并苯噻吩半导体的利记博彩app

文档序号:6844999阅读:193来源:国知局
专利名称:并苯噻吩半导体的利记博彩app
领域本发明涉及可用作半导体的有机化合物并且,在另一方面,涉及含有该化合物的器件,和制备含有该化合物的器件的方法。
背景传统上,无机硅和砷化镓半导体、二氧化硅绝缘体、以及金属如铝和铜在半导体工业中占支配地位。但是近年来,在使用有机薄膜晶体管(OTFTs)替代传统的基于无机材料套件的器件方面集中了不断增多的研究力量。连同其它好处一道,使用有机物质可以以更低的成本生产电子器件,可以得到大面积的应用,以及将柔性的电路载体用于显示器底板或集成电路。
已经有多种材料被认为是有机半导体,其中最普通的是稠合的并苯如并四苯和并五苯,含有噻吩或芴单元的低聚材料,以及聚合物材料如立规聚(3-烷基噻吩)。由于聚合物可能用溶液涂敷,因此当与通过高真空汽相沉积制备的良序薄膜相比时,其器件性能较差。正电荷载体迁移率(p型)高达3.3cm2V-1s-1(Kelley,T.W.;Boardman,L.D.;Dunbar,T.D.;Muyres,D.V.;Pellerite,M.;Smith,T.P.,J.Phys.Chem.,B 2003,107,5877-5881),开/关电流比高于108(Knipp,D.;Street,R.A.;Volkel,A.;Ho,J.,J.Appl.Phys.,2003,93,347-355),而次阈电压低于0.5V(Klauk,H.;Halik,M.;Zschieschang,U.;Schmid,G.;Radlik,W.;Weber,W.,J.Appl.Phys.,2002,92,5259-5263),已经报道了并五苯基晶体管。这些数值可与非晶态硅基器件相比或比它更加优良。
但是,在若干领域中替代的半导体材料可以带来改进。器件构造、材料的选择和基材粗糙度全都会影响器件性能。在并五苯基器件中,这些变化在某种程度上归于若干多晶型物的存在(Mattheus,C.C;deWijs,G.A.;deGroot,R.A.;Palstra,T.T.M.,J.Am.Chem.Soc.,2003,125,6323-6330)。并五苯分子的排列或结构顺序随各个不同多晶型物或结晶相变化而变化,而该结构顺序决定了器件的电子性能。并五苯采用的结晶相取决于晶体形成时的工艺和条件。并五苯的薄膜形式可以通过暴露于溶剂如异丙醇、丙酮或乙醇中而转化为凝集相。(参见,例如,Gundlach等人,Appl.Phys.Lett.,2000,74(22),3302)。另外,并五苯的长期氧化和热稳定性是未知的,因为它是并五苯基半导体器件的使用寿命。合成和纯化的容易性是在考虑有机半导体的应用时另一个必须考虑的因素。特别是,可溶性材料可以通过重结晶或层析法纯化,这种常见的方法无法用于稠合并苯如并五苯。能否使用溶液加工技术来构造器件是实现低成本生产方法的潜在关键。最后,很有可能,对于专门的应用来说需要各种具有许多物理和化学性质的有机半导体材料。
概述考虑到以上所述,我们认识到需要新的能够提供稳定且可复制的电特性的有机半导体。
简要地说,本申请公开了可用作有机半导体的并苯噻吩化合物。已经发现并苯噻吩化合物,当在OTFTs中用作活性层时,会显示出可与并五苯的特性相比的器件特性,如电荷载体流动性和电流开/关比例。使用这种混杂型并苯噻吩材料,我们已经将稠合并苯和低聚噻吩两者的希望性能结合到单个而且新型的高性能有机半导体中。本发明化合物的制备可靠,并且根据具体的材料,可以通过梯度升华、和/或重结晶、和/或层析法纯化为半导体级。由此,公开的化合物满足本领域对于新型有机半导体的需要,它们可以在器件中提供有用的性能和稳定性,并且可以多样化地替代非晶态硅或并五苯基器件。
还公开了含有至少一种本发明化合物的半导体器件,以及含有该半导体器件的制品。例如,特别优选的器件包括薄膜晶体管或晶体管阵列,以及场致发光灯。
用于本文时,″层″指任何可以由前体化合物使用例如溶液涂覆工艺或汽相沉积工艺在基材上形成的层。术语″层″意味着包括半导体工业中特定的层,如″阻挡层″、″介电层″、″绝缘层″、以及″导电层″。(术语″层″与经常用于半导体工业中的术语″膜″的意义相同)。术语″层″的意思还包括半导体技术之外的技术中发现的层,如玻璃上的涂层。用于本文时,″介电层″或″栅极介质层″指具有相对高介电常数的层(或膜)。
附图简述

图1是5,5′-双(2-蒽基)-2,2′-联噻吩(An-T2-An)的差示扫描量热法(DSC)图(实施例8)。
附图2是5,5′-双(2-并四苯基)-2,2’-联噻吩(Tet-T2-Tet)和并五苯(实施例9)的热重分析(TGA)数据。
附图3是5,5′-双(2-蒽基)-2,2’-联噻吩(An-T2-An)的激发和发射光谱图(实施例10)。
图4是5,5′-双(2-蒽基)-3,4′-二己基-2,2’-联噻吩(An-T2h-An)的紫外-可见光吸收和发射光谱(实施例10)。
图5是实施例11的转换曲线。
图6是实施例12的X射线衍射数据。
图7是实施例13的原子力显微镜成象(AFM)的数字图象。
详细说明本发明公开的并苯噻吩化合物用作有机半导体。该并苯噻吩化合物具有下式I
其中,Ac是选自2-萘基,2-蒽基,2-并四苯基的并苯基;R1是Ac,烷基或H;R2和R3各自独立地选自H或烷基;n是1-4。Ac单元通过并苯环的2-位偶合到中央(低聚)噻吩片断上。用于本文时,″(低聚)噻吩″指通过环的2和/或5-位连接的一至四个噻吩环。例如,当n=3时,中央低聚噻吩单元是2,2′5′,2″-三噻吩-5,5″-二基,如下所示 对于具有稠合芳环系统的化合物通常给出编号序列,其中仅仅是一个环的组成部分的每一个碳原子都被编号。(参见,例如,James E.Banks,有机化合物的命名有机化学的程序介绍(NAMING ORGANICCOMPOUNDSA PROGRAMMED INTRODUCTION TO ORGANICCHEMISTRY,Saunders College Publishing,124页,PA(1976))。通常用于并苯的编号序列显示如下 噻吩环的编号如下 (低聚)噻吩片断在各噻吩环的每一个3-和/或4-位可以是未取代的或被取代。并苯组的末端环,即,远离(低聚)噻吩的环,可以是取代的或未取代的,且优选未取代的。对于上述编号惯例,并苯基团的末端或远端环将由萘或蒽环的5、6、7和8碳,或并四苯环的7、8、9和10碳定义。被取代时,优选对称取代,尽管发现不对称类似物可以提供相同的用途。
如上所述,(低聚)噻吩片断的噻吩环的2-和/或5-位连接到并苯环的2-位上。并苯可以在萘环的5-、6-、7-、或8-位,蒽环的5-、6-、7-、或8-位,或并四苯环的7-、8-、9-、或10-位上被进一步取代。一个或多个这些位置可以被取代。若并苯仅在末端环上被取代,优选取代在萘或蒽环的6-位,或并四苯环的8-位上。一个或多个并苯环可以被取代。
如果存在,并苯环的各取代基独立地选自烷基,烷氧基,硫烷氧基,卤素原子,(低聚)噻吩基(其可以进一步被取代)及其组合。更优选,各取代基独立地是烷基,烷氧基,(低聚)噻吩基或其组合。最优选,各取代基独立地是烷基或(低聚)噻吩基。有用的烷基、烷氧基、和硫烷氧基可能包括,例如,C1-C18烷基、烷氧基、和硫烷氧基。
最优选并苯噻吩化合物的末端并苯环是未取代的,原因是合成相对容易。
对于式I,(低聚)噻吩片断的各噻吩环可以被取代,如取代基R2和R3所标明的。各R2和R3选自H,烷基,烷氧基,硫烷氧基,卤原子,及其组合。更优选,各取代基独立地是烷基,烷氧基,或其组合。最优选,各取代基独立地是烷基中的C1-C18烷基。特别有益的是取代的噻吩由立规聚(3-烷基噻吩)的低聚物组成。
