包括贯穿连接的微电池及其生产方法

文档序号:6867356阅读:282来源:国知局
专利名称:包括贯穿连接的微电池及其生产方法
技术领域
本发明涉及微电池,其包括支座,具有正面和背面;第一和第二集流器(current collector),布置于该支座的正面上;叠层,包括被电解质隔离的阳极和阴极,该阳极和阴极分别与该第一和第二集流器接触;保护层,覆盖所述叠层;以及电学连接装置,与该第一和第二集流器接触。
背景技术
如图1所示,微电池通常包括具有正面2和背面3的支座1,其中在支座1上布置了第一集流器4和第二集流器5以及包括被电解质7隔离的阳极6和阴极8的叠层。阳极6和阴极8分别接触第一集流器4和第二集流器5。集流器4和5一般包括接触焊盘,用于将外部电学负载连接到第一和第二集流器4和5并因此连接到微电池的阳极6和阴极7。接触焊盘通常布置于支座1上,位于所述叠层的各侧,且例如由集流器4和5的延伸而形成。接触线焊接到接触焊盘以连接外部电学负载。叠层的厚度可以小于50微米。
储存于电池内的能量基本上取决于电极即阳极6和阴极8的表面。减小电池的尺寸因此要求使用非常薄的层以实现电极和电解质。此外,当微电池安装在集成电路芯片上时,可获得的表面通常非常有限。
可以将多个微电池串联或者并联连接。为了最小化包含多个电池的装置的尺寸,于是需要最小化该接触焊盘的尺寸。
通常,电池的制作包括构成阳极、电解质和阴极的连续有源层的涂敷工艺。阳极、阴极和电解质由极具活性的材料构成,整个电池通常被保护层或涂覆层覆盖。只有接触焊盘不需要被覆盖,这一点难以实现,特别是在成品的装置上。

发明内容
本发明的一个目标是克服这些缺点,尤其是最小化微电池的尺寸并避免在制作的最后阶段中对接触的局部开口步骤。
根据本发明,通过所附权利要求,更具体地通过电学连接装置包括从正面贯穿支座到达其背面的连接,由此实现上述目标。
本发明的另一目标是提供生产根据本发明的微电池的方法,该方法连续包括在该支座的正面内蚀刻形成深度小于该支座厚度的腔体;使用导电材料填充该腔体,该导电材料设计为构成穿过该支座的连接;在该支座的正面上连续沉积第一和第二集流器、叠层和保护层;以及去除该支座背面的一层,从而显露容纳在腔体内的导电材料。


