在相变存储单元中形成相变层的利记博彩app

文档序号:7211838阅读:128来源:国知局
专利名称:在相变存储单元中形成相变层的利记博彩app
技术领域
本发明涉及用于制造相变存储器单元的方法。
背景技术
相变存储器使用在具有不同电特性的两个相之间切换的一类材料,这两个相与材料的两个不同结晶结构相关联,更确切地说是非晶体无序相和晶体或多晶体有序相。因此,这两个相与相当不同的电阻率值相关联。
目前,称为硫属化物或硫属化物材料的周期表VI族元素(诸如Te和Se)的合金可有利地用于相变存储器单元。目前最有价值的硫属化物由Ge、Sb和Te的合金(Ge2Sb2Te5)形成,该合金目前广泛用于在可重写盘上存储信息并可用于大容量存储。
在硫属化物中,当材料从非晶体(更为电阻性的)相过渡入晶体(更为导电性的)相时电阻率改变两个或多个数量级,反之亦然。
相变可通过局部地升温来获得。在150℃以下,两个相都是稳定的。从非晶体状态开始并将温度升至200℃以上,微晶会快速成核,并且如果将材料保持在结晶温度达足够长的时间,它进行相变并变成晶体。为了将硫属化物变回非晶体状态,必须将温度升至熔解温度(约为600℃)以上,然后使该硫属化物快速冷却。
制造相变存储器器件时的一个问题涉及使硫属化物层成形的步骤。更确切地,上述步骤包括使用抗蚀掩模,并且可能使用硬掩模。例如,抗蚀掩模可直接在硫属化物层上形成,或者可选地用于由沉积在硫属化物层上的硬掩模层形成硬掩模。一旦从硫属化物层开始已出现了期望硫属化物结构,就需要去除抗蚀掩模和硬掩模。然而,当暴露在蚀刻剂中时硫属化物会较容易损坏,特别会因通常用于去除诸如抗蚀掩模的聚合结构的化学物质而损坏。此外,硫属化物结构的显著侵蚀由蚀刻硫属化物层期间陷于聚合抗蚀掩模中的氯引起。氯原子实际上在聚合物被去除并与硫属化物反应时释放,从而损害硫属化物结构。


为便于理解本发明,现在参照所包括的附图描述其较佳实施例,仅作为非限制性示例,其中图1示出在根据本发明第一实施例的制造工艺的初始步骤中的半导体器件的整个横截面;图2是图1细节在后续制造步骤中的放大俯视图;图3是沿图2线III-III取得的后续制造步骤中图2细节的横截面图;图4示出与图2相同的后续制造步骤中的视图;图5和6示出与图3相同的后续制造步骤中的视图;图7示出图6细节在后续制造步骤中的俯视图;图8和9示出沿图7线VII-VII取得的后续制造步骤中图7细节的横截面图;图10是图9细节在后续制造步骤中的俯视图;图11示出与图9相同的后续制造步骤中的视图;图12示出与图10相同的后续制造步骤中的视图;图13和14是沿图12线XIII-XIII取得的后续制造步骤中图12细节的横截面图;图15是图1-15器件在最终制造步骤中的整个横截面的视图;图16是相变存储器器件的简化电路图;图17-27是在根据本发明第二实施例的工艺的后续制造步骤中半导体器件的整个横截面的视图;图28是沿图27线XXVIII-XXVIII取得的图27器件的横截面图;图29是由根据本发明第二实施例的工艺制造的半导体器件的扫描电子显微镜(SEM)俯视图;图30是通过公知工艺制造的半导体器件的SEM俯视图;图31是一实施例的系统示图。
具体实施例方式
在以下描述中,术语“亚光刻”用于表示比可用当前紫外(UV)光刻技术实现的最小尺寸还要小的线性尺寸,因此是小于100纳米。