如果并苯取代基是(低聚)噻吩基,则可提供下式的化合物 其中,Ac是选自2,6-萘-二基,2,6-蒽-二基,和2,8-并四苯-二基的并苯基;R1是Ac,烷基或H;各R2和R3独立地选自H,烷基,烷氧基,硫烷氧基,卤原子,及其组合,n是1至4。
如果R1是并苯基,则提供下式的化合物 其中Ac是选自2-萘基,2-蒽基,和2-并四苯基的并苯基;各R2和R3独立地选自H,烷基,烷氧基,硫烷氧基,卤原子,及其组合,n是1至4。并苯基的末端环可以进一步如前述被取代。
部分优选的化合物及其化学名称和缩写显示如下
并苯噻吩化合物可以通过适当的单或双卤并苯基与适当的单或双(三烷基甲锡烷基)噻吩的Stille偶合制备。并苯起始原料上的卤取代基通常是溴或氯,尽管已发现也可以使用其他卤。Stille偶合可以如以下文献中所述进行Littke,A.F.;Schwarz,L.;Fu,G.C.,J.Am.Chem.Soc.,2002,124,6343-6348。关于反应条件的另外的信息可参见Farina,V.;Krishnamurthy,V.,Organic Reactions;Paquette,L.A.编;John Wiley &Sons,Inc.,1997;第50卷,第1-652页。下文实施例还提供了有关本发明中报告的一部分具体材料的详细内容。根据具体的材料,产物可以通过梯度升华、和/或重结晶、和/或层析法纯化至半导体级。
下文描述的是如上所述Stille偶合反应的一个实例 类似地,如果起始并苯是二卤化物而(低聚)噻吩是单甲锡烷基,则得到类似于如下所述的化合物
另外,如果并苯和噻吩起始物料都是单官能团的,则Stille偶合方法可以用来制备不对称化合物 可以使用其他合成策略构造并苯噻吩化合物。例如,已经使用钯催化的Suzuki偶合来偶合2-溴蒽(参见Ito,K.;Suzuki,T.;Sakamoto,Y.;Kubota,D.;Inoue,Y.;Sato,F;Tokito,S.,Angew.Chem.,Int.Ed.2003,42,1159-1162)。最近已经公开了有机半导体合成方法的综述(参见Katz,H.E.;Bao,Z.;Gilat,S.L.,Acc.Chem.Res.,2001,34,359-369)。
取代的并苯噻吩化合物的末端环可以通过末端环-取代的2-氯或2-溴并苯,如2-卤-6-烷基萘或蒽,与单或双(三烷基甲锡烷基)噻吩的Stille偶合制备。末端环-取代的2-氯或2-溴并苯可以通过本领域中已知的方法制备,且可以参考以U.S.2003-0105365公开的申请人的共同未决申请U.S.S.N.10/256,616中描述的合成流程图。
三正丁基甲锡烷基(低聚)噻吩化合物可以通过分别用1或2当量的三正丁基甲锡烷基氯化物处理单或双锂化的(低聚)噻吩来制备。例如,5,5″-双(三正丁基甲锡烷基)-2,2’5′,2″-三噻吩(Bu3Sn-T3-SnBu3),可以如下文所示制备,并参见Miller,L.L.;Yuan,Y,J.Org.Chem.,1995,60,6813-6819。尽管我们优选使用三正丁基甲锡烷基取代基,但公知其他三烷基甲锡烷基也可用于Stille偶合反应。

可以用确定的方法制备3-和/或4-取代的(低聚)噻吩起始原料。例如,通过2-(三正丁基甲锡烷基)-4-己基噻吩和2-溴-3-己基噻吩之间的Stille偶合可制备3,4′-二己基-2,2′-联噻吩(T2h),如下所示。
烷基化的联噻吩(T2h)可以通过公开的方法用Suzuki偶合反应制备(Kirschbaum,T.;Briehn,C.A.;Buerle,P.,J.Chem.Soc.,Perkin Trans.,12000,1211-1216)。用于偶合反应来制备半导体的这些物质向甲锡烷基衍生物的转化通过与如上所述类似的方式完成。
公开的化合物可在半导体器件中用作半导体层。尽管有许多种类的半导体器件,但全部的共性是存在一或多种半导体材料。半导体器件已经由S.M.Sze在,例如,Physics of Semiconductor Devices,第二版,John Wiley and Sons,New York(1981)中描述过。这种器件包括整流器,晶体管(其中有多个类型,包括p-n-p,n-p-n,和薄膜晶体管),发光半导体器件(例如,有机发光二极管),光导体,限流器,热敏电阻,p-n结,场效应二极管,肖特基二极管,及本领域已知的其他器件。在各半导体器件中,半导体材料与一或多个导体或绝缘体结合形成器件。半导体器件可以通过已知方法制备或制造,例如,Peter Van Zant在Microchip Fabrication,第四版,McGraw-Hill,New York(2000)中所描述的那些。
电子器件包括以下用于形成电路的部件如晶体管,晶体管阵列,二极管,电容器,嵌入式电容器,和电阻器。电子器件还包括完成电子功能的电路系列。这些阵列或集成电路的实例是放大器,接收器,发射机,换向器,和振荡器。
这些器件与阵列的应用包括射频识别器件(RFID),智能卡,灯,显示器,等。本发明不受器件种类的限制。特别优选的器件种类包括薄膜晶体管。
特别有用的晶体管器件类型,薄膜晶体管(TFT),通常包括栅电极,在栅电极上的栅极介质,靠近栅极介质的源电极和漏极,和靠近栅极介质且靠近源和漏极的半导体层(参见,例如,S.M.Sze,Physics ofSemiconductor Devices,第二版,John Wiley and Sons,492页,NewYork(1981))。这些部件可以组装成各种结构。更具体地说,有机薄膜晶体管(OTFT)具有有机半导体层。
通常,基材在生产、测试、和/或使用期间承载OTFT。任选,基材可以为OTFT提供电功能。有用的基材材料包括有机和无机物质。例如,基材可以包括无机玻璃,陶瓷箔,聚合物材料(例如,丙烯酸树脂,环氧树脂,聚酰胺,聚碳酸酯,聚酰亚胺,聚酮,聚(氧-1,4-亚苯基氧-1,4-亚苯基羰基-1,4-亚苯基)(有时称为聚(醚醚酮)或PEEK),聚降莰烯,聚亚苯基氧化物,聚(乙烯萘二酸酯)(PEN),聚(对苯二甲酸乙二酯)(PET),聚(亚苯基硫化物)(PPS)),填充的聚合物材料(例如,纤维增强塑料(FRP)),以及涂敷的或未涂覆的金属箔。
栅电极可以是任何有用的电导性材料。例如,栅电极可以包括掺杂硅,或金属,如铝,铬,金,银,镍,钯,铂,钽,和钛。也可以使用导电聚合物,例如聚苯胺或聚(3,4-亚乙基二氧噻吩)/聚(苯乙烯磺酸酯)(PEDOTPSS)。另外,可以使用这些材料的合金、组合物、和多层。在一些OTFT中,同一材料可以提供栅电极功能以及提供基材的支撑功能。例如,掺杂硅可以起栅电极的作用并承载OTFT。
通常在栅电极上提供栅极介质。该栅极介质将栅电极与OTFT器件的平衡电隔离开。用于栅极介质的有用物质可以包括,例如,无机的电子绝缘材料或聚合物介电层。
可用于栅极介质材料的具体实例包括锶酸盐,钽酸盐,钛酸酯,锆酸盐,氧化铝,二氧化硅,氧化钽,二氧化钛,四氮化三硅,钛酸钡,钛酸锶钡,钛酸锆酸钡,硒锌矿,以及硫化锌。另外,可以使用这些材料的合金、组合物、和多层用于栅极介质。
