专利名称:锂离子传导性硫化物系结晶化玻璃及其制造方法
技术领域:
本发明涉及锂离子传导性硫化物系结晶化玻璃、其制造方法和使用它的固体型电解质及全固体电池。
背景技术:
以往,在室温下表现出高的锂离子传导率的电解质大部分限于液体。例如,作为在室温下表现出高锂离子传导率的材料,有有机类电解液。
另外,已知在室温下表现出10-3Scm-1以上的高导电性的、以Li3N为主要成分的锂离子传导率陶瓷。
但是,以往的有机类电解液由于含有有机溶剂而是可燃性的。因此,当把含有有机溶剂的锂离子传导率材料实际用作电池的电解质时,具有漏泄之患和着火的危险性。
此外,该电解液由于是液体的,不仅传递锂离子,而且还传递平衡阴离子,所以锂离子迁移率不是1。
以往的以Li3N为主要成分的锂离子传导率陶瓷由于分解电压低,所以难于构成在3V以上动作的全固体电池。
关于该课题,公开了一种硫化物系结晶化玻璃,其组成是Li2S50~92.5摩尔%和P2S57.5~50摩尔%,具有30~99%的结晶化率,并存在以Li2S和P2S5为主成分的玻璃相、和含有选自Li7PS6、Li4P2S6及Li3PS4构成的群组的至少一种化合物的结晶相(例如,参照特开2002-109955号公报。)。
该硫化物系结晶化玻璃即使在室温下也表现出高的锂离子传导率。
但是,制造该结晶类玻璃时在热处理温度为500℃以上进行,工业生产时,需要特殊的设备。另外,表现出高的离子传导率的区域的组成是80摩尔%Li2S、20摩尔%P2S5,并且使用大量高价的Li源。
因此,材料的制造成本变高,不符合经济性方面。
另外,为了提高利用硫化物系结晶性玻璃的锂二次电池的效率,还要求具有高的锂离子传导率的材料。
发明内容
本发明是鉴于上述问题而做成的,目的是提供即使在室温下也表现出非常高的锂离子传导率,通过使热处理温度低温化、降低Li源使用量,使得可以工业生产,而且经济性优越的硫化物系结晶性玻璃。
为了解决该课题,本发明者们对上述特开2002-109955号公报记载的技术,更加详细地进行了反复的研究,结果发现在热处理温度低、Li源使用量比较少的组成中,硫化物系结晶性玻璃表现出新的结晶结构,当具有该结晶结构时,锂离子传导率明显优越,从而完成了本发明。
即,根据本发明,可提供以下所示的锂离子传导性硫化物系结晶化玻璃、其制造方法、使用它的固体型电解质及全固体电池。
1.一种锂离子传导性硫化物系结晶化玻璃,其中,作为构成成分,含有锂(Li)、磷(P)和硫(S)元素,在X线衍射(CuKαλ=1.5418)中,在2θ=17.8±0.3deg、18.2±0.3deg、19.8±0.3deg、21.8±0.3deg、23.8±0.3deg、25.9±0.3deg、29.5±0.3deg、30.0±0.3deg处具有衍射峰。
2.锂离子传导性硫化物系结晶化玻璃的制造方法,其是将由Li2S68~74摩尔%和P2S526~32摩尔%的组成构成的硫化物系玻璃在150~360℃下进行煅烧处理。
3.2中记载的锂离子传导性硫化物系结晶化玻璃的制造方法,上述Li2S通过将在非质子性有机溶剂中使氢氧化锂和硫化氢反应得到的Li2S使用有机溶剂,在100℃以上的温度下进行清洗来精制而成。
4.2或3中记载的锂离子传导性硫化物系结晶化玻璃的制造方法,上述Li2S中含有的硫氧化物的总量为0.15质量%以下,N-甲基氨基丁酸锂(LMAB)为0.1质量%以下。
5.2~4任何一项中记载的锂离子传导性硫化物系结晶化玻璃的制造方法,使用相当于上述P2S5的摩尔比的单体磷(P)、单体硫(S)代替上述P2S5。
6.2~5任何一项中记载的锂离子传导性硫化物系结晶化玻璃的制造方法,将上述Li2S和P2S5或者单体磷(P)以及单体硫(S)用机械磨碎法形成上述硫化物系玻璃。