参看图1,包括例如P型硅的半导体材料的衬底7的晶片1可进行标准前端步骤以形成电路组件和要集成到衬底7中的任何元件。多个选择晶体管(在图1中仅示出其一)可制造于衬底7中的选定位置上,在后续工艺步骤中要在这些选定位置上形成存储元件。在图1的实施例中,选择晶体管是PNP双极晶体管,它具有N-型基极区3、N+-型基极接触区域4和P+-型发射极区域5。电介质区域6使选择器2彼此分开。
为了构建选择器,在形成基极区域3之后可沉积和平面化第一电介质层8。在基极区域3的选定区域之上的第一电介质层8中制成开口。在除开口自对准之外使用两个专用掩模的情况下,基极接触区域4和发射极区域5可分别通过N+和P+的植入形成。然后第一电介质层8中的开口由例如Ti/TiN的阻挡层(未示出)覆盖,并在一实施例中用钨填充以形成基极接触件9b和发射极接触件9a。
然后,沉积例如不掺硅玻璃(USG)层的第二电介质层20,并于其中直接在发射极接触件9a上制成加热器22。特别地,圆形或椭圆形开口21(图2)首先在发射极接触件9a上的第二电介质层20中形成。例如TiN、TiSiN、TiAlN、TiSiC或WCN的加热层以5-50纳米的亚光刻厚度沉积,以共形地涂覆开口的壁和底部。然后用电介质材料23,最好是形成电介质层20的相同材料填满开口。开口21外部的加热层和电介质材料23可通过化学机械抛光(CMP)去除。因此,加热器22为填充有电介质材料23的杯状区域的形式,并且在图2的俯视图中是圆形或椭圆形的。
然后,如图3的放大细节所示,例如是通过等离子增强化学汽相沉积(PECVD)或区域可选化学汽相沉积(SACVD)沉积的不掺杂硅玻璃(USG)或氮化硅的模层27形成,并在一实施例中随后使用掩模蚀刻来切开缝隙28。缝隙28仅与相应加热器22相交一次,如图4所示。
如图5所示,诸如二氧化硅的隔离层33共形地沉积在晶片1上,从而部分地填充缝隙28。然后,参看图6,隔离层被深度蚀刻,且隔离片30沿缝隙28的侧壁形成。因而形成具有倾斜壁和亚光刻底部宽度为W的微型沟槽28’。
然后,参看图7和8,沉积硫属化物层35(例如在本实例中,是厚度为60纳米的Ge2Sb2Te5)。硫属化物层35填充微型沟槽28’,并在互接触区域接触加热器22。因而,相变存储元件40(由剖面线示出)在微型沟槽28’内硫属化物层35与加热器22的接触区域处形成。因为微型沟槽28’的底部宽度W和加热器22的厚度是亚光刻的,所以限定存储元件的接触区域也具有亚光刻尺寸。
如图8所示,沉积最好是Ti/TiN或其它适当材料的阻挡层,以形成覆盖模层27和硫属化物层35的帽结构45。在一实施例中,帽结构45的厚度约为45纳米。
接着,参看图9和10,硬掩模结构47沉积在帽结构45上。硬掩模结构47可由比如SiON、SiN或α碳的电介质材料制成。在本文所述的实施例中,硬掩模结构47是SiON的,并且初始厚度T1至少约为100纳米,最好为150纳米。
在另一实施例中,硬掩模结构47包括二氧化硅层和/或氮化硅层。随后可在硬掩模结构47上创建抗蚀掩模48(图11),而硬掩模结构47实质上在微型沟槽28’上。更确切地,抗蚀掩模48包括与位线方向BL(与图9中的膜垂直)平行的直线部分,并覆盖相应对准的微型沟槽28’。
如图11所示,硬掩模结构47使用抗蚀掩模48成形,以形成硬掩模50,其一部分也与微型沟槽28’上的位线方向BL平行。
然后在蚀刻帽结构45和硫属化物层35之前,通过光刻胶剥离来去除抗蚀掩模48(图12和13)。因而,在一些实施例中,Cl或陷于聚合结构(例如抗蚀掩模48)内的其它反应物质或化合物的反作用被基本消除,并且不再可用于在后续步骤中与暴露的硫属化物部分反应。在光刻胶剥离期间,仅部分地暴露帽结构45,但在任何情形中最终被损坏的部分仍然可在后来去除。