或者,栅极介质可以包括有机聚合物介电层。多种有机聚合物已经被认为是绝缘体材料。其包括聚酰亚胺,聚对亚苯基二甲基C,交联的苯并环丁烯,以及氰乙基pullulan。参见,例如,C.D.Sheraw等,″Spin-on polymer gate dielectric for high performance organic thin filmtransistors″,Materials Research Society Symposium Proceedings V 558,Materials Research Society,Warrendale,PA,USA,403-408页(2000);美国专利6,265,243(Katz);和美国专利5,347,144(Garnier)。
优选有机聚合物电介质包括这样的聚合物,其具有氰基官能部分和为整个聚合物提供相对高介电常数的部分,这些部分可以相同或不同。聚合物可以是均聚物或共聚物。共聚物是由两种或多种不同的单体制备的聚合物并包括三元共聚物、四元共聚物、等等。单体可以连接形成无规、嵌段(block)、嵌段共聚物(segmented copolymers),以及各种其他结构排列的任何一种。
这样的聚合物电介质可以是具有如下式重复单元的基本上非氟化的有机聚合物
其中各R1独立地为H、芳基(包括芳烷基和烷芳基)、Cl、Br、I,或包括可交联基团(即,一个或多个可交联的基团)的有机基团;每一个R2独立地为H,芳基(包括芳烷基和烷芳基),或R4;每一个R3独立地为H或甲基;各个R5为芳香环上的取代基且独立地为烷基,卤素,或R4;n=0-3;每一个R4独立地为这样的有机基团,其包括至少一个CN基且相对于每一个CN基团所具有的分子量为约30至约200;前提是聚合物中至少一个重复单元包括R4。优选,至少一个R1包括可交联的基团。两个重复单元可以相同,从而形成均聚物。对于某些实施方案来说,所述基本上非氟化的绝缘体聚合物是交联的。这样的聚合物公开于申请人于2003年8月5日提交的共同未决申请U.S.S.N.10/434,377中。
源电极和漏极通过栅极介质与栅电极分隔开来,虽然有机半导体层可以在源电极和漏极之上或之下。源和漏极可以是任何有用的电导性材料。有用的物质包括大部分如上所述用于栅电极的材料,例如,铝,钡,钙,铬,金,银,镍,钯,铂,钛,聚苯胺,PEDOTPSS,其他导电聚合物,其合金、其组合物、以及其多层。如本领域中已知的,部分这些材料适用于N型半导体材料而其它的适用于P型半导体材料。
薄膜电极(即,栅电极,源电极,和漏极)可以通过任何有用的方法提供,如物理汽相沉积(例如,热蒸发或溅射)或喷墨印刷。这些电极的图案化可以通过已知方法完成如掩膜,加料光刻法,减料光刻法,印刷,微触印刷,和模涂。
制备薄膜晶体管或集成电路的一个特别有用的方法是通过一个柔性的,可重新定位的聚合物孔掩模器件形成集成电路或集成电路元件。该技术包括通过多个聚合物孔掩模依次沉积材料,在形成的所述孔掩模上具有定义所述电路的层或层的一部分的图案。在一些实施方案中,电路可以仅仅使用孔掩模沉积技术形成,而不需要任何通常用于形成集成电路图案的蚀刻或光刻法步骤。该技术对于形成用于电子显示器如液晶显示器和低成本集成电路如射频标识(RFID)电路的电路元件是特别有用的。另外,该技术对于引入有机半导体的集成电路的制造是有益的,这些集成电路通常不适合于使用光刻法或其他湿法加工法。
在各个实施方案中,所形成的具有图案的不同的可重新定位的孔掩模,如柔性孔掩模、自立的孔掩模和聚合物孔掩模可以用来定义集成电路的层或层的一部分。可重新定位的聚合物孔掩模的厚度可以在大约5和50微米之间或大约15和35微米之间。孔掩模中各个沉积孔的宽度可以为低于大约1000微米,低于大约50微米,低于大约20微米,低于大约10微米,或甚至低于大约5微米。这种尺寸的孔特别适用于形成用于集成电路的小电路元件。另外,沉积孔之间的一个或多个缝隙可以小于大约1000微米,小于大约50微米,小于大约20微米或小于大约10微米,其同样适用于形成小的电路元件。同样,还描述了包括宽度大于约1厘米、25厘米、100厘米、或甚至500厘米的图案的孔掩模。具有这些宽度的图案可用于形成下文将更加详细描述的在更大表面积上形成的各种电路。在一些实施方案中,层可以通过可重新定位的聚合物孔掩模沉积在基材上。
各种激光烧蚀技术可以用来促进具有沉积孔图案的聚合物孔掩模的形成。另外,拉伸技术及其他技术可以用来促进柔性聚合物孔掩模的排列。另外,可以使用控制孔掩模中凹陷的方法,其在使用包括在大宽度上延伸的图案的掩膜时是特别适用的。
孔掩模可以提供多种优点。例如,孔掩模可以有助于使用沉积方法来形成相对小的电路元件。孔掩模可以有助于具有如下宽度的电路元件,即,宽度小于大约1000微米,小于大约50微米,小于大约20微米,小于大约10微米,或甚至小于大约5微米。同样,孔掩模可能有助于相对大的电路图案的形成,有些情况下具有上文提到的覆盖大面积(如10平方厘米,50平方厘米,1平方米,或甚至更大面积)的相对小宽度的电路元件。另外,孔掩模可以降低与电路制造有关的成本,并且在有机半导体的情况下,甚至可以改善器件性能。聚合物孔掩模可以使用激光烧蚀过程形成,与其他技术相比,它可能会更快并且价格更低廉。同样,廉价的聚合物材料可以使得聚合物掩模成为一次性的,但是也描述了可重复利用的实施方案。
另外,聚合物材料可能非常适合于用磁性材料浸渍。在那种情况下,磁性材料可以用来减少如下所述掩模中的凹陷。另外,聚合物材料通常是可拉伸的,这样就可以拉伸掩模以减少凹陷或者将掩模校直。
更详细的资料可以参考作为03-0094959-A1公开的本申请人的共同未决申请U.S.S.N.10/19699。
本发明进一步提供一种薄膜晶体管,其包括配置在所述有机半导体和栅极介质之间的表面处理层。该表面处理层可以选自非氟化的聚合物层,自组装的单层或硅氧烷聚合物层。该表面处理层为有机薄膜晶体管提供超过已知器件的一个或多个方面的改进,包括性能如阈电压、斜率亚阈值、开/关比、和电荷-载体迁移率的改进。此外,用表面处理层可以实现至少一个性能,如电荷-载体迁移率的大改进,同时使其他的OTFT性能保持在希望的范围内。本发明提供的器件性能的改进能够使得人们可以通过更简单的加工条件生产较没有表面处理层制备的OTFT运行速度更高的复杂电路。这种表面处理层还能够使得人们生产更大的电路元件,其与具有微细构造的器件有可比的性能。具有更大构造尺寸的器件价格可以更低廉,因为它们不需要昂贵的精密图案化方法。
任何已知的薄膜晶体管结构均可以使用表面处理层。例如,源和漏极可以靠近栅极介质而有机半导体层在源和漏极之上,或有机半导体层可以插入到源和漏极以及栅极介质之间。在各实施方案中,薄膜晶体管可以在有机半导体层和栅极介质之间包括表面处理层。
在一个实施方案中,本发明所提供含有基本上非氟化的聚合物层的有机薄膜晶体管(OTFT),该层插入到栅极介质和本发明有机半导体层之间,所述基本上非氟化的聚合物层厚度小于约400A。
在一个实施方案中,本发明提供制备OTFT的方法,该方法包括提供基材,在基材上形成栅电极,在栅电极上形成栅极介质,涂覆插入在栅极介质和有机半导体层之间的基本上非氟化的聚合物层(厚度小于约400A),在靠近聚合物层处沉积有机半导体层,并在邻近有机半导体层处沉积源电极和漏极。还提供包括多个OTFT的集成电路。
聚合物表面处理层最大厚度小于约400埃(A),更优选小于约200A,最优选小于约100A。聚合物表面处理层通常厚度至少为约5A,更优选至少约10A。厚度可以通过已知的方法,例如椭率测量术测定。
聚合物表面处理层选自多种选项。例如,可以使用厚度在上文所列范围内的基本上非氟化的聚合物层。本文中,″基本上非氟化的″意思指聚合物层中,低于约5%(更优选低于约1%,甚至更优选0%)的碳具有氟取代基。
