专利名称:用以在半导体器件中形成氧化膜的方法
技术领域:
本发明涉及一种用以在半导体器件中形成氧化膜的方法,更具体地,涉及一种用以形成一高品质晶体管的栅极氧化膜或一高品质闪速器件的隧道氧化膜的方法。
背景技术:
传统闪速电可擦除可编程只读存储器(EEPROM)器件的隧道氧化膜及其它内存器件的栅极氧化膜在考虑到它们的应用时需要有高水平的品质。决定高品质的氧化膜的主要因素包括界面陷阱电荷(interface trap charge)及氧化物陷阱电荷(oxide trap charge)的密度。
界面陷阱电荷集中存在于硅衬底与氧化膜彼此相邻的界面处。氧化物陷阱电荷同时存在于该氧化膜的体内及该硅衬底与氧化膜的界面处。俘获电子的电荷主要存在于该体材料中,而俘获空穴的电荷通常存在于该硅衬底与该氧化膜的界面。
因此,为了形成高品质的氧化膜,重要的技术问题是要减少该界面陷阱电荷及氧化物陷阱电荷的密度。换句话说,如果使用一具有高密度的界面陷阱电荷及氧化物陷阱电荷的氧化膜来作为一栅极氧化膜及一隧道氧化膜,则会有因陷阱电荷俘获电荷而造成的晶体管的阈值电压漂移的问题。此外,会有立即发生氧化膜击穿的问题。
发明内容
因此,有鉴于上述问题而提出本发明,而本发明的一目的在于提供一种用以在半导体器件中形成氧化膜的方法,其中可减少界面陷阱电荷及氧化物陷阱电荷的密度。
为了实现上述目的,依据本发明的一实施例,提供一种用以在半导体器件中形成氧化膜的方法,其包括下列步骤提供一硅衬底,从该硅衬底剥离天然氧化膜(native oxide film);通过实施一氧化工序在该硅衬底上形成一氧化膜;以及在一惰性气体与氧气混合的气氛下实施高温热处理工序,以便减少该氧化膜中所存在的陷阱电荷。
该方法优选地进一步包括在形成该氧化膜之后,实施用以减少该硅衬底与该氧化膜间的界面陷阱电荷的预处理热工序的步骤。
优选地该预处理热工序在850到950℃温度及一氧化二氮(N2O)或一氧化氮(NO)气体气氛下实施5到15分钟。
该高温热处理工序优选在950到1100℃温度及在一惰性气体中混合有氧气的气氛下实施5到15分钟。
优选地,其中的氧化工序通过下列方式来实施令氢气及氧气在高温下经由反应变成蒸汽,以及然后将该蒸汽喷洒至该硅衬底的表面或者将一包含氯的TCA或TCE气体一起注入该蒸汽中。
依据本发明的另一实施例,提供一种用以在半导体器件中形成氧化膜的方法,其包括下列步骤将一硅衬底加载到反应室中,然后第一次使该反应室中的温度上升,以便该温度成为第一温度;通过在该第一温度下实施一氧化工序以在该硅衬底上形成一氧化膜;第二次使该反应室中的温度上升,以便该温度成为第二温度;在该第二温度及在一氮气气氛下实施一预处理热工序;第三次使该反应室中的温度上升,以便该温度成为第三温度;在该第三温度及在混合有一惰性气体及氧气的气氛下实施一高温热处理工序;以及使该反应室中的温度下降,以便该温度成为一卸载温度,然后将该硅衬底自该反应室卸载。
该预处理热工序优选包括下列步骤在氮气气氛下使该反应室中的温度稳定4到6分钟,以便稳定该反应室中的温度;在一氧化二氮或一氧化氮气体气氛下实施5到15分钟的退火处理(annealing);以及在氮气气氛下实施4到6分钟之后期退火处理(post annealing)。
该高温热处理工序优选在混合有氮气及氧气的气体气氛下或在混合有氩气及氧气的气体气氛下实施5到15分钟。
优选地,该第一升温工序在3到10℃/分钟的速率下实施,该第二升温工序在3到10℃/分钟的速率及氮气气氛下实施20到40分钟,以及该第三升温工序在3到10℃/分钟的速率下实施4到6分钟。
优选地,该第一温度为700到800℃,该第二温度为850到950℃,以及该第三温度为950到1100℃。
图1至图3为显示用以说明依据本发明的用以制造一氧化膜的方法的剖面图;图4为用以说明依据本发明的用以制造该氧化膜的方法的概念图示;以及图5为示出通过依据本发明的热处理工序实现的氧化物陷阱电荷水平的曲线图。
主要组件符号说明100 硅衬底110 氧化膜具体实施方式
现在,将参考附图来描述依据本发明的优选实施例。因为提供优选实施例是为了使本领域的普通技术人员能了解本发明,所以可以不同方式来修改这些优选实施例,而且本发明的范围并非局限于稍后所描述的优选实施例。相同组件符号用以指代相同或相似部分。