7.锂离子传导性硫化物系结晶化玻璃,其由上述2~6中任何一项中记载的制造方法制造。
8.一种锂二次电池用固体电解质,其以上述1或7中记载的锂离子传导性硫化物系结晶化玻璃为原料。
9.一种全固体电池,其使用上述8中记载的锂二次电池用固体电解质。
本发明的硫化物系结晶化玻璃及其制造方法由于煅烧温度为150℃~360℃的低温区域,而且,可以降低Li源的使用量,所以可以工业生产,经济性也优越。
另外,由于即使在室温下也表现出非常高的锂离子传导率,所以可以提高使用该硫化物系结晶化玻璃的锂二次电池的性能。
图1是由实施例1和比较例1~3制作的硫化物系玻璃的X线衍射光谱图。
图2是由实施例1和比较例1~4制作的硫化物系结晶化玻璃的X线衍射光谱图。
图3是表示由实施例2制作的硫化物系结晶化玻璃的离子传导率的测量结果图。
具体实施例方式
下面,对本发明进行具体地说明。
本发明的锂离子传导性硫化物系结晶化玻璃,作为构成成分,含有锂、磷和硫元素,在X线衍射(CuKα:λ=1.5418)中,在2θ=17.8±0.3deg,18.2±0.3deg,19.8±0.3deg,21.8±0.3deg,23.8±0.3deg,25.9±0.3deg,29.5±0.3deg,30.0±0.3deg处具有衍射峰。
在上述的8个区域中,具有衍射峰的结晶结构过去没有被观测到,并且该硫化物系结晶化玻璃表现出具有新的结晶结构。本发明发现具有这种结晶结构的硫化物系结晶化玻璃具有非常高的锂离子传导率。
该结晶结构可以通过将由Li2S68~74摩尔%和P2S526~32摩尔%的组成构成的硫化物系玻璃在150~360℃下进行煅烧处理来发现。
作为初始原料的Li2S,例如,可以使用将在非质子性有机溶剂中使氢氧化锂和硫化氢反应获得的Li2S使用有机溶剂,在100℃以上的温度下进行清洗来精制而成的物质。
具体地,优选用特开平7-330312号公报中公开的制造方法制造Li2S,优选用特愿2003-363403号记载的方法精制该Li2S。
该Li2S的制造方法由于可以用简单的方法获得高纯度的硫化锂,所以可以降低硫化物系结晶化玻璃的原料成本。另外,上述的精制方法由于通过简单的处理,就可以除去作为在Li2S中含有的杂质的硫氧化物或N-甲基氨基丁酸锂(下面称为LMAB)等,所以经济方面有利,同时使用得到的高纯度的硫化锂的锂二次电池用固体电解质可抑制由于纯度引起的性能下降,该结果,可以获得优越的锂二次电池(固体电池)。
还有,在Li2S中含有的硫氧化物总量优选为0.15质量%以下,LMAB优选为0.1质量%以下。
P2S5只要是工业上制造,销售的就可,没有特别限制地使用。
另外,也可以使用相当于P2S5的摩尔比的单体磷(P)和单体硫(S)代替P2S5。由此,易于获得,而且可以由廉价的材料制造本发明的硫化物系结晶化玻璃。单体磷(P)和单体硫(S)只要是工业上制造,销售的就可,没有特别限制地使用。
本发明的硫化物系结晶化玻璃的组成为Li2S68~74摩尔%和P2S532~26摩尔%。如果在该混合比的范围外,则不能表现出本发明特有的结晶结构,离子传导率变小,不能发挥作为固体电解质的充分的性能。特别优选Li2S的混合量为68~73摩尔%,P2S5的混合量为32~27摩尔%。
还有,在可以发现本发明的结晶化玻璃具有的结晶结构的范围内,除了上述P2S5、Li2S,作为初始原料,可以包括选自Al2S3、B2S3、GeS2和SiS2构成的群组的至少一种硫化物。如果加入该硫化物,则形成硫化物系玻璃时,可以生成更加稳定的玻璃。
同样,除了Li2S和P2S5,还可以包括选自Li3PO4、Li4Si2O4、Li4GeO4、Li3BO3和Li3AlO3构成的群组的至少一种邻氧酸(orthooxoacid)锂。如果含有该邻氧酸锂,则可以使结晶化玻璃中的玻璃稳定化。