参照图14,帽结构45和硫属化物层35使用硬掩模50进行蚀刻。从而创建电阻位线51,这些电阻位线51与位线方向BL平行、并包括帽结构45’和硫属化物35’的相应残留部分。因为抗蚀掩模48先前已被去除,所以硬掩模50在该步骤期间直接暴露于蚀刻剂中时变薄。但是,由于其初始厚度T1,只能部分地蚀刻硬掩模50并保留残留部分50’,该残留部分50’在一些实施例中最终厚度TF约为20-30纳米。
如图15所示,氮化硅的密封层52、二氧化硅的第三电介质层54可沉积在晶片1上,平面化并有选择地蚀刻,以切开基极插孔(在基极接触点9b上)和金属位线沟槽。密封层52可由与硬掩模52相同的材料制成。
因此,硬掩模50的残留部分50’在沉积密封层52时被结合到后者之中。基极插孔和金属位线沟槽可由TaN/Ta的阻挡层(未示出)涂覆并填充Cu,从而在CMP平面化之后,制成基极插头55和金属位线56(Cu-镶嵌技术)。
基极插头55可直接与相应基极接触件9b接触;且金属位线56在相应电阻位线51上形成,并与之平行。最终,可沉积和蚀刻第四电介质层58,以通过孔露出基极插头55和切开与电阻位线51垂直的字线沟槽。孔和字线沟槽可由另一TaN/Ta的阻挡层(未示出)涂覆并填充Cu。晶片1通过CMP平面化以去除沉积在孔和字线沟槽外部的Cu和TaN/Ta。从而制成插头55’和金属字线59(另一种Cu-镶嵌技术)。
获得相变存储器单元60和图15的结构。特别地,相变存储器单元60包括一相应存储元件40与相应加热器22和选择晶体管2。工艺流与金属级(未示出)的形成相组合。
如图16所示,相变存储器单元60被排列成多行和多列,以形成进一步包括公知控制、读取和编程电路(在此未示出)的相变存储器器件65。特别地,图16示出三列(相应金属位线53)两行(相应字线59)的部分。
图17-27示出第二实施例。
参看图17,包括例如硅的半导体材料的衬底110的晶片100经初始处理形成电路组件和要集成到衬底110中的任何元件。
然后,晶片100由绝缘层112涂覆。字线113(例如铜的)由绝缘层112形成,通过第一电介质层114相互绝缘。字线113可通过沉积第一电介质层114形成,然后在要形成字线113之处去除电介质材料,并用铜(Cu)填充如此获得的沟槽。然后通过CMP(“Cu-镶嵌”处理)从晶片100的表面上去除任何额外的铜。
然后,创建封装结构(图18)。封装结构可通过按序沉积第一氮化物层118、第一氧化物层119和胶层117形成,然后选择性地向下去除第一氮化物层118、第一氧化物层119和胶层117直到第一电介质层114的表面。因而,对于各字线113,形成至少部分地在字线113上延伸的开口120。各开口120可沿整个相应字线113或其一部分延伸,在该情形中多个开口120彼此对准地沿各字线113延伸。在一实施例中胶合区域117限定在开口120周围。
然后,参看图19,沉积并深度蚀刻例如氮化硅的隔离层。因而,隔离层的水平部分被去除,并且仅保留由121标示并沿开口120的垂直侧壁延伸的其垂直部分。这些垂直部分121横向地接合开口120的第一氮化物层118,并用该第一氮化物层118形成由122标示的保护性区域。保护性区域122与第一氧化物层119一起形成封装结构。
然后,例如TiSiN的加热层123被沉积并共形地覆盖如图20所示的下层结构。加热层123的一个垂直侧壁在相应字线113上延伸并与之相接触。随后,在一些情形中沉积例如氮化硅的罩层124以及第二电介质层125。该第二电介质层125填满开口120,以完成封装结构。
