膜的上电极20。
(7)退火处理(步骤S17)在步骤S11到S16中形成的磁阻效应膜10在磁场中进行退火,从而固定被固定层14的磁化方向。
(实例1)在下文中将介绍本发明的一个实例。根据本发明实例的磁阻效应膜10的结构如下所示。
-下电极11-基层12Ta[5nm]/Ru[2nm]-固定层13PtMn[15nm]-被固定层14CoFe[3.4nm]/Ru
/(FeCo[1nm]/Cu
)*2/FeCo[1nm]-下层金属层15Cu
(最终形成的膜厚度,不是沉积时的膜厚度)-分隔层16(CCP-NOL)-上层金属层17Cu
(最终形成的膜厚度,不是沉积时的膜厚度)-自由层18CoFe[1nm]/NiFe[3.5nm]-覆盖层19Cu
/Ru[5nm]在这个实例中,与图5到图7的结构对应,RA是300mΩμm2且MR率是9%。在图5到图7中,形成CCP-NOL的绝缘层161的膜厚度是1.8nm。
被固定层14中的晶粒145具有大约13nm到16nm的粒径D14,且电流通路162被配置在晶粒145的中央部分的正上方。此外,自由层18的晶粒185具有大约4nm到7nm的粒径D18,且电流通路162被配置在晶粒185的中央部分的正下方。
特别是,电流通路162的正上方不存在自由层18的晶粒边界186。这一事实不仅保持良好的MR率,而且对于实现良好的稳定性也是很重要的。
在电流通路162的正上方以外的自由层18中也形成晶粒185,并且其粒径D18是3nm到5nm。由于自由层18是由如此小的晶粒185构成,所以自由层18的软磁性是非常好的。此外,它不会导致MR率的下降,从而同时实现了良好的MR率和软磁性。
此外,在此处作为CCP-NOL的分隔层16中,绝缘层161是Al2O3,且电流通路162含有Cu作为其主要成分。电流通路162的直径D16为2nm到5nm。通过三维原子探测器的观察,在具有5nm直径D16的电流通路162部分Cu的浓度为60原子%到70原子%。另一方面,在富含氧的绝缘层161部分Cu的浓度约为10原子%。因此,Cu的完全分离是在电流通路162和其它部分中确认的。
Al2O3的绝缘层161部分不仅仅由Al和O形成,同时也有大约一些达到10%的Cu、Ni、Co、Fe作为杂质混合其中。然而,分隔层16部分的击穿电压至少为200到几十mV或更大,比实际用作操作电压的约80mV到120mV的电压大,具有足够的耐受电压。
下层金属层15和上层金属层17都是由Cu形成的,并且都极薄,分别为0.2nm和0.4nm。因此,如果使用三维原子探测器,则根据对其的定义方法这些原子成分变得有所不同。当测量对象(下层金属层15和上层金属层17)的体积区域在膜厚度方向做得很深时,测量对象中Cu的浓度就变得相当低。与测量对象的体积区域在平面方向比较宽的情况相比其原子成分明显不同。
0.2nm的膜厚度对应1到2层原子层,而0.4nm的膜厚度对应3到4层原子层。因此,膜厚度可以通过在电流通路162和绝缘层161上方和下方位置处检测到的Cu的原子层来定义。例如,当检测到一到二层原子层时,则膜厚度被定义为0.2nm,而当检测到3到4层原子层时,膜厚度被定义为0.4nm。
在图8到图10所对应的实例中,阻抗的设置比图5到图7中的结构要高,而电流通路162比图5到图7中的结构减少了。在这个实例中,面积阻抗RA是600mΩμm2且MR率为9.5%。由于电流通路162所占的面积的减小或者其数量的减少,面积阻抗RA变高。
为了减少电流通路162所占的面积,氧化前AlCu的膜厚度要做得厚。氧化后绝缘材料的膜厚度T16是2.1nm。同样在RA从300mΩμm2增加到600mΩμm2的情况中,电流通路162形成于自由层18的晶粒185的正下方。此外,电流通路162形成于被固定层14的晶粒145的正上方。
然而,与图5到图7相比,在图8到图10中,在电流通路162的形成过程中存在垂直膜厚度方向的贯通不完全,这减少了电流通路162在分隔层16的二维平面中的占有率。这种在形成过程中的电流通路162可能导致长期稳定性的变动。