另外,除了Li2S和P2S5,还可以包括至少一种以上上述的硫化物,进而可以包括至少一种以上上述的邻氧酸锂。
使上述初始原料的混合物形成为硫化物系玻璃的方法,例如,有机械磨碎处理(以下有时表示为MM处理。)或者熔化骤冷法。
如果使用MM处理形成硫化物系玻璃,则可以扩大玻璃生成区域,所以优选。另外,由于在熔化骤冷法中不需要进行加热处理,在室温下进行,所以制造工序也可以简单化。
当用熔化骤冷法和MM处理形成硫化物系玻璃时,优选使用氮气等惰性气体的气氛。这是因为水蒸气和氧等易于与初始物质反应。
在MM处理中,优选使用球磨机。这是因为可获得大的机械能量。
作为球磨机,优选使用行星型球磨机。就行星型球磨机来说,由于球磨罐进行自转旋转,同时底盘进行公转旋转,所以可以高效率地产生非常高的冲击能量。
MM处理的条件可以根据使用的机器等适当调整,但是旋转速度越快,硫化物系玻璃的生成速度变得越快,旋转时间越长,原料向硫化物系玻璃的转化率变得越高。例如,当使用一般的行星型球磨机时,最好把旋转速度规定为数十~数百转/分钟,处理0.5小时~100小时。
通过将得到的硫化物系玻璃进行煅烧处理并使其进行结晶化,形成本发明的锂离子传导性硫化物系结晶化玻璃。此时的煅烧温度为150℃~360℃。在150℃以下时,由于是硫化物系玻璃的玻璃转化点以下的温度,所以不能进行结晶化。另一方面,超过360℃时,不能生成上述具有本发明特有结晶结构的结晶玻璃,从而变化为上述特开2002-109955号公报中记载的结晶结构。特别优选煅烧温度为200℃~350℃的范围。煅烧时间只要是生成结晶的条件就没有特别的限制,无论是瞬间还是长时间都可以。另外,即使对于直到煅烧温度的升温模式也没有特别的限制。
本发明的硫化物系结晶化玻璃具有至少5V以上的分解电压,保持了不燃性无机固体、锂离子迁移率为1的特性,同时在室温下表现出这种10-3Scm-1台这种迄今为止非常高的锂离子传导率。因此,非常适合作为锂电池的固体电解质用材料。
另外,使用具有上述特性的本发明的固体电解质的全固体电池的能量密度高,安全性和充放电循环特性优越。
实施例下面,通过实施例更加具体地说明本发明。
制造例(1)硫化锂(Li2S)的制造硫化锂按照特开平7-330312号公报的第1方式(2工序法)进行制造。具体地,向带有搅拌叶片的10升高压釜中装入N-甲基-2-吡咯烷酮(NMP)3326.4g(33.6摩尔)和氢氧化锂287.4g(12摩尔),在300rpm下升温至130℃。升温后,向液体中以3升/分钟的供给速度吹入硫化氢2小时。接着将该反应液在氮气流下(200cc/分钟)进行升温,使反应的部分硫化氢进行脱硫化氢化。随着升温,由上述硫化氢和氢氧化锂反应副产的水开始蒸发,但是该水用冷凝器进行冷凝并抽出到体系外。将水留在体系外的同时反应液的温度上升,而达到180℃时停止升温,保持为恒定温度。脱硫化氢反应结束后(约80分钟)终止反应,获得硫化锂。
(2)硫化锂的精制将由上述(1)得到的500mL浆料反应溶液(NMP-硫化锂浆料)中的NMP进行倾析后,加入脱水的NMP100mL,在105℃下搅拌约1小时。对该温度的NMP进行倾析。再加入NMP100mL,在105℃下搅拌约1小时,对该温度的NMP进行倾析,重复总计4次相同的操作。倾析结束后,在氮气流下在230℃(NMP的沸点以上的温度)下在常压下干燥硫化锂3小时。测量获得的硫化锂中的杂质含量。
另外,亚硫酸锂(Li2SO3)、硫酸锂(Li2SO4)以及硫代硫酸锂(Li2S2O3)的各硫氧化物、以及N-甲基氨基丁酸锂(LMAB)的含量用离子色谱法进行定量。该结果,硫氧化物的总含量为0.13质量%,LMAB为0.07质量%。