然后通过CMP(化学机械抛光)平面化该结构,从而去除延伸在开口120之外的并露出胶合区域117的所有第二电介质层125、罩层124和加热层123的部分。
然后,参看图21,沉积奥弗辛斯基(Ovonic)存储器开关/Ovonic阈值开关(OMS/OTS)堆栈126。具体地,在一实施例中沉积第一硫属化物层127(例如Ge2Sb2Te5)、第一阻挡层128(例如TiAlN)、第二硫属化物层129(例如As2Se3)、第二阻挡层130(例如TiAlN)。以上材料仅仅是说明性的,并且可使用任何适于取决于其物理状态(对于第一硫属化物层127)存储信息并作为选择器(对于第二硫属化物层129)操作的任何硫属化物材料。存储元件150在加热层123和第一硫属化物层127上的互接触区域上形成。
然后,使用图22,SiON的硬掩模结构132(150纳米厚)在第二阻挡层130上沉积,并使用抗蚀掩模133成形,该抗蚀掩模133包括排列在相应存储元件150上的近圆形、椭圆形或正方形掩模部分(图23)。在另一实施例中,硬掩模结构132由诸如SiN或α碳的不同电介质材料制成。因而,硬掩模134根据硬掩模结构132制成,并且也包括圆形、椭圆形或正方形掩模部分。
在蚀刻OMS/OTS堆栈126之前,可通过光刻剥离来去除抗蚀掩模133,如图24所示。
然后,在图25中,仅使用硬掩模134来成形OMS/OTS堆栈126,从而形成分别包括相应存储元件150的所谓“点”135。因为先前已去除了抗蚀掩模133,所以硬掩模134在该步骤期间直接暴露于蚀刻剂中时变薄。但是,由于其初始厚度T1,只能部分地蚀刻硬掩模134并保留残留部分134’,该残留部分134’在一些实施例中最终厚度TF约为20-30纳米。
在完全去除了硬掩模134的残留部分134’之后,沉积例如氮化硅的密封层136、以及绝缘材料(例如二氧化硅的)的金属间层137。从而,获得图26的结构。
最后,晶片100进行CMP以平面化该结构,并最好使用标准的双Cu-镶嵌工艺来形成位线和转接。最终,在图27中,最好在两个步骤的工艺中蚀刻金属间层137和第一电介质层114(以及密封层136和保护性区域122的底部,如果出现的话),以形成转接开口138(向下延伸到字线113)、行连接沟槽139以及列沟槽140(向下延伸到点131)。该两个蚀刻步骤可按任何顺序进行。然后,沉积金属材料(例如Cu),该金属材料填充转接开口138和列沟槽140从而形成转接141和位线142。此外,还形成字线连接143。从而获得图27和28的结构。
如图27和28所示,加热层123形成具有基本上像箱形的加热器或电阻元件,其第一垂直狭长侧壁123a(在图的左侧)几乎在相应字线113的中线上延伸,而第二垂直狭长侧壁123b(右侧)在第一氧化物层119的顶部延伸。各第一垂直狭长侧壁123a形成沿线与相应点131接触、并由在单条字线113上对准的所有点131共享的壁状加热器,而第二垂直狭长侧壁123b没有功能。所有点131通过壁状加热器123沿同一字线的电连接在一些实施例中并不损害存储器器件的操作,因为点131的第二硫属化物材料129形成OTS或选择元件,从而允许仅寻址与已选址的字线113和位线142相连的点131。
包括在电阻性位线51(图14和15)或点135(图25-28)内的硫属化物结构可被防止与一些实施例中引起侵蚀和损坏的化学试剂反应。实际上,聚合物(抗蚀掩模)可在成形所沉积的硫属化物材料之前去除。因此,仅暴露硫属化物材料的表面部分,并且在一些情形中它会被损坏。然而,这种表面部分最终被去除以形成硫属化物结构,并且不被包括在最终单元内。在成形硫属化物层之后,硬掩模可仅具有几个纳米的最终厚度,并且在需要时简便地去除,而不会在一些情形中对硫属化物结构产生任何损坏。否则,硬掩模结构的残余部分可保留并结合在密封层中。因此,最终的单元可包括精确成形并具有高质量的硫属化物结构。