用于本文时,″取代″意思指被不会干扰OTFT预期性能的取代基所取代。适合的取代基的实例包括卤素(例如,Cl、Br、I),氰基,C1-C20脂肪基,芳基,芳烷基,等等。用于本文时,″杂原子″意味着非碳原子,例如O,P,S,N和Si。
聚合物层可以包括具有根据下式的共聚单元的聚合物 约50至100%的共聚单元如式I所示,0至约50%的所述共聚单元如下式所示 在这些分子式中,各R1和R2独立地包括选自以下所述的基团氢,C1-C20脂肪基;氯;溴;羧基;酰氧基;腈;酰胺基;烷氧基;羰基烷氧基;芳氧基;氯化脂肪基;溴化脂肪基;C6-C20芳基;C7-C20芳烷基;羟基(当R,X不相同时);及其组合,其可以含有一个或多个杂原子和/或一个或多个官能团。各X,独立地包括能够与栅极介质粘接的官能团。此外,至少两个R1、R2、和/或X基团的任何组合可以一同形成环的或多环、脂肪族或芳族基团。
用于R1和/或R2的特别的选项包括氢,C1-C20脂肪基,其可以是线性或支链的,饱和或不饱和的;C6-C20芳基;以及C7-C20芳烷基,其也可以包含线性或支链的、和饱和或不饱和的片段。具体的聚合物可以由如下前体单体衍生得到,如(甲基)丙烯酸甲酯,直链或支链C2-C18脂肪基或芳烷基(甲基)丙烯酸酯,(甲基)丙烯酸,(甲基)丙烯腈,(甲基)丙烯酸2-羟乙酯,氯乙烯,醋酸乙烯酯,乙烯,直链或支链3-C18α-烯烃,异戊二烯,氯丁二烯,1,3-丁二烯,富马酸二乙酯,乙酸烯丙酯,甲基乙烯基酮,和苯乙烯。
能够与栅极介质粘接的官能团包括已知可以与选定的栅极介质形成化学键的基团。X的具体选项包括PO3R2或OPO3R2,其中各R独立地是氢或C1-C12脂族基或C6-C18芳基或芳烷基;-SO3H;烷氧基甲硅烷基;氯代甲硅烷基;乙酸基甲硅烷基;苯并三唑基(-C6H4N3);-CONHOH;-COOH;-OH;-SH;-COSH;COSeH;-C5H4N;-SeH;-NC;氨基;和磷酰基。苯并三唑基包括,例如,苯并三唑基羰氧基(-OC(=O)C6H4N3),苯并三唑基氧(-O-C6H4N3),和苯并三唑基氨基(-NH-C6H4N3)基团。特别优选的基团包括-PO3H2、-OPO3H2、和三甲氧基甲硅烷基。
至少两个R1、R2、和/或X基团的组合可以一同形成环或多环基,其可以是脂肪族或芳族基。特别的实例是引入了如降冰片烯和取代的降冰片烯、马来酸酐、苊烯、和衣康酸酐的共聚单体的共聚物。同样有用的是可以通过乙烯基型聚合形成交联网络的聚合物和共聚物,包括衍生自二乙烯基苯,和(甲基)丙烯酸酯衍生的肉桂酸酯的那些。
由此,具有式I和任选式II的共聚单元的聚合物层,包括广泛种类的物质。特定的实例包括均聚物如聚苯乙烯,聚(1-己烯),聚(甲基丙烯酸甲酯),聚(苊烯),聚(乙烯萘),聚(丁二烯),聚(醋酸乙烯酯),以及衍生自α-甲基苯乙烯,4-叔丁基苯乙烯,2-甲基苯乙烯,3-甲基苯乙烯,和4-甲基苯乙烯的那些。在这样的均聚物实例中,聚合物层含有0%的根据式II的所述共聚单元。
优选的聚合物层由具有苯乙烯类共聚单元的聚合物组成。苯乙烯类共聚单元包括衍生自苯乙烯和取代苯乙烯的那些,如α-甲基苯乙烯,4-叔丁基苯乙烯,2-甲基苯乙烯,3-甲基苯乙烯,4-甲基苯乙烯,4-(膦酰基甲基)苯乙烯,以及二乙烯基苯。
共聚物,如嵌段的、无规的、和交替的共聚物,同样可用于本发明所述聚合物层。有用的共聚物包括式I和任选式II的共聚单元。优选实例包括选自苯乙烯,α-甲基苯乙烯,4-叔丁基苯乙烯,2-甲基苯乙烯,3-甲基苯乙烯,和4-甲基苯乙烯中至少两个不同的单体的共聚物。其他优选实例包括具有式II单元的那些物质。用于形成式II单元的特定的单体实例包括乙烯基磷酸及其他含有膦酸的共聚单体如4-(膦酰基甲基)苯乙烯,和含有三烷氧基硅烷的共聚单体如甲基丙烯酸3-(三甲氧基甲硅烷基)丙基酯。优选的实例包括多种苯乙烯和乙烯基磷酸的共聚物,苯乙烯和其他含膦酸共聚单体的共聚物,苯乙烯和含膦酸酯共聚单体的共聚物,苯乙烯和含磷酸酯共聚单体的共聚物,苯乙烯和4-(膦酰甲基)苯乙烯的共聚物,苯乙烯和甲基丙烯酸的三甲氧基甲硅烷基丙基酯的共聚物,以及苯乙烯和含甲硅烷基的共聚单体的共聚物。
一类适用于本发明的聚合物包括乙烯、丙烯、和高级α-烯烃的烃烯均及共聚合物。这些烯烃可以由通用结构-CH2CHR-表示,其中R是氢或C1-C10(优选C1-C6)脂族基。共聚物可以包括一种或多种可与这种烯烃共聚的烯属不饱和共聚单体。这些包括乙烯基酯,如醋酸乙烯酯;丙烯酸和α-烷基丙烯酸及其烷基酯,酰胺,和腈,如甲基丙烯酸甲酯及丙烯腈;乙烯基芳烃,如苯乙烯和乙烯基萘;马来酸和富马酸的酸酐和烷基酯;乙烯基烷基醚;乙烯基吡啶;N-乙烯基咔唑;以及二烯烃,如1,3-丁二烯。
可用于本发明的聚合物还可通过引入官能团制备。这可以通过使用通常称为官能引发剂、功能链转移剂、或功能链终止剂的各种物质实现。这些物质的实例包括三氯氧磷,巯丙基三烷氧基硅烷,氯代三烷氧基硅烷,和四氯化硅。这些物种的引入通常在聚合物链的终点或中点引入官能团。用这些反应物制备的有用的聚合物物种的实例包括α-(三乙氧基甲硅烷基)丙硫基聚苯乙烯,和ω-(膦酸)聚苯乙烯。
聚合物表面处理层可以衍生自开环聚合。多种单体可以用于该实施方案。适合单体的实例包括环醚,环酰胺,环胺,环状硫化物,和无机环化合物,如氯磷腈化物。这些物质中聚合物的重复单元以类似于单体中发现的连接方式相连,但是却进行了重排以得到线性而不是环状的链。该聚合可以通过多种机理进行。一种特定类型的开环聚合是开环置换聚合,或ROMP。可以用这种方法聚合的适合的单体包括降冰片烯,C4-C10环烯烃,和C4-C10环状非共轭二烯。这些ROMP单体可以被一个或多个C1-C20直链或支链的脂族基、芳族基、或芳烷基取代,其中任何一个可以包含一个或多个杂原子。如已知的那样,脂族基可以是饱和的或可以包含一个或多个碳-碳多重键,而芳烷基既包含脂肪族又包含芳族结构。适用于本发明该方面特定的物质包括直链或支链C1-C18烷基取代的降冰片烯,三烷氧基甲硅烷基-取代的降冰片烯,5-降冰片烯-2-羧酸的酯,2-膦酰基-5-降冰片烯的酯,1,4-环辛二烯,和双环戊二烯。
聚合物表面处理层可以衍生自单体前体、单体、和含有芳族官能段的低聚物。这样的聚合物材料存在于芳香族热固性材料中。优选类别的芳香族热固性材料是聚亚芳基,例如,聚亚苯基和聚亚萘基。这样的聚亚芳基包括含有杂原子的聚合物,例如聚亚芳基醚。聚亚芳基可以通过各种方式制备。制备聚亚芳基组合物一种有用的方法是在介电层上涂覆适合的单体或低聚前体并随后通过暴露至能量源,如通过加热或辐射将这些材料聚合。低聚物的一个优选类别是由环戊二酮和乙炔取代的物质组成的低分子量芳族热固型组合物。分子量低得足以对这些低聚物进行旋涂。这种物质是市售品,可得自Dow Chemical Co.,Midland,MI的SiLKTM树脂。关于SiLKTM树脂更完全的描述参见″Development of a Low-Dielectric-Constant Polymer for the Fabricationof Integrated Circuit Interconnect″,Martin,J.P.等,Adv.Mater.2000,12(23),1769-1778及其中的参考文献,以及美国专利5,956,679和6,288,188。SiLKTM树脂可以旋涂到表面上,然后通过加热固化以形成不溶的聚亚芳基膜。
其他有用的低聚组合物是多官能团的o-苯基乙炔基取代的芳族单体,其在暴露至能量源,特别是热辐射时交联,形成聚亚萘基。形成芳香族热固性聚合物的其他种类单体前体的实例包括肉桂酸,二乙烯基苯,联乙炔,苯并环丁烯,及其取代的衍生物。