这种没能贯通的电流通路162可能具有很小的面积,因此它们完整地形成是比较好的。因此,在制造元件后,有必要进行为了使不完整的金属通路贯通的初始化处理。特别地,以几u秒到几秒为单位使用大约大于等于140mV和小于等于300mV的脉冲形式的电压。也可以以几分钟为单位使用大约大于等于140mV和小于等于300mV的DC电压。
通过电流通路的初始化处理,可以使得没有贯通的电流通路162贯通,与处理前相比,处理后的面积阻抗RA略微下降。虽然取决于条件,但是也可以通过电流通路的初始化处理将面积阻抗RA从600mΩμm2改变到400mΩμm2。这个电压范围最好为大于等于140mV小于等于300mV。当不完全电流通路162消除时,电流通路162的直径D16反映出了面积阻抗RA。在这种状态下,伴随着电流通路162的直径D16的降低电流密度的增加不会过多地影响稳定性。
上述面积阻抗RA为300mΩμm2且MR率为9%的元件要经过导电试验。在CCP中,由于局部的电流密度变成了108A/cm2或更大的值,所以局部发热就很大,并且由电子造成的物理侵蚀(physical attack)的影响也变大。因此,为了使得CCP具有良好的稳定性,有必要控制其微结构。在如图2所示的微结构中,具有良好结晶性的晶粒被配置于CCP的上下方。因此,在晶粒边界的扩散电子散射的影响变得较小,从而有可能获得良好的稳定性。
导电试验的条件是130℃的温度和140mV的偏压。这个温度比实际使用的值要大,并且是用于加速的条件。通过采用比通常使用的条件更为苛刻的条件,稳定性的差异在短时间的试验中就暴露出来了。此外,电流传导方向设置为从被固定层14流向自由层18。特别地,电子的流向是相反的,因此它们是从自由层18流向被固定层14。这种电流传导的方向是减少自旋迁移噪声(spin transfer noise)的理想方向。电流从自由层18流向被固定层14(电子是从被固定层14流向自由层18)的情况具有更大的自旋传递力矩(spin transfertorque),这会在磁头处产生噪声。同样考虑到这一点,电流传导方向最好是从被固定层14到自由层18,而电子的流向是从自由层18到被固定层14。
作为此处的试验条件,由于是加速试验,除了使温度比通常条件更高以外,在元件尺寸上也设置了苛刻的条件。在这个实例中,元件尺寸做得比实际磁头的元件尺寸更大(在实际应用中,比0.1um×0.1um小的元件尺寸)。
当元件尺寸更大而偏压处于相同条件下时,输入的电流量变大,焦耳热的影响变大。即,在与实际小尺寸元件的情况相比热量大的地方是非常苛刻的比较。此外,当元件尺寸很大时,热量产生部分变得很大,这会使元件的散热性变坏。另一方面,在小元件的情况下,在其周围存在热泄露,因此热量可以被容易释放的环境中。
由于这两个原因,该实例的元件用具有比在实际磁头中的元件热影响更大的苛刻条件进行试验。与上述温度效果比较,元件尺寸较大的试验条件使得试验条件更苛刻。也就是说,这些加速试验条件是为了在短时间内判断出稳定性好坏而设置的。
在本实施例中,已确认在电流传导试验中稳定性非常好。具体是,在60小时后获得的恶化量为小于等于10%的非常好的值。这个稳定性可以确保在实际操作环境下长期使用。
另一方面,不具有本实施例的结构显示出40%到60%的恶化量。特别地,这是自由层18的晶粒边界186存在于电流通路162正上方的情况。
本例中在苛刻条件下元件稳定性良好的事实意味着本实施例的磁阻效应元件可以在对稳定性要求很高的环境下使用。在高记录密度对应的磁头中,可以实现具有比传统的更高稳定性的磁头。高密度记录对应的磁头可以在需要严格稳定性规范的使用条件下使用,例如,在应用于高温环境下的汽车导航应用、高速使用的服务器、商业应用等的HDD中。当然,它可以用于通常的HDD应用,诸如通常的个人电脑应用或家庭视频应用、汽车音乐播放器、汽车运动图像播放器、汽车视频等。