在下面的实施例和比较例中使用这样精制的Li2S。
实施例1将上述制造例中制造的Li2S和P2S5(アルドリツチ制)用于初始原料。将这些按照70比30的摩尔比调制的混合物约1g和粒径10mmφ的铝制球10个装入45mL的铝制容器,用行星型球磨机(フリツチユ社制型号P-7),在氮气中,在室温(25℃)下,把旋转速度规定为370rpm,进行机械磨碎处理20小时,从而获得白黄色粉末的硫化物系玻璃。
对得到的粉末,进行粉末X线衍射测量(CuKα:λ=1.5418)。该X线衍射光谱图示于图1中。还有,图1中,还示出了后述的比较例1~3的谱图。
该图由于表示出了非晶质体特有的宽阔的形状,所以可以确认该粉末进行了玻璃化(非晶质化)。
将该粉末(硫化物系玻璃)在氮气中在常温(25℃)~60℃为止的温度范围内进行煅烧处理,制作硫化物系结晶化玻璃。还有,在煅烧处理的同时进行差示热分析。
此时的升温、降温速度为10℃/分钟,升温至260℃后,冷却至室温。
经差示热分析的结果,可在230~240℃下观察到随着非晶质体的结晶化的放热峰。由此可知,非晶质体在230~240℃下变化为结晶性玻璃。
对上述制作的硫化物系结晶化玻璃,进行粉末X线衍射测量(CuKα:λ=1.5418)。图2中示出了该硫化物系结晶化玻璃的X线衍射光谱图。还有,图2中,还示出了后述的比较例1~4的光谱图。
由图2可以确认,得到的结晶化玻璃在2θ=17.8deg,18.2deg,19.8deg,21.8deg,23.8deg,25.9deg,29.5deg,30.0处具有衍射峰,并可以确认与一直以来已知的Li7PS6、Li4P2S6和Li3PS4具有不同的结晶相。
实施例2将实施例1中制作的硫化物系玻璃(煅烧处理前的粉末)加工为颗粒状(直径约10mm,厚度约1mm)的成形体。
对于该成形体,一边进行煅烧处理,一边测量离子传导率。测量是对在成形体上涂敷碳膏作为电极形成的物质,用交流二端法(alternating current two-terminal method)进行。
煅烧(测量)是从室温(25℃)开始,升温至250℃附近,然后,降温至室温进行。作为此时的升温、降温,各自需要约3小时。
图3是用阿雷尼厄斯曲线表示该硫化物系结晶化玻璃的离子传导率的测量结果的图。
通过该处理获得的硫化物系结晶化玻璃在室温(25℃)下的离子传导率为2.1×10-3Scm-1。该值是本元素系(Li,P,S)电解质中过去最大的值。
对测量后的试样进行X线衍射测量,结果可以确认到与实施例1相同的衍射峰模式。
表1中示出了实施例2和下面示出的实施例、比较例的煅烧温度、由各个例子制作的硫化物系结晶化玻璃的X线衍射峰、结晶和离子传导率。
表1
*参照Electrochemical Communication 5(2003)111-114
实施例3除了将Li2S和P2S5的摩尔比变化为68∶32以外,与实施例1相同地制作结晶化玻璃。
得到的结晶化玻璃观察到与实施例1相同的X线衍射峰。另外,用与实施例2相同的方法测量离子传导率,结果是1.0×10-3S/cm。
实施例4除了将Li2S和P2S5的摩尔比变化为73∶27以外,与实施例1相同地制作结晶化玻璃。
得到的结晶化玻璃观察到与实施例1相同的X线衍射峰。另外,用与实施例2相同的方法测量离子传导率,结果是1.3×10-3S/cm。
比较例1除了将Li2S和P2S5的摩尔比变化为67∶33以外,与实施例1相同地制作硫化物系结晶化玻璃。另外,用与实施例2相同的方法测量离子传导率。
比较例2除了将Li2S和P2S5的摩尔比变化为75∶25以外,与实施例1相同地制作硫化物系结晶化玻璃。另外,用与实施例2相同的方法测量离子传导率。