其他优选类别的聚亚芳基是聚对苯二甲撑(即,聚对-苯二甲基)聚合物)及聚芴。聚对苯二甲撑是半晶质聚合物,是通过反应活性的对一苯二甲基单体从蒸汽相到表面上同时进行吸附与聚合制备的。单体的汽相沉积及其聚合导致形成厚度均匀的、与基材表面共形的、事实上不含针孔的薄膜。有用的聚对苯二甲撑包括聚对苯二甲撑N,聚对苯二甲撑C,及聚对苯二甲撑D。
在另一个方面,对表面处理层有用的聚合物和共聚物在室温下基本上是非极性的玻璃质固体。优选,聚合物含有80摩尔%或更多的烷基、芳基、或芳烷基单体单元,其中所述单体单元基本上不含杂原子。聚合物中少于约20摩尔%的单体单元含有杂原子(更优选,少于约10摩尔%)。另外,所述聚合物在主体测量时其玻璃态转化温度(Tg)优选为至少约25℃,更优选至少约50℃,且最优选至少约100℃。这类聚合物的实例包括多种如上所述的那些,包括线性和热固性物质。特别的实例包括聚苯乙烯,聚芴,聚降莰烯,聚苊,及其烷基取代的衍生物,和官能化的共聚物。此外,可以使用两种或多种聚合或共聚合物质的共混物。
在另一个方面,本发明的OTFT具有基本上非氟化的聚合物层,其厚度低于约400A,且OTFT的电荷/载体迁移率,与没有聚合物层的类似OTFT的电荷/载体迁移率相比至少高出50%。在本发明另一个方面,OTFT电荷/载体迁移率至少为0.02cm2/Vs,优选至少0.10cm2/Vs,更优选至少1.0cm2/Vs,大于没有聚合物层的类似OTFT的电荷/载体迁移率。在本文中,所有的电荷/载体迁移率值都是室温下的值。
适用于表面处理层的聚合物和共聚物可通过任何已知方法制备,例如如上所述的那些单体的自由基、开环、阴离子、阳离子、或配位聚合。聚合物还可通过随后的引入官能团的反应进行修饰。
聚合物表面处理层通过任何已知方法在栅极介质上形成。例如,聚合物表面处理层可以通过涂膜法形成,如喷雾、旋转、浸渍、刮涂、凹版印刷、微触印刷、墨喷印刷、压印、转印法、和汽相沉积。聚合物表面处理层可以通过溶剂基或无溶剂的方法在栅极介质上形成。目前对聚合物层的优选路径包括溶剂基方法。当在栅极介质层上提供聚合物表面处理层前体的溶液时,溶剂通过与物质相容的方法除去,例如通过加热除去。
在一个实施方案中,源和漏极在形成聚合物层之前相邻沉积在栅极介质处。然后,涂覆聚合物表面处理层。完成含有聚合物的层之后,在源和漏极上方,且在靠近栅极介质的聚合物层上方沉积有机半导体层。在沉积半导体之前,沉积在栅极介质上以形成聚合物层的材料可以被冲洗从而使源和漏极基本上不含聚合物层。即,在源和漏极上出现低于约5A的聚合物层,更优选低于1A,最优选没有聚合物层。
对于聚合物层更详细的资料可以参考本申请人于2001年5月11日提交的共同未决申请U.S.S.N.10/012654。
表面处理层可同时包括基本上是硅氧烷聚合物的层,其厚度小于约400A,插入在OTFT中的栅极介质和有机半导体层之间。聚合物表面处理层包括具有如下式所示共聚单元的基本上非氟化的聚合物 其中各R独立地包括选自以下所述的基团H,C1-C20脂环族基、芳烷基、或芳基及其组合,其可含有一个或多个杂原子和/或一个或多个官能团。用于本文时,″杂原子″指非碳原子如O,P,S,N和Si。本文中,″基本上非氟化的″意思指聚合物层中低于约5%(更优选少于约1%,甚至更优选0%)的碳具有氟取代基。
本发明聚合物表面处理层的最大厚度小于约400埃(A),更优选小于约200A,最优选小于约100A。本发明聚合物层的厚度通常为至少约5A,更优选至少约10A。厚度可以通过已知方法,例如椭率测量术测定。
R基团的特定选项包括,例如,甲基,苯基,2-苯基乙基,C2-C18脂族基,和含有官能团的片断,包括但不限于羟基,乙烯基,5-己烯基,氢,氯,3-(甲基)丙烯酰氧丙基,3-巯丙基,3-缩水甘油氧丙基,2-(3,4-环氧环己基)乙基,3-氨基丙基,3-乙酰氧基丙基,3-氯丙基,3-羧基丙基,3-氰基丙基,氯苯基,2-(二C1-C6烷基二氧磷基)乙基。
有用的聚合物材料的实例包括聚(二甲基硅氧烷),聚(二甲基硅氧烷-共-二苯基硅氧烷),聚(甲基苯基硅氧烷-共-二苯基硅氧烷),和聚(二甲基硅氧烷-共-甲基苯基硅氧烷)。
适用于本发明实践的硅氧烷聚合物可以通过本领域技术人员熟知的多种方法中的任一种方法制备,包括,例如,阴离子、缩合、或开环聚合。可用于本发明的硅氧烷聚合物还可被制备得在其中引入了官能端基或官能侧基。这可通过使用官能单体、官能引发剂、或功能链终止剂实现,例如,用氯代三烷氧基硅烷终止聚二有机硅烷的阴离子聚合。它们也可通过现有硅氧烷聚合物的修饰制备,例如,烯属官能化的聚二有机硅氧烷与甲硅烷,例如,三氯硅烷的反应。
虽然本发明强调使用其中硅氧烷聚合物中的各单元源自于双官能的前体的线性聚二有机硅氧烷,但是仍认为使用引入了少量衍生自三官能团或四官能团前体的硅氧烷单元的聚有机硅氧烷也在本发明范围内。三官能团和四官能团衍生的硅氧烷单元的数目应该不超过聚合物中硅氧烷单元总平均数的约10%,优选约5%或更少。
有用的聚合物材料还可包括如下嵌段共聚物,其包括与衍生自烯属不饱和单体如苯乙烯、丁二烯、或异戊二烯的共聚单元的嵌段相连接的式(I)的嵌段。此外,可以使用两种或多种聚合或共聚合物质的共混物。
在另一个方面,本发明提供制备OTFT的方法,该方法包括提供基材,在基材上形成栅电极,在栅电极上形成栅极介质,涂覆插入在栅极介质和有机半导体层之间的基本上非氟化的聚合物层(厚度小于约400A),在靠近聚合物表面处理层处沉积速用(instant)有机半导体层,并在邻近有机半导体层处沉积源电极和漏极。还提供含有OTFT的集成电路。
表面处理层还可包括插入在栅极介质和有机半导体层之间的自组装单层,该单层是栅极介质和自组装单层前体之间反应的产物,所述前体含有具有如下分子式的组成X-Y-Zn,其中X是H或CH3;Y是线性或支链C5-C50脂肪族或脂环族联接基,或含有芳基和C3-C44脂肪族或脂环族联接基的线性或支链的C8-C50基团;Z选自-PO3H2,-OPO3H2,苯并三唑基(-C6H4N3),羰氧基苯并三唑(-OC(=O)C6H4N3),氧基苯并三唑(-O-C6H4N3),氨基苯并三唑(-NH-C6H4N3),-CONHOH,-COOH,-OH,-SH,-COSH,-COSeH,-C5H4N,-SeH,-SO3H,-NC,-SiCI(CH3)2,-SiCl2CH3,氨基,和磷酰基;和n为1,2,或3,条件是当Z为-SiCl(CH3)2或-SiCl2CH3时,n=1。
在另一个方面中,本发明提供制备薄膜晶体管的方法,该方法包括如下步骤提供基材,在所述基材上形成栅电极材料,在所述栅电极材料上形成栅极介质,在靠近所述栅极介质处形成自组装单层(SAM),所述单层是栅极介质和自组装单层前体之间反应的产物,在靠近所述单层处形成速用有机半导体,并在邻接所述有机半导体层处形成源电极和漏极。前体如上对于有机薄膜晶体管制品时所述。还提供含有有机薄膜晶体管的集成电路。
自组装单层前体提供形成自组装膜的分子,通常,单层膜在靶面上。自组装薄膜经常通过在自组装前体的稀溶液中涂敷目标基材,或通过暴露于含有前体的汽相中,并使得薄膜形成得以进行而制备。前体分子在基材上形成通常有序的分子膜。一旦形成,膜就不再溶解于其所沉积的溶剂中。
通常,形成交联与形成单层无关,其材料可能与栅极介质的吸附或粘接反应相竞争,如三官能团硅烷,对于本发明单层前体来说是不希望的。但是,可以使用那些具有能有效地与栅极介质粘接的官能团并具有在形成SAM之后可形成交联的其他基团的的材料。
本发明中,栅极介质与自组装单层前体内的官能团之间的反应优选是键相互作用(例如共价的或离子的)。本发明中,自组装单层指厚度数量级为约5埃至约30埃的单层。