作为示例,图29和30示出具有点式存储器单元的相变存储器器件的俯视图。图29的器件通过上述工艺制成,并具有与通过常规工艺制成的图30器件的点相比显然较高质量的点。图29器件的点实际上并未显示有侵蚀。
参看图31,描述根据本发明一实施例的系统500的一部分。系统500可用于无线设备,比如个人数字助理(PDA)、具有无线性能的膝上型或便携式计算机、web书写板、无线电话、寻呼机、即时消息传送设备、数字音乐播放器、数码相机或适于无线传送和/或接收信息的其它设备。系统500可用于任一以下系统无线局域网(WLAN)系统、无线个人区域网(WPAN)系统、手机网络,尽管本发明的范围并不限于该方面。
系统500可包括经由总线550彼此相连的控制器510、输入/输出设备(I/O)设备520(例如按键板、显示器)、静态随机存取存储器(SRAM)560、存储器530、以及无线接口540。电池580可用于一些实施例中。应注意,本发明的范围不限于具有这些组件的任一个或全部的实施例。
控制器510可包括例如一个或多个微处理器、数字信号处理器、微控制器等。存储器530可用于存储传送给系统500或由其传送的消息。存储器530还可任选地用于存储在系统500操作期间由控制器510执行的指令,并可用于存储用户数据。存储器530可由一种或多种不同类型的存储器提供。例如,存储器530可包括任何类型的随机存取存储器、易失性存储器、诸如闪存的非易失性存储器、和/或诸如本文所述存储器的存储器。
I/O设备520可由用户用来生成消息。系统500可使用无线接口540以射频(RF)信号与无线通信网络收发消息。无线接口540的示例可包括天线或无线收发器,尽管本发明的范围并不限于该方面。
最后,可对本文所述和所说明的工艺作出各种更改和改变,它们都落于所附权利要求所限定的本发明范围内。特别地,工艺可被用于制造任何类型的相变存储器单元。例如,可制造具有喷枪式加热器的相变存储器单元。喷枪式加热器通常由电介质层中的开孔制成,从而可能在CMP平面化之前通过沉积和深度蚀刻隔离层来将孔的横断面尺寸降低到亚光刻范围,并用加热器材料填充各孔。然后如上所述地沉积和成形硫属化物层,以在加热器上形成点。相变存储元件被限定在点与相应加热器的接触区域上。
本说明书内对“一实施例”或“一个实施例”的引用表示结合实施例描述的特定特性、结构或特征包括在本发明内所包含的至少一个实现中。因而,短语“一实施例”或“一个实施例”的出现并不必定引用同一实施例。此外,特定特性、结构或特征可用不同于所述特定实施例的其它适当形式构成,且所有这些形式可包含在本申请的权利要求中。
尽管已参照有限数量的实施例描述了本发明,本领域技术人员将理解其中的各种更改和变化。所附权利要求旨在涵盖落于本发明的真实精神和范围内的所有这些更改和变化。
权利要求
1.一种方法,包括在半导体主体上形成相变材料的相变层;在所述相变层上创建硬掩模结构;在所述硬掩模结构上创建抗蚀掩模;通过使用所述抗蚀掩模成形所述硬掩模结构来形成硬掩模;去除所述抗蚀掩模;以及在去除所述抗蚀掩模之后使用所述硬掩模成形所述相变层;
2.如权利要求1所述的方法,其特征在于,创建硬掩模结构包括形成包括电介质材料的硬掩模结构。
3.如权利要求1所述的方法,其特征在于,成形所述相变层包括至少部分地去除所述硬掩模。