通过在一氧化工序之后以氮(N)或氢(H)原子来取代,可以减少界面陷阱电荷的密度。同样地,为了减少氧化物陷阱电荷的密度,可以使用在该氧化工序时通过在周围气氛下令氢气(H2)与氧气(O2)彼此反应所产生的蒸汽。
在该氧化物陷阱电荷形成期间由电子引起的陷阱电荷分布在该氧化膜的体内。该陷阱电荷的密度随该氧化工序期间的工艺条件而改变。可经由在该氧化工序后的一预定热处理工序来减少这些电子引起的陷阱电荷密度。可通过在该氧化工序或随后的热工序期间供应充分的氧气以减少空穴引起的陷阱电荷密度。
图1至图3为显示用以说明依据本发明的用以制造一氧化膜的方法的剖面图。图4为用以说明依据本发明的用以制造该氧化膜的方法的概念图示。
参考图1及图4,在将一硅衬底100载入一反应室中之后,经由一氧化工序在该硅衬底100上形成一氧化膜110。
优选地,在将该硅衬底100加载到该反应室上之前,实施用以将在该硅衬底100上所形成的天然氧化膜剥离的清洗工序。该清洗工序优选使用一化学溶液(例如氟化氢(HF)或缓冲氧化物蚀刻液(BOE))来实施。如果没有实施该清洗工序,可能会产生因留在该硅衬底100上的天然氧化膜降低由随后工序所形成的氧化膜110的品质的问题。
在将该硅衬底100加载到该反应室上之后,使该反应室中的温度上升,以便该温度成为在氧化工序时所使用的温度。该上升速率优选为3到10℃/分钟。加载时优选的温度为550到700℃,更优选地在620到680℃。
可通过向该硅衬底100的表面只喷洒作为氧化剂的氧气或者喷洒作为氧化剂的在高温下经由反应产生蒸汽的氢气与氧气的混合气体,以实施该氧化工序。此时,优选通过一起注入一包含氯的气体(例如TCA或TCE)来实施氧化工序,以便减少在该氧化膜110中的移动离子。有鉴于该膜的特性,将该氧化工序的温度保持在高温是有效的。因此,优选该氧化工序的温度为700到800℃,更优选为730到770℃。如果该氧化工序在上述温度中实施,不但可均匀地形成该氧化膜110的品质,而且可强化接合。可通过控制该氧化工序条件及该氧化工序时间,以形成具有一目标厚度的氧化膜110。在此实施例中,该氧化膜110优选具有约30到200埃(更优选为50到130埃)的厚度。
如果已经由上述氧化工序形成该氧化膜110,则停止该氧化剂的注入,然后通过将一惰性气体注入该反应室中以将该残留氧化剂完全地自该反应室排出。可使用氮气来作为该惰性气体。
参考图2及图4,优选地在氮气气氛下实施用以减少该界面陷阱电荷的预处理热工序。该预处理热工序优选包括稳定该反应室的温度的步骤、退火步骤及后期退火步骤。
使该反应室中的温度上升,以便该温度成为在该预处理热工序时所使用的温度。在此实施例中,该预处理热工序的温度优选为850到950℃。因此,该反应室的温度优选在该惰性气体气氛下以3到10℃/分钟的上升速率来提升,并逐渐地提升至该预处理热工序的温度。更为优选地,以4到6℃/分钟的上升速率提升该反应室中的温度约20到40分钟。可以优选地使用氮气作为该惰性气体。
在使该反应室的温度上升之后,优选地在氮气气氛下稳定该反应室的温度约4到6分钟。这是为了要稳定该升温所造成的温度的不稳定性。
在稳定该温度之后,优选地在850到950℃温度及一氧化二氮或一氧化氮气体气氛下实施约5到15分钟的退火处理。在此实施例中,更优选的是实施该退火处理约8到12分钟。这是用以减少因过度退火所造成的热应力及有效地以氮来取代该界面陷阱电荷。
在该退火工序之后,优选在850到950℃温度及氮气气体气氛下实施4到6分钟的后期退火处理。这是用以减少热应力、加强氮取代效果以及排放在该退火工序中所使用的气体。
参考图3及图4,实施用以减少氧化物陷阱电荷的高温热处理工序。
在实施该高温热处理工序之前,使该反应室中的温度上升,以便该温度成为在高温度热处理工序时所使用的温度。优选以3到10℃/分钟的速率来实施该温度的提升。更为优选的是以4到6℃/分钟的速率使该反应室中的温度上升约4到6分钟。此外,优选在一惰性气体气氛或一混合气体气氛(一惰性气体与氧气混合)下实施该高温热处理的升温。优选使用氮气或氩气作为该惰性气体。因此,在该升温步骤期间,可防止在该硅衬底与该氧化膜的界面附近发生空穴陷阱电荷。
在该升温步骤之后,优选在950到1100℃温度及在氧气与该惰性气体混合的气体气氛下实施该高温热处理工序,以便减少氧化物陷阱电荷。换句话说,优选在氮气与氧气混合的气体气氛或氩气与氧气混合的气体气氛下实施该高温热处理工序。此外,可在一氧化二氮气体或一氧化氮气体气氛下实施该高温热处理工序。该高温热处理工序优选实施5到15分钟。在此实施例中,更优选的是在上述温度及在上述气体气氛下实施该高温热处理工序8到12分钟。