此外,在这个试验中,电流传导方向是电流从被固定层14流向自由层18的方向,并且这个电流传导方向在提高稳定性方面比其反向电流传导方向具有更大的效果。该电流传导方向也有利于减少自旋迁移噪声,这意味着可以实现低噪声高稳定性的磁头。
(磁阻效应元件的应用)下文将说明根据本发明实施例的磁阻效应元件(CCP-CPP元件)的应用。
在本发明的实施例中,考虑高密度的情况下CPP元件的元件阻抗RA优选为500mΩμm2或更低,最好为300mΩμm2或更低。当计算元件阻抗RA时,CPP元件的阻抗R乘以自旋阀膜的电流传导部分的有效面积A。这里,元件阻抗R可以直接测量。另一方面,自旋阀膜的电流传导部分的有效面积A是依赖于元件结构的值,因此应该谨慎确定。
例如,当整个自旋阀膜设计为进行实际感应的区域时,则整个自旋阀膜的面积就变成了有效面积A。在这种情况下,为了适当设置元件阻抗,自旋阀膜的面积设置为至少0.04μm2以下,或者用于200Gbpsi以上的记录密度时设置为0.02μm2以下。
然而,当与自旋阀膜接触并且比自旋阀膜小的下电极11或上电极20形成时,则下电极11或上电极20的面积是自旋阀膜的有效面积A。当下电极11和上电极20的面积不同时,较小电极的面积是自旋阀膜的有效面积A。在这种情况下,考虑到适当设置有效元件,将较小电极的面积设置为至少0.04μm2或更小。
在后面将要详细说明的图16和图17的实例的情况下,图16中的自旋阀膜的最小面积是与上电极20接触的部分,因此其宽度被视为轨迹宽度Tw。此外,关于高度方向,与上电极20接触的部分也是图17中最小的,因此其宽度被视为高度D。自旋阀膜的有效面积A被视为A=Tw×D。
在本发明实施例的磁阻效应元件中,电极之间的阻抗R可以是100Ω或更小。这个阻抗R是例如附接在磁头悬架组件(HGA)末端的再现磁头的两个电极极板(electrode pad)间测量到的阻抗值。
在本发明实施例的磁阻效应元件中,当被固定层14或自由层18具有fcc结构时,其最好在垂直于膜表面具有fcc晶向。当被固定层14或自由层18具有bcc结构时,其最好在垂直于膜表面具有hcp(001)晶向或hcp(110)晶向。
本发明实施例所述的磁阻效应元件的晶向特性具有的散射角优选为4.0度或更小,最好是3.5度或更小,进一步更好是3.0度或更小。这是通过用X射线衍射的θ-2θ测量在峰值部分得到的摇摆曲线的半值宽度获得的。同样,也可以检测作为来自元件截面的纳米衍射斑上的斑点的散射角。
虽然取决于反铁磁性膜的物质,但是通常反铁磁性膜和被固定层14/分隔层16/自由层18在晶格间隔方面是不同的,因此,可以在各层分别算出晶向的散射角。例如,晶格间隔通常在铂-锰(PtMn)和被固定层14/分隔层16/自由层18之间是不同的。由于铂-锰是相对较厚的膜,所以是适于在晶向上测量参差不齐的物质。关于被固定层14/分隔层16/自由层18,被固定层14和自由层18在晶向上可能不同,它们是bcc结构和fcc结构。在这种情况下,被固定层14和自由层18各自具有不同的晶向散射角。
(磁头)图16和图17示出了本发明实施例所述的磁阻效应元件被结合在磁头中的状态。图16是沿基本平行于与磁性记录媒介(未示出)相对的媒介相对面的方向切割磁阻效应元件的剖面视图。图17是沿垂直于媒介相对面ABS的方向切割磁阻效应元件的剖面视图。
图16和图17中所示的磁头具有所谓的硬贴合结构(hard abutted structure)。磁阻效应膜10是上述CCP-CPP膜。在磁阻效应膜10的上下分别设置有下电极11和上电极20。在图16中,在磁阻效应膜10的各侧面上层叠设置有偏置磁场应用膜41(bias magnetic fieldapplication film)和绝缘膜41。如图17所示,覆盖层43设置在磁阻效应膜10的媒介相对面上。