在优选实施方案中,Y可以是饱和脂族基,不饱和脂族基,饱和脂环基和,不饱和脂环基,或其组合,其中每一种均可以是直链或支链的。单层前体可包括下式组成CH3(CH2)PO3H2其中m是4到21的整数。
单层前体的特定实例包括1-磷酰基辛烷,1-磷酰基己烷,1-磷酰基十六烷,及1-膦酰基-3,7,11,15-四甲基十六烷。
适用于本发明实践的一类支链烃单层前体的一个成员是1-膦酰基-3,7,11,15-四甲基十六烷。该类的其他成员包括1-膦酰基-2-乙基己烷,1-膦酰基-2,4,4-三甲基戊烷,和1-膦酰基-3,5,5-三甲基己烷。1-膦酰基-3,7,11,15-四甲基十六烷可以由市售的烯丙基醇前体通过还原烯烃双键,将醇转化为相应的溴化物,然后将溴化物转化为相应的膦酸而制备。更具体而言,1-膦酰基-3,7,11,15-四甲基十六烷可以通过如下过程得到将3,7,11,15-四甲基-2-十六烯-1-醇还原为3,7,11,15-四甲基-1-十六醇,将3,7,11,15-四甲基-1-十六醇转化为1-溴-3,7,11,15-四甲基十六烷,然后将1-溴-3,7,11,15-四甲基十六烷转化为1-膦酰基-3,7,11,15-四甲基十六烷。该合成转化是使用本领域技术人员熟知的物质和方法实现的。也可使用除3,7,11,15-四甲基-2-十六烯-1-醇以外的起始物料,以及独立于如上所述反应序列之外的反应序列来合成1-膦酰基-3,7,11,15-四甲基十六烷,以及该类支链烃单层前体的其他成员,而且特别示例的单层前体和制备方法不应该视为过度的限制。
本发明化合物可以单独或组合使用作为OTFT(或其他半导体器件)的有机半导体层。该层可以通过任何有用的方法提供,如,例如,汽相沉积和印刷技术。
本发明的化合物可用于含有多个OTFT的集成电路中,以及各种电子制品中。这样的制品包括,例如,无线电频率标识(RFID)标签,柔性显示器的底板(用于,例如,个人电脑,移动电话,或手持器件),智能卡,储存器件,等等。
实施例本发明的目的和优点将通过如下实施例来进一步加以说明,但是在这些实施例中具体的物质及其量以及其他条件和细节不应该被视为对本发明过度的限定。
起始物料使用如下公开方法制备5-三正丁基甲锡烷基-2,2′-联噻吩Zhu,S.S.;Swager,T.M.,J.Am.Chem.Soc.,1997,119,12568-12577。
5,5′-双(三正丁基甲锡烷基)-2,2′-联噻吩Wei,Y.;Yang,Y.;Yeh,J.-M.Chem.Mater.,1996,8,2659-2666。
5-三正丁基甲锡烷基-5′-己基-2,2′-联噻吩Sotgiu,G.;Zambianchi,M.;Barbarella,G.;Botta,C.,Tetrahedron,2002,58,2245-2251。
3,4′-二己基-2,2′-联噻吩Kirschbaum,T.;Briehn,C.A.;Buerle,P.,J.Chem.Soc.,Perkin Trans.,12000,1211-1216。
2,6-二溴蒽该物质通过如下方法制备对2,6-二溴蒽醌(48%)进行Meerwein-Pondorf还原,所述2,6-二溴蒽醌是从市售的2,6-二氨基蒽醌通过Sandmeyer反应制备的(Ito,K.;Suzuki,T.;Sakamoto,Y.;Kubota,D.;Inoue,Y.;Sato,F.;Tokito,S.,Angew.Chem.Int.,2003版,42,1159-1162)。在偶合反应之前,将2,6-二溴蒽通过梯度升华纯化。
Pd2(dba)3,Pd[P(叔丁基)3]2,Pd(PPh3)4,P(叔丁基)3(10wt%的己烷溶液),和CsF(99.9%)购自Strem(Newburyport,MA)。CsF在真空下于80℃干燥过夜。购自Aldrich(Milwaukee,WI)的1,4-二氧六环是无水级的。二甲基甲酰胺(DMF)通过从MgSO4中用真空蒸馏干燥,用N2吹扫,并保存在Straus烧瓶中。四氢呋喃(THF)在钠-二苯甲酮中蒸馏得到并保存在Straus烧瓶中。所有反应均在N2下完成。在N2下完成差示扫描量热法(DSC)实验,升温速率对于加热循环来说为20℃/分钟,对于制冷循环来说为40℃/分钟。热重分析(TGA)在N2下完成,所用升温速率为10℃/分钟。梯度升华指在三段炉中的真空升华(压力约10-5-10-6Torr)。
2-溴蒽的合成在一个1升三颈烧瓶中装配蒸馏头并用N2吹扫。系统中装入2-溴蒽醌(29.0克,101毫摩尔),环己醇(350毫升),以及三仲丁氧铝(140毫升,550毫摩尔)。混合物被加热并成为深琥珀色,同时收集馏出物直到釜温为162℃。反应在160℃加热16小时然后冷却至室温。将混合物与四氢呋喃(100毫升)混合并倾倒到2升烧结过滤器上以分离黑色固体。在烧结片上用6M HCl(100毫升)搅拌固体,然后进一步用水(500毫升)洗涤。灰色粗产物经空气干燥过夜。固体进一步在120℃的辐射源温度下通过梯度升华纯化,得到12.6克(48%)的米色产物。
DSC数据峰温220℃(ΔH=126Jg-1)。
IR(KBr,仅列出强吸收峰)892,741,474cm-1。
1H NMR(500MHz,d6-Me2SO,内标TMS)δ7.56(m,6线,6-H,8-H),7.60(dd,J=2.0,9.0Hz,7-H),8.09(m,1-H,3-H,4-H),8.39(‘d’,J=1Hz,9-H),8.57(s,5-H),8.63(s,10-H)。
2-氯并四苯的合成在二颈的500毫升圆底烧瓶中装配蒸馏头和接收器,并在氮气下装入2-氯-5,12-并四苯醌(11.5克,39.4毫摩尔),环己醇(100毫升),和Al(O-仲-丁基)3(50毫升)。加热混合物直到在约115℃的釜温下开始在接收器中收集馏出物。继续蒸馏直到暗橙色混合物的温度达到162℃,然后溶液在159℃加热36小时。将混合物冷却至50℃,添加等体积无水THF,然后加热至80℃并搅拌。将热混合物倾倒到10-20μm的烧结片上以分离鲜橙色固体,用水(150毫升)、5%HCl(150毫升)、和另外的水(150毫升)洗涤。滤液与一些补给水和浓HCl混合,搅拌,并放置过夜。将固体空气干燥几个小时以得到5.04克物质。通过在130-150℃梯度升华纯化,得到4.0克荧光橙色产物。另外一批粗物质从上述滤液中分离出来并在升华之后另外得到1.37克。净得率52%。
DSC(20℃/分钟)361℃(ΔH=96Jg-1,分解)。
EIMS262([M]+,100%),226([M-HCl]+,23%)。
对C18H11Cl的计算值C,82.3;H,4.22。测量值C,82.5;H,4.27。
5,5′-双(三正丁基甲锡烷基)-3,4′-二己基-2,2′-联噻吩的合成(Bu3Sn-T2h-SnBu3)逐滴用丁基锂(2.5M的己烷溶液,7.5毫升,19毫摩尔)处理3,4′-二己基-2,2′-联噻吩(3.12克,9.33毫摩尔)的冷(-70℃)四氢呋喃(60毫升)溶液。混合物变成暗黄色并升温至室温过夜。溶液被冷却(-70℃)并加入Bu3SnCl(5.1毫升,19毫摩尔)。混合物在冷浴下原位升温至室温,并在几个小时之后,加入水(50毫升)。混合物充分混合并分离水相。有机物用三份盐水洗涤,用MgSO4干燥,过滤,并在负压下除去挥发性物质。粗油状物与几毫升己烷混合并在II级中性氧化铝柱上层析,用纯的己烷洗脱得到5.1克(60%)的黄色油。