4.如权利要求1所述的方法,其特征在于,还包括在所述相变层上形成帽结构,所述硬掩模结构被形成为与所述帽结构相接触。
5.如权利要求1所述的方法,其特征在于,去除所述抗蚀掩模的步骤包括光刻胶剥离。
6.如权利要求1所述的方法,其特征在于,还包括在所述半导体主体上形成电介质结构层,并在所述电介质结构层中形成一加热器元件。
7.如权利要求6所述的方法,其特征在于,形成所述相变层的步骤包括沉积直接与所述加热器元件接触的所述相变层,从而在所述加热器元件和所述相变层的接触区域上限定存储元件。
8.如权利要求7所述的方法,其特征在于,限定存储元件包括在具有至少一个亚光刻尺寸的所述接触区域上限定所述元件。
9.一种半导体结构,包括硫属化物层;覆盖所述硫属化物的阻挡层;以及所述阻挡层上的掩模层。
10.如权利要求9所述的结构,其特征在于,所述阻挡层包括金属。
11.如权利要求10所述的结构,其特征在于,所述金属包括钛。
12.如权利要求11所述的结构,其特征在于,所述金属包括Ti/TiN。
13.如权利要求12所述的结构,其特征在于,所述阻挡层约为45纳米。
14.如权利要求9所述的结构,其特征在于,所述阻挡层完全覆盖所述硫属化物层。
15.如权利要求9所述的结构,其特征在于,包括在所述阻挡层上的抗蚀掩模。
16.如权利要求9所述的结构,其特征在于,包括在所述阻挡层上的硬掩模。
17.如权利要求16所述的结构,其特征在于,包括在所述硬掩模上的抗蚀掩模。
18.如权利要求9所述的结构,其特征在于,包括两个单独的硫属化物层。
19.由一种工艺形成的产品,该工艺包括在半导体主体上形成相变材料的相变层;在所述相变层上创建硬掩模结构;在所述硬掩模结构上创建抗蚀掩模;通过使用所述抗蚀掩模成形所述硬掩模结构来形成硬掩模;去除所述抗蚀掩模;以及在去除所述抗蚀掩模之后使用所述硬掩模成形所述相变层;
20.如权利要求19所述的工艺形成产品,其特征在于,成形所述相变层的步骤包括至少部分地去除所述硬掩模。
21.如权利要求19所述的工艺形成产品,其特征在于,包括在所述相变层上形成帽结构,所述硬掩模结构被形成为与所述帽结构相接触。
22.如权利要求19所述的工艺形成产品,其特征在于,去除所述抗蚀掩模包括光刻胶剥离。
23.如权利要求19所述的工艺形成产品,其特征在于,还包括在所述半导体主体上形成电介质结构层,并在所述电介质结构层中形成一加热器元件。
24.如权利要求23所述的工艺形成产品,其特征在于,形成所述相变层的步骤包括沉积直接与所述加热器元件接触的所述相变层,从而在所述加热器元件和所述相变层的接触区域上限定存储元件。
25.如权利要求24所述的工艺形成产品,其特征在于,限定存储元件包括在具有至少一个亚光刻尺寸的所述接触区域上限定所述元件。
26.如权利要求19所述的工艺形成产品,其特征在于,所述产品包括处理器和包括所述相变层的相变存储器。
全文摘要
相变存储器单元包括半导体主体上相变材料的相变层。硬掩模结构在相变层上形成,且抗蚀掩模在硬掩模结构上形成。硬掩模通过使用抗蚀掩模成形硬掩模结构而形成。相变层使用硬掩模成形。抗蚀掩模在成形相变层之前被去除。
文档编号H01L45/00GK1925186SQ20061012902
公开日2007年3月7日 申请日期2006年8月29日 优先权日2005年8月30日
发明者M·马吉斯特雷蒂, P·佩特鲁扎 申请人:奥沃尼克斯股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1