磁阻效应膜10的感应电流在基本垂直于膜表面的方向上传导,如位于其上下的下电极11和上电极20中的箭头A所示。此外,用一对偏置磁场应用膜41,偏置磁场可以应用到磁阻效应膜10上。通过这个偏置磁场,磁阻效应膜10的自由层18的磁性各向异性被控制为单各向异性(single anisotropy)以稳定其磁结构(magnetic struction),从而抑制伴随磁壁移动带来的巴克豪森噪声。
提高了磁阻效应膜10中的信噪比,使得当其应用于磁头时,高敏感度磁再现成为了可能。
(硬盘和磁头悬架组件)图16和图17中所示的磁头可以被结合到记录和复制集成型磁头组件中并且装配在磁记录/再现设备中。
图18是阐示这种磁记录/再现设备的概略结构的主要部分立体视图。特别地,本实施例的磁记录/再现设备150是使用旋转致动器型的设备。在本图中,磁盘200附接在锭子152上并沿箭头A的方向由未示出的响应来自未示出的驱动装置控制单元的控制信号的发动机旋转。本实施例的磁记录/再现设备150可以具有多个磁盘200。
对将要存储到磁盘200中的信息进行记录/再现的磁头浮动块153呈薄膜状附接在悬架末端。磁头浮动块153装配在含有上述任意一个实施例所述的磁头的末端附近。
当磁盘200旋转时,磁头浮动块153的媒介相对面(medium opposing face)(ABS)保持从磁盘200表面预定的浮动量。也可以是所谓的“接触运行型”,其中浮动块与磁盘200接触。
悬架154与致动臂155的一端连接。在致动臂155的另一端,设置有作为一种线性发动机的音圈发动机156。音圈发动机156由绕在线轴部分上的未示出的激励线圈和磁电路构成,该磁电路由配制成彼此相对以使线圈夹在中间的永久磁铁和反向磁轭(counter yoke)构成。
致动臂155由设置在锭子157上下两个位置上的未示出的滚珠支撑,并且能够利用音圈发动机156自由地旋转和滑动。
图19是表示从磁盘侧观看磁头悬架组件从致动臂155到其末端的放大立体图。特别地,组件160具有致动臂155,而在致动臂155的一端连接有悬架154。在悬架154的末端,附接着具有包含上述实施例中任意一个所述的磁阻效应元件的磁头的磁头浮动块153。悬架154具有用于读写信号的引线164,而这些引线164与结合到磁头浮动块153中的磁头的各电极电连接。图中的参考标号165表示组件160的电极极板。
根据本实施例,用含有上述磁阻效应元件的磁头,可以安全地读取以高记录密度磁性记录在磁盘200中的信息。
(磁存储器)接着将要介绍装配有本发明实施例所述的磁阻效应元件的磁存储器。具体地,利用本发明实施例所述的磁阻效应元件,可以实现诸如其中存储单元以矩阵形式配置的磁性随机访问存储器(MRAM)的磁存储器。
图20是表示本发明实施例所述的磁存储器的矩阵结构实例的示意图。本图示出了存储单元以阵列形状配置的情况的电路结构。为了选择阵列中的一位,设置了列解码器350和行解码器351,其中通过位线334和字线332使唯一地被选择的开关晶体管330接通,并且通过读出放大器352的检测,可以读取记录在磁阻效应膜10上的磁性记录层(自由层18)的位信息。当写位信息时,写电流传递到某一特定的写字线323和位线322以应用产生的磁场。
图21是示出本发明实施例所述的磁存储器的矩阵结构的另一实例的示意图。在这种情况中,通过解码器360、361分别选择以矩阵形式配置的位线322和字线334从而在阵列中选择特定存储单元。各存储单元具有使磁阻效应元件10和二极管D串联的结构。这里,二极管D具有防止除了被选择的磁阻效应元件10以外的存储单元中的感应电流绕行的功能。写操作是由通过分别向特定位线322和写字线323传递写电流产生的磁场来进行的。
这里是通过电流磁场进行切换(switching)的结构,但是也可以是用自旋传递力矩的切换方法。在这种情况下,可以通过改变流向磁阻效应元件的电流方向进行切换。这种情况下,读取存储单元时流过的电流较小,而切换存储单元时流过的电流较大。