如果在上述工艺条件下实施该高温热处理工序,则可通过供应充分氧气及同时应用热预算以最小化该氧化膜110中的氧化物陷阱电荷。其详细效果将描述于后。
在实施该高温热处理工序之后,使该反应室中的温度下降一定时间,并从该反应室卸载该晶片。优选地以2到4℃/分钟的速率使该反应室的温度下降约60到70分钟。在温度下降时,该反应室的内部优选是惰性气体气氛。当从该反应室卸载该晶片时的温度优选为约750到850℃。
图5为示出通过依据本发明的热处理工序实现的氧化物陷阱电荷水平的曲线图。
图5中的曲线″A″表示在950℃或更高温度及在一惰性气体与氧气混合的气体气氛下实施10分钟或更长时间的高温热处理工序时的氧化物陷阱电荷水平。图5中的曲线″B″表示在没有实施该高温热处理工序时的氧化物陷阱电荷水平。从图5可看出在实施依据本发明的高温热处理工序的情况下,陷阱电荷水平降低了。
依据上述本发明,在形成一氧化膜之后,实施一高温热处理工序及一预处理热工序。因此,可减少界面陷阱电荷及氧化物陷阱电荷。
此外,形成了一具有减少的陷阱电荷的高品质氧化膜。因此,可改善器件的可靠性并防止阈值电压的变动。
权利要求
1.一种用以在半导体器件中形成氧化膜的方法,其包括下列步骤提供一硅衬底,从所述硅衬底剥离天然氧化膜;通过实施一氧化工序在该硅衬底上形成一氧化膜;以及在一惰性气体与氧气混合的气氛下实施高温热处理工序,以便减少该氧化膜中所存在的陷阱电荷。
2.如权利要求1所述的方法,其进一步包括在形成所述氧化膜之后,实施用以减少该硅衬底与该氧化膜间的界面陷阱电荷的预处理热工序的步骤。
3.如权利要求2所述的方法,其中所述预处理热工序在850到950℃温度及一氧化二氮(N2O)或一氧化氮(NO)气体气氛下实施5到15分钟。
4.如权利要求1所述的方法,其中所述高温热处理工序在950到1100℃温度及在一惰性气体中混合有氧气的气氛下实施5到15分钟。
5.如权利要求1所述的方法,其中所述氧化工序通过下列方式来实施令氢气及氧气在高温下经由反应变成蒸汽,以及然后将该蒸汽喷洒至该硅衬底的表面或者将一包含氯的TCA或TCE气体一起注入该蒸汽中。
6.一种用以在半导体器件中形成氧化膜的方法,其包括下列步骤将一硅衬底加载到一反应室中,然后第一次使该反应室中的温度上升,以便该温度成为第一温度;通过在该第一温度下实施一氧化工序以在该硅衬底上形成一氧化膜;第二次使所述反应室中的温度上升,以便该温度成为第二温度;在所述第二温度及在一氮气气氛下实施一预处理热工序;第三次使所述反应室中的温度上升,以便该温度成为第三温度;在所述第三温度及在混合有一惰性气体及氧气的气氛下实施一高温热处理工序;以及使所述反应室中的温度下降,以便该温度成为一卸载温度,然后将所述硅衬底自该反应室卸载。
7.如权利要求6所述的方法,其中所述预处理热工序包括下列步骤在氮气气氛下使该反应室中的温度稳定4到6分钟,以便稳定该反应室中的温度;在一氧化二氮或一氧化氮气体气氛下实施5到15分钟的退火处理;以及在氮气气氛下实施4到6分钟的后期退火处理。
8.如权利要求6所述的方法,其中所述高温热处理工序在混合有氮气及氧气的气体气氛下或在混合有氩气及氧气的气体气氛下实施5到15分钟。
9.如权利要求6所述的方法,其中所述第一升温工序在3到10℃/分钟的速率下实施,所述第二升温工序在3到10℃/分钟的速率及氮气气氛下实施20到40分钟,以及所述第三升温工序在3到10℃/分钟的速率下实施4到6分钟。
10.如权利要求6所述的方法,其中所述第一温度为700到800℃,所述第二温度为850到950℃,以及所述第三温度为950到1100℃。
全文摘要
本发明涉及一种用以在半导体器件中形成氧化膜的方法。依据本发明,在形成一氧化膜之后,可经由一高温热处理工序及一预处理热工序减少界面陷阱电荷及氧化物陷阱电荷。此外,由于形成了一具有减少的陷阱电荷的氧化膜时,改善了器件的可靠性并防止了阈值电压的变动。
文档编号H01L29/788GK1661782SQ20051000388
公开日2005年8月31日 申请日期2005年1月19日 优先权日2004年2月23日
发明者申承佑 申请人:海力士半导体有限公司