1HNMR(400MHz,d6-Me2CO)87.17(s,JHSn=7Hz,1H),7.06(s,JHSn=23Hz,1H),2.82(t,J=8Hz,2H),2.63(t,J=8Hz,2H),1.7-1.1(m,亚甲基H,16H),0.91(m,甲基H,6H)。
实施例15,5′-双(2-蒽基)-2,2′-联噻吩(An-T2-An)的合成在100毫升Schlenk烧瓶中充入5,5′-双(三正丁基甲锡烷基)-2,2′-联噻吩(3.16克,4.25毫摩尔),DMF(40毫升),2-溴蒽(2.19克,8.50毫摩尔),和Pd(PPh3)4(114毫克,98.7毫摩尔,2.3毫摩尔%)。悬浮液用N2鼓泡20分钟,然后用热油浴升温。在80℃,所有固体溶解且混合物变得均匀;在105℃,形成澄清的细橙色沉淀物。反应在110℃搅拌14小时然后冷却至室温。将混合物倾倒到玻璃过滤烧结片上(10-20μm的孔)并相继用水、1N HCl、丙酮洗涤,然后风干以产生2.012克橙色产物。该物质在辐射源温度320℃下通过梯度升华纯化以得到1.60克(73%)产物。
DSC数据峰温420℃(可逆的熔点,ΔH=246Jg-1)。
LDMS.m/z 518.1276(M+),样品中未检出其他离子。
荧光光谱(饱和甲苯,几何形状为直角,在400nm激发)λmax=476nm。
激发光谱(饱和甲苯,在476nm监测荧光,λmax(相对光谱响应)359(1.0),416(.78)。
元素分析与希望的结构一致。
实施例25,5′-双(2-并四苯基)-2,2′-联噻吩(Tet-T2-Tet)的合成容器中相继装入Pd2(dba)3(103毫克,0.112毫摩尔,1.5%),CsF(2.54克,16.7毫摩尔,2.2当量),二氧六环(120毫升),2-氯并四苯(2.00克,7.61毫摩尔),5,5′-三正丁基甲锡烷基-2,2′-联噻吩(2.83克,3.81毫摩尔),P(叔丁基)3(1.3毫升,0.45毫摩尔,5.9%),并在100℃加热36小时。将混合物冷却并倾倒到玻璃烧结片上(20μm孔)以分离出红色固体。粗产物用水(100毫升)、5%HCl(水溶液)(100毫升)、另外的水洗涤,然后空气干燥。在辐射源温度为400-500℃下梯度升化得到1.25克(53%)深红色产物。从最冷的区域分离出0.33克2-氯并四苯起始物料(进料的17%)。
EIMS618([M]+,100%),309([M]2+,52%)DSC(20℃/min)533℃,(mp,ΔH=183Jg-1)。
对于C44H26S2的分析计算值C,85.4;H,4.23。测量值C,84.6;H,4.25。
荧光光谱(饱和CHCl3,几何形状为直角,在400nm激发)λmax=476nm。
激发光谱(饱和甲苯,在430nm监测荧光,λmax/nm(相对光谱响应))360(1.0),430(0.80,sh)。
实施例35-(2-并四苯基)-2,2’-联噻吩(Tet-T2)的合成将Pd2(dba)3(21毫克,0.023毫摩尔,1.5%),CsF(511毫克,3.37毫摩尔,2.2当量),二氧六环(25毫升),2-氯并四苯(403毫克,1.53毫摩尔),5-三正丁基甲锡烷基-2,2’-联噻吩(766毫克,1.68毫摩尔),P(叔丁基)3(0.26毫升,0.090毫摩尔,6%)混合,通过套管用N2鼓泡30分钟,然后在100℃加热16小时。再加入10毫克Pd[P(叔丁基)3]2和140毫克5-三正丁基甲锡烷基-2,2’-联噻吩并在100℃再加热24小时。将混合物冷却并倾倒在玻璃过滤烧结片(10-15μm孔)上并用乙醚、水洗涤微红的粗产物,和进行空气干燥。在250-270℃的辐射源温度下梯度升华得到443毫克(74%,基于2-氯并四苯)鲜橙色-红色产物。
DSC341℃(mp,ΔH=g7Jg-1)。
EIMS392([M]+,100%),196([M]2+,20%)。
对于C26H16S2的分析计算值C,79.6;H,4.1。测量值C,80.0;H,4.34。
实施例45,5′-双(2-蒽基)-3,4′-二己基-2,2’-联噻吩(An-T2h-An)的合成容器中相继装入Pd2(dba)3(87毫克,0.095毫摩尔,2摩尔%),CsF(1.1g,7.0毫摩尔),2-溴蒽(821毫克,3.19毫摩尔),二氧六环(20毫升),5,5′-双(三正丁基甲锡烷基)-3,4′-二己基-2,2’-联噻吩(1.46克,1.60毫摩尔),和P(叔丁基)3(0.28毫升,0.096毫摩尔,10重量%的己烷溶液)。混合物用N2通过套管鼓泡同时搅拌30分钟,然后加热至89℃过夜。反应混合物汽提干燥并用THF(200毫升)萃取橙棕色固体。过滤除去灰色沉淀物之后,有机物用3×50毫升盐水洗涤,用MgSO4干燥,过滤,并汽提干燥。粗产物用CH2Cl2(在-35℃下,大约40毫升)重结晶得到445毫克(40%)。
1HNM与目标结构一致。
EIMS686([M]+,100%),343([M]2+,35%)。
紫外-可见光谱(CHCl3),λmax/nm(ε)259(1.1×105),353(4.3×104),410(3.0×104).
荧光光谱(CHCl3),λmax490nm。
DSC峰值温度/℃(ΔH/Jg-1)60(10),83(-22),138(-8.2),170(26)。
实施例52,6-双(2,2’-联噻吩-5-基)-蒽(T2-An-T2)反应容器中装入Pd(PPh3)4(70毫克,0.061毫摩尔,1.3摩尔%),2,6-二溴蒽(800毫克,2.38毫摩尔),DMF(20毫升),和5-三正丁基甲锡烷基-2,2’-联噻吩(2.17克,4.77毫摩尔)。混合物用N2鼓泡20分钟然后在90℃搅拌20小时。冷却后,悬浮固体在玻璃过滤烧结片(10-20μm孔)上分离,用丙酮(20毫升)、水(50毫升)洗涤,并风干过夜。粗产物粉末在275-350℃的辐射源温度下梯度升华得到550毫克(46%)鲜橙色产物。
EIMS506([M]+,100%),253([M]2+,30%)。
紫外-可见光谱(饱和CHCl3)λmax/nm(吸光度),348(0.12),418(0.06),440(0.06,sh),519(0.009)。
荧光光谱(CHCl3),λmax/nm(相对强度469(1.0),495(0.69,sh)。
DSC峰值温度(ΔH),360℃(131J/g)。
对于C30H18S4的分析计算值C,71.1;H,3.58;S,25.3。测量值C,70.5;H,3.52;S,25.2。
实施例65-(2-蒽基)-5′-己基-2,2’-联噻吩(An-T2-C6H13)的合成在容器中装入Pd2(dba)3(77毫克,84微摩尔,2摩尔%),CsF(1.41克,9.29毫摩尔),2-溴蒽(1.09克,4.22毫摩尔),1,4-二氧六环(20毫升),5-(三正丁基甲锡烷基)-5′-己基-2,2’-联噻吩(2.28克,4.22毫摩尔),和P(叔丁基)3(0.74毫升,10wt%中己烷溶液,0.25毫摩尔)。混合物在95℃加热36小时然后负压除去挥发性物质。残余物用450毫升二氯甲烷萃取,过滤的萃取物用2×150毫升盐水洗涤。用MgSO4干燥之后,鲜橙色溶液经过滤,浓缩,然后在-35℃冷却过夜。通过过滤分离鲜橙色产物(1.35克,75%)并在真空下干燥。该物质进一步通过在175-200℃辐射源温度下的梯度升华纯化。
1H NMR与希望的结构一致。
紫外-可见光谱,在CHCl3中,17.3微克/毫升λmax(ε)246(53,500),259(54,700),342(40,200),356(42,900),397(27,600)。