图22是表示本发明实施例所述的磁存储器的主要部分的剖面视图。图23是沿图22中A-A′线得到的剖面视图。在这些图中示出的结构对应于包含在图20或图21中所示的磁存储器中的一位存储单元。该存储单元具有存储元件部分311和地址选择晶体管部分312。
存储元件部分311具有磁阻效应元件10和连接在其上的一对配线322、324。磁阻效应元件10是根据上述实施例的磁阻效应元件(CCP-CPP元件)。
另一方面,地址选择晶体管部分312配备有通过通路(vias)326和埋入的线328连接的晶体管330。该晶体管330根据应用于门332的电压进行切换操作,并且控制磁阻效应元件10和配线334的电流通路的打开/闭合。
此外,在磁阻效应元件10的下方,沿垂直于配线322的方向设置有写配线323。这些写配线322、323可以由,例如,铝(Al)、铜(Cu)、钨(Wu)、铊(Ta)或含有它们任意一个的合金形成。
在具有这种结构的存储单元中,当在磁阻效应元件10中写位信息时,写脉冲电流流向配线322、323,并且通过使用从这些电流感应出的磁场,磁阻效应元件的记录层的磁化被适当地反转。
此外,当读取位信息时,感应电流流过配线322和含有记录层的磁阻效应元件10以及下电极324,并且磁阻效应元件10的阻抗值或阻抗值的变化被测定。
根据本发明实施例的磁存储器能够安全地控制记录层的磁畴以确保安全的写操作,还能够通过使用上述实施例的磁阻效应元件(CCP-CPP元件)进行安全的读操作,即使当单元尺寸很小也同样可以保证。
在MRAM应用中,可以执行如下例子。
Ta[5nm]/Ru[2nm]/PtMn[15nm]/CoFe[3.5nm]/Ru
/CoFe[3.5nm]/MgO[1.5nm]/CoFe[1nm]/NiFe[1nm]/Al2O3-NiFe的CCP结构/NiFe[1nm]/晶体生长处理/NiFe[1nm]在MRAM应用中,也提出通过隧道元件实现磁阻效应并且为了改善MRAM的切换方法而使用CCP结构(H.Meng和J-P.Wang,IEEE Trans Magn.41(10),2612(2005))。在这种情况下,自由层18内有必要设计CCP结构,这使形成于CCP之上的自由层18的残留层的结晶性恶化,因而导致了切换参差不齐等问题。
为了实现插入在自由层18中的CCP结构,最好进行上述PIT/IAO或IAO/AIT处理,并且在形成电流通路162后对沉积的磁性层进行晶体生长处理。在这种情况下,形成电流通路162的材料包括磁性物质,使得下层金属层15或上层金属层17就不是特别需要了,并且可以照样使用形成自由层18的材料。
(其他实施例)本发明的实施例并不局限于上述实施例并且可以进行扩展或改变,且经过扩展或改变的实施例包含在本发明的技术范围内。
关于磁阻效应膜的具体结构,以及电极、偏压应用膜、绝缘膜等的形状和材料,本领域的技术人员可以从已知的范围中作适当选择从而以同样的方法实施本发明并且获得同样的效果。
例如,当磁阻效应元件应用于再现磁头时,可以在元件的顶部和底部增加磁屏蔽以规定磁头的检测方法。
同样,本发明的实施例不仅可以用于纵向的磁性记录方式还可以应用到垂直的磁性记录方式的磁头或磁再现设备。
此外,本发明的磁再现设备可以是所谓的永久具有特定记录媒介的固定型,或者是能够更换记录媒介的“可拆卸型”。
除此以外,可以在上述本发明实施例中所述的磁头和磁记录/再现设备的基础上由本领域技术人员做适当改变实施的所有磁阻效应元件、磁头、磁存储/再现设备以及磁存储器,同样属于本发明的范畴。
其他优点和修改对于本领域技术人员来说是很容易想到的。因此,本发明在其较宽的方面并不限于本文给出和说明的具体细节和代表性的各实施例。因而,可以在不背离如所附的权利要求及其等同范围所限定的总体发明构思的实质或范围的情况下进行种种修改。
权利要求
1.一种磁阻效应元件,其特征在于,包括磁化固定层,其含有第一晶粒,并具有基本固定在一个方向上的磁化方向;分隔层,其配置在所述磁化固定层上,并具有绝缘层和贯通该绝缘层的金属导体;以及磁化自由层,其含有第二晶粒,并与所述金属导体相对地配置在所述分隔层上,并且具有对应外部磁场而改变的磁化方向。