比较例3除了将Li2S和P2S5的摩尔比变化为80∶20以外,与实施例1相同地制作硫化物系结晶化玻璃。另外,用与实施例2相同的方法测量离子传导率。
比较例4除了在煅烧处理中,将最高温度改变为250℃~550℃以外,与实施例1、2相同地制作硫化物系结晶化玻璃,测量离子传导率。
如图2中所示可以确认,由比较例1~4制作的硫化物系结晶化玻璃没有出现本发明结晶化玻璃所具有的特有的衍射峰。
另外,由表1中记载的实施例和比较例的离子传导率的测量结果可以确认,本发明的硫化物系结晶化玻璃与以往的相比,表现出非常高的离子传导率。
(产业上的可利用性)本发明的硫化物系结晶化玻璃具有至少5V以上的分解电压,保持了不燃性无机固体、锂离子迁移率为1的特性,同时在室温下表现出这种10-3Scm-1台迄今为止非常高的锂离子传导率。因此,非常适合作为锂电池的固体电解质用材料。
此外,本发明的制造方法由于煅烧温度为150℃~360℃的低温区域,而且,可以降低Li源的使用量,所以可以工业生产,经济性也优越。
另外,使用具有上述特性的本发明的固体电解质的全固体电池的能量密度高,安全性和充放电循环特性优越。
权利要求
1.一种锂离子传导性硫化物系结晶化玻璃,其中,作为构成成分,含有锂(Li)、磷(P)和硫(S)元素,在X线衍射(CuKαλ=1.5418)中,在2θ=17.8±0.3deg、18.2±0.3deg、19.8±0.3deg、21.8±0.3deg、23.8±0.3deg、25.9±0.3deg、29.5±0.3deg、30.0±0.3deg处具有衍射峰。
2.一种锂离子传导性硫化物系结晶化玻璃的制造方法,其中,将由Li2S68~74摩尔%和P2S526~32摩尔%的组成构成的硫化物系玻璃在150~360℃下进行煅烧处理。
3.如权利要求2所述的锂离子传导性硫化物系结晶化玻璃的制造方法,其中,上述Li2S通过将在非质子性有机溶剂中使氢氧化锂和硫化氢反应得到的Li2S使用有机溶剂,在100℃以上的温度下进行清洗来精制而成。
4.如权利要求2所述的锂离子传导性硫化物系结晶化玻璃的制造方法,其中,上述Li2S中含有的硫氧化物的总量为0.15质量%以下,N-甲基氨基丁酸锂(LMAB)为0.1质量%以下。
5.如权利要求2所述的锂离子传导性硫化物系结晶化玻璃的制造方法,其中,使用相当于上述P2S5的摩尔比的单体磷(P)、单体硫(S)代替上述P2S5。
6.如权利要求2或5所述的锂离子传导性硫化物系结晶化玻璃的制造方法,其中,将上述Li2S和P2S5或者单体磷(P)以及单体硫(S)用机械磨碎法形成上述硫化物系玻璃。
7.一种锂离子传导性硫化物系结晶化玻璃,其中,由权利要求2或5记载的制造方法制造。
8.一种锂二次电池用固体电解质,其中,以权利要求1记载的锂离子传导性硫化物系结晶化玻璃为原料。
9.一种锂二次电池用固体电解质,其中,以权利要求7记载的锂离子传导性硫化物系结晶化玻璃为原料。
10.一种全固体电池,其中,使用权利要求8记载的锂二次电池用固体电解质。
11.一种全固体电池,其中,使用权利要求9记载的锂二次电池用固体电解质。
全文摘要
一种锂离子传导性硫化物系结晶化玻璃,作为构成成分,含有锂(Li)、磷(P)和硫(S)元素,在X线衍射(CuKαλ=1.5418)中,在2θ=17.8±0.3deg、18.2±0.3deg、19.8±0.3deg、21.8±0.3deg、23.8±0.3deg、25.9±0.3deg、29.5±0.3deg、30.0±0.3deg处具有衍射峰。
文档编号H01B1/12GK1918668SQ20058000432
公开日2007年2月21日 申请日期2005年1月31日 优先权日2004年2月12日
发明者辰巳砂昌弘, 千贺实, 清野美胜, 林晃敏 申请人:出光兴产株式会社, 辰巳砂昌弘