通过对本发明具体实施方案的以下描述,本发明的其他优点和特征将变得更加明显地显而易见,其中这些具体实施方案仅作为非限制的示例并示于附图中。附图中图1示出了根据现有技术的微电池。
图2示出了根据本发明的微电池的具体实施方案。
图3至6示出了根据本发明的微电池生产方法的具体实施方案的不同步骤。
具体实施例方式
图2所示微电池包括优选地由硅制成的支座1,该支座1具有正面2和背面3。硅支座提供了可以与基于微电子技术的沉积方法相兼容的优点。第一集流器4和第二集流器5布置于支座1的正面2上。包括由电解质7隔离的阴极8和阳极6的叠层布置于集流器4和5上。阳极6和阴极8分别接触第一集流器4和第二集流器5。保护层9覆盖所述叠层并由此保证该微电池的紧密密封。第一和第二集流器4和5接触从正面2贯穿支座1到达其背面3的连接10。
在图2所示的具体实施方案中,叠层基本上覆盖了支座1的整个正面2。因此,支座1的整个正面2仅用于微电池叠层,而没有用于可能的接触焊盘的任何表面损失。在图2中,微电池布置于包括接触焊盘12的例如为集成电路的电学负载11上。例如通过可熔的微焊球(micropellet)13,贯穿连接10的背面14连接到电学负载11的接触焊盘12。因此,贯穿连接10的背面14在支座1的背面3上执行该微电池的背部连接端子的功能。该接触端子使得微电池可以连接到一个或多个附加电池,连接到电子芯片,或者连接到任何电学负载。电池例如可以背面抵靠背面地串联或并联直接相互连接,还可以设想将接触焊盘布置于贯穿连接10的背面14上。微电池、叠层和支座1的总厚度可以约为0.1mm。
图3至6示出了根据本发明的用于生产微电池的具体方法的连续步骤。如图3所示,在支座1的正面2内蚀刻形成腔体15从而形成未贯穿的孔,其中腔体15的深度小于支座1的厚度。可以通过化学蚀刻方法或者反应等离子体方法执行该蚀刻。腔体15的深度为例如50微米,支座1的厚度为100微米。在图3中,腔体15朝支座1的背面方向逐渐变细。
如图4所示,随后使用导电材料16填充腔体15,其中该导电材料16设计成构成贯穿支座1的连接10。优选地通过例如铜的电解生长,由此实现使用导电材料16填充腔体15。在图4所示具体实施方案中,支座1的正面2和导电材料16形成公共平坦表面。为了获得这种公共的平坦表面,可以执行附加的平整化步骤,尤其是对于以下情形,即,在填充了腔体15之后,导电材料16延伸超出支座1的正面。
图5示出了在支座1的正面2上连续沉积第一集流器4和第二集流器5,沉积叠层,以及沉积保护层9。该微电池的集流器和叠层于是构建于设计成随后形成贯穿支座1的连接的导电材料16上。导电材料16因此暂时被包围在腔体15内,介于支座1的材料和集流器4、5之间,并在该方法的结尾被显露。
例如通过热蒸镀锂得到阳极6,阳极6优选厚度为3至5微米。电解质7可容纳例如锂和磷氮氧化物的锂化合物,该化合物更为人熟知的名字为LiPON。电解质7优选厚度为1至2微米。集流器4和5例如厚度为0.2至0.5微米。通过物理气相沉积(PVD)方法或者通过低温蒸镀也可以获得该叠层以及集流器4和5。
接着,如图6所示,去除支座1的背面3一层,从而显露容纳于腔体15内的导电材料16。因此例如通过去除50微米的厚度而减薄该支座,且微电池的连接端子被敞开而同时暴露于电池的背部上。优选地通过化学机械抛光执行该支座1的背面3的所述层的去除。
本发明不限于上述具体实施方案。具体而言,支座1可由玻璃、陶瓷(锆石、矾土)或者聚合物(聚醚醚酮PEEK,聚酰亚胺)。
权利要求
1.微电池,包括支座(1),具有正面(2)和背面(3);第一集流器(4)和第二集流器(5),布置于所述支座(1)的正面(2)上;叠层,包括被电解质(7)隔离的阳极(6)和阴极(8),所述阳极(6)和阴极(8)分别与所述第一集流器(4)和第二集流器(5)接触;保护层(9),覆盖所述叠层;以及电学连接装置,与所述第一集流器(4)和第二集流器(5)接触,所述微电池的特征在于,所述电学连接装置包括从正面(2)贯穿支座(1)到达其背面(3)的连接(10)。
2.根据权利要求1所述的微电池,其特征在于所述微电池包括布置于所述支座(1)的背面(3)上的连接端子。
3.根据权利要求1和2中的一项所述的微电池,其特征在于所述叠层基本上覆盖所述支座(1)的整个正面(2)。
4.根据权利要求1至3中的任何一项所述的微电池,其特征在于所述支座(1)由硅、玻璃、陶瓷或聚合物制成。
5.根据权利要求1至4中的任何一项所述的微电池,其特征在于所述微电池的总厚度约为0.1mm。
6.用于生产根据权利要求1至5中的任何一项所述的微电池的方法,其特征在于所述方法连续包括在支座(1)的正面(2)内蚀刻形成深度小于所述支座(1)厚度的腔体(15);使用导电材料(16)填充所述腔体(15),所述导电材料设计为构成穿过所述支座(1)的连接(10);在所述支座(1)的正面(2)上连续沉积第一集流器(4)和第二集流器(5)、叠层、和保护层(9);以及去除所述支座(1)背面(3)的一层,从而显露容纳在所述腔体(15)内的导电材料(16)。
7.根据权利要求6所述的方法,其特征在于通过化学沉积方法或者通过反应等离子体方法执行蚀刻。
8.根据权利要求6和7中的一项所述的方法,其特征在于通过电解生长执行使用导电材料(16)填充所述腔体(15)。
9.根据权利要求6至8中的任何一项所述的方法,其特征在于通过化学机械抛光实现所述支座(1)的背面(3)的所述层的去除。
全文摘要
本发明涉及一种包括贯穿连接的微电池及其生产方法。本发明的微电池包括具有正面(2)和背面(3)的支座(1),以及布置于支座(1)的正面(2)上的第一集流器(4)和第二集流器(5)。包括被电解质(7)隔离的阳极(6)和阴极(8)的叠层布置于集流器(4和5)上。阳极(6)和阴极(8)分别接触第一集流器(4)和第二集流器(5)。保护层(9)覆盖所述叠层。该微电池包括连接(10),其与第一集流器(4)和第二集流器(5)接触,并从正面(2)贯穿支座(1)到达其背面(3)。该叠层优选地基本上覆盖支座(1)的整个正面(2)。用于生产微电池的方法,包括在支座(1)的正面(2)内蚀刻形成深度小于支座(1)厚度的腔体;使用导电材料填充该腔体;以及去除支座(1)背面(3)的一层,从而显露容纳在该腔体内的导电材料。
文档编号H01M10/04GK101061597SQ200580026464
公开日2007年10月24日 申请日期2005年7月8日 优先权日2004年8月3日
发明者让-伊薇斯·劳伦特, 拉斐尔·萨洛特, 迪迪尔·马萨科, 马克·朱西 申请人:原子能委员会
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1