2.如权利要求1所述的磁阻效应元件,其特征在于,所述金属导体和所述第一晶粒竖直地相互对应配置。
3.如权利要求2所述的磁阻效应元件,其特征在于,当所述第二晶粒的直径用从0到100的相对值表示时,至少部分所述金属导体形成于30到70范围内的正下方。
4.如权利要求2所述的磁阻效应元件,其特征在于,所述第一晶粒、金属导体和第二晶粒竖直地相互对应配置。
5.如权利要求1所述的磁阻效应元件,其特征在于,所述第二晶粒比所述第一晶粒小。
6.如权利要求1所述的磁阻效应元件,其特征在于,所述第二晶粒的粒径大于等于3nm且小于等于10nm。
7.如权利要求1所述的磁阻效应元件,其特征在于,所述第一晶粒的粒径大于等于5nm且小于等于20nm。
8.如权利要求7所述的磁阻效应元件,其特征在于,所述第二晶粒的粒径大于等于3nm且小于等于10nm。
9.如权利要求1所述的磁阻效应元件,其特征在于,进一步包括位于所述磁化自由层和所述分隔层之间的第一金属层,所述第一金属层具有与所述金属导体共同的第一成分。
10.如权利要求9所述的磁阻效应元件,其特征在于,所述第一成分具有铜、金和银中的至少一种。
11.如权利要求10所述的磁阻效应元件,其特征在于,所述第一金属层的膜厚度大于等于0.2nm小于且等于1.5nm。
12.如权利要求1所述的磁阻效应元件,其特征在于,进一步包括配置在所述磁化固定层和所述分隔层之间的第二金属层,所述第二金属层具有与所述金属导体共同的第二成分。
13.如权利要求12所述的磁阻效应元件,其特征在于,所述第二成分具有铜、金和银中的至少一种。
14.如权利要求12所述的磁阻效应元件,其特征在于,所述第二金属层的膜厚度大于等于0.1nm且小于等于1.0nm。
15.如权利要求12所述的磁阻效应元件,其特征在于,所述第一金属层比所述第二金属层厚。
16.如权利要求1所述的磁阻效应元件,其特征在于,所述磁化固定层包括具有体心立方结构的离子-钴层或具有面心立方结构的钴-离子层,并且所述磁化自由层包含钴-离子合金层。
17.如权利要求1所述的磁阻效应元件,其特征在于,所述磁化固定层或所述磁化自由层中的至少一个具有垂直于其膜表面的面心立方(111)晶向、体心立方(110)晶向、密排六方(001)晶向以及密排六方(110)晶向中的至少一种晶体结构,并且具有小于等于4.0度的晶向散射角。
18.如权利要求1所述的磁阻效应元件,其特征在于,所述金属导体具有大于等于2nm且小于等于6nm的直径。
19.如权利要求1所述的磁阻效应元件,其特征在于,所述金属导体具有晶体结构,所述绝缘层具有非晶体结构。
20.如权利要求1所述的磁阻效应元件,其特征在于,所述绝缘层具有氧化物、氮化物或氧氮化物,所述氧化物、氮化物或氧氮化物含有从由铝、硅、铪、钛、钽、钼、钨、铌、镁、铬以及锆构成的群中选择的至少一种元素。
21.如权利要求1所述的磁阻效应元件,其特征在于,进一步包括使电流从所述磁化固定层流向所述磁化自由层的一对电极。
22.一种磁头,其特征在于,该磁头包括如权利要求21所述的磁阻效应元件。
23.一种磁盘设备,其特征在于,该磁盘设备包括如权利要求22所述的磁头。
全文摘要
磁阻效应元件包括磁化固定层、分隔层和磁化自由层,该磁化固定层含有第一晶粒,并具有基本固定在一个方向上的磁化方向;该分隔层配置在磁化固定层上并且含有绝缘层和贯通绝缘层的金属导体;该磁化自由层含有第二晶粒,并配置在分隔层上与金属导体相对,并且具有对应外部磁场改变的磁化方向。
文档编号H01F10/32GK101047229SQ200710089699
公开日2007年10月3日 申请日期2007年3月27日 优先权日2006年3月27日
发明者福泽英明, 黑崎义成, 汤浅裕美, 藤庆彦, 岩崎仁志 申请人:株式会社东芝
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1