ΔEopt约-2.8eV。
荧光光谱,在CHCl3中,在400nm下激发λmax=464(1.4×106CPS)。
DSC(20℃/min)204℃,(mp,ΔH=36Jg-1)。
实施例72,6-双(5′-己基-2,2’-联噻吩-5-基)-蒽(C6H13-T2-An-T2-C6H13)的合成以与实施例6所述方式类似的方式,进行2当量5-(三正丁基甲锡烷基)-5′-己基-2,2’-联噻吩和1当量2,6-二溴蒽之间的Stille偶合。粗产物通过在250-260℃辐射源温度下梯度升华纯化至设备级。
DSC(20℃/min)320℃,(mp,ΔH=19Jg-1)。
实施例8下表列出一部分本文报导的新物质的熔点。所报导的熔点(mp)为差示扫描量热法(DSC)描绘的图中的熔融吸热峰温,以及TGA曲线中记录的重量损失超过1%的分解点的温度。除了Tet-T2-Tet的所有情况下,其熔融时分解,化合物显示出可逆的熔融性状。
在分子一端(实施例6和7的化合物)或内部(实施例4化合物)增加悬垂烷基大大地降低了物质的熔点,与此同时,有时候,不会对其热稳定性产生很大影响。例如,在T2-An-T2的外噻吩环的5′位上增加己基基团使熔点降低40℃(实施例7和5的化合物)。两种物质的分解点均为405℃。当烷基处于内部噻吩上时,这种结构-性能关系甚至更加明显。例如通过将己基添加到内部联噻吩的3-和4′-位上,An-T2-An的熔点(实施例1化合物,419℃)被降低了几乎250℃。作为这类物质典型热性能的进一步示例,图1示出了An-T2-An的DSC数据。
实施例9图2示出Tet-T2-Tet的热重分析(TGA)数据。为了进行对比,还示出了并五苯的TGA数据。数据的收集条件为在N2气氛下,且升温速率为10℃/分钟。并五苯样品得自Aldrich并通过梯度升华纯化。Tet-T2-Tet直到温度超过533℃之前不发生明显的分解,该温度为DSC跟踪图中熔点吸热的峰值温度。通常,本文报导的新型并苯噻吩化合物具有高于并五苯的热稳定性,这由其更高的分解点得到证明。此外,加热时化合物经历正常的,而且在大多数场合下,可逆的熔融转变。这与并五苯形成对比,其在约340℃开始逐渐的分解,而且在DSC实验中未显示出可辨别的熔点。假定,明确的且可复现的热性能对于引入了有机半导体材料的器件的设计来说是有益的。例如,化合物增强的热稳定性可以积极地影响器件的稳定性和使用寿命。
实施例10用分光法表征所有的新物质。有些情况下,极低的溶解度妨碍了可接受的紫外-可见吸收光谱的采集,此时收集定性的激发光谱。可以在An-T2-An(实例1)和An-T2h-An(实例4)之间进行有趣的对比。虽然前一物质几乎不溶,但二己基物质可以从氯化溶剂,如二氯甲烷或氯仿中重结晶,并通过柱层析纯化。An-T2-An光谱示于图3,发射光谱中吸光度最大值在359nm和416nm,在荧光光谱中峰值在476nm。图4示出An-T2h-An的紫外-可见吸收和发射光谱。An-T2-An的发射数据中,353nm和410nm处的峰接近最大值。光学性质的相似性表明,己基基团提供了溶解性而不影响分子间的共轭。根据吸收图的低能侧判断,两种物质的光禁带为大约2.6eV。
实施例11TFT用HP半导体参数分析仪表征,表征时扫描门电压,Vg(+10V至-40V),并使得漏电压,Vd,在-40V保持恒定。根据Id1/2-Vg图案中的线性拟合可以得到饱和流动性和阈电压(Vt),而对Id-Vg的线性拟合则可以计算出亚阈值斜率(S)和电流开/关比。图5示出5-(2-并四苯基)-2,2’-联噻吩(Tet-T2)TFT在环境条件下的代表性器件图。最通常的情况是,本发明新物质的电荷迁移流动性在0.1-1.0cm2/Vs范围中,尽管还观察到更高的数值。本文示出的特定实施例为顶部接触器件,半导体层(大约300A)沉积在A12O3绝缘体上,所述绝缘体用如上所述的聚(α-甲基苯乙烯)层涂覆。本样品数据为μsat=0.8cm2/Vs,Vt=-17V,S=1.2V/系列(decade),Ion/Ioff=4.3×105。
实施例12An-T2-An和Tet-T2-Tet涂敷在SiO2基材上的薄膜的X射线衍射图(Cu Kα辐射)示于图6。在Al2O3和聚(α-甲基苯乙烯)涂覆的Al2O3上的图案看起来很相似。尖锐且强的层线系列(0,0,1)的层间距相当于延伸的分子长度,即分子垂直于基材取向。就是这样的分子间结构使得TFT在接通状态时通过工作通路进行良好的电荷迁移。从伸出到至少第9级数量级的窄和强的反射线显而易见膜的良序性能。分子垂直于基材的层状次序对于这些并苯噻吩化合物来说好象是普遍的,例如,Tet-T2在SiO2上的薄膜所给出的XRD图案中,层间距为20.5A。
实施例13以0.5A/s的速率真空淀积在Al2O3基材上的Tet-T2薄膜的原子力显微镜成象(AFM)示于图7。晶体尺寸数量级为1-2μm。台阶状晶面生长在这些并苯噻吩化合物的AFM图像中是公有的形貌特征。本领域已经确定,晶粒尺寸和质量随沉积过程中的基材温度可能会有显著的变化。在半导体材料的沉积过程中没有做出任何努力来控制基材温度,并且假定通过实验可以确定出对于较大结晶粒度更优化的条件。
权利要求
1.一种如下式的并苯噻吩化合物 其中,Ac为选自2-萘基,2-蒽基,和2-并四苯基的并苯基团,R1为Ac,烷基或H,各R2和R3独立地选自H,烷基,烷氧基,硫烷氧基,卤素原子,及其组合,n为1-4,前提是当Ac为蒽基且n=2时,R1为Ac或烷基。
2.如权利要求1的化合物,其中至少一个末端并苯环被选自烷基,烷氧基,硫烷氧基,(低聚)噻吩基,卤素原子,及其组合的基团取代。
3.如权利要求2的化合物,其中R1为Ac且两个末端的并苯环均被选自烷基,烷氧基,硫烷氧基,(低聚)噻吩基,卤素原子,及其组合的基团独立地取代。
4.如权利要求3的化合物,选自6-取代的萘环,6-取代的蒽环,或8-取代的并四苯环。
5.如权利要求1的化合物,其中末端的并苯环为未取代的。
6.如权利要求1的化合物,其中n为1。
7.如权利要求1的化合物,其中所述并苯噻吩化合物具有下式 其中Ac是选自2-萘基、2-蒽基、和2-并四苯基的并苯基;R1是Ac,烷基或H;各R2和R3独立地选自H,烷基,烷氧基,硫烷氧基,卤原子,及其组合,n是1-4。
8.如权利要求1的器件,其中所述并苯噻吩化合物具有下式 其中各Ac为选自2-萘基、2-蒽基、和2-并四苯基的并苯基;各R2和R3独立地选自H,烷基,烷氧基,硫烷氧基,卤素原子,及其组合,n为1-4。
9.一种含有半导体层的半导体器件,所述半导体层包括权利要求1-8任一项的并苯噻吩化合物。
10.如权利要求9的器件,其中所述器件为有机薄膜晶体管。
11.如权利要求9的器件,其中所述器件为有机薄膜晶体管,包括在栅极介质和半导体层之间插入的表面处理层。
12.如权利要求11的器件,其中所述表面处理层选自自组装单层,非氟化的聚合物层或硅氧烷聚合物层。
13.一种制备有机薄膜晶体管的方法,包括a)提供基材;b)在基材上沉积栅电极材料;c)在栅电极材料上沉积栅极介质;d)在靠近栅极介质层处沉积包括权利要求1-8任一项所述的并苯噻吩的有机半导体层;和e)在接近有机半导体层处提供源电极和漏极。
14.如权利要求13的方法,进一步包括在栅极介质和有机半导体层之间提供插入的表面处理层的步骤。
15.如权利要求14的方法,其中所述表面处理层选自自组装单层,非氟化的聚合物层或硅氧烷聚合物层。
全文摘要
本发明公开了可用作有机半导体的并苯噻吩化合物。这类化合物,当在有机薄膜晶体管中用作半导体层时显示出可与并五苯器件特性相比的器件特性,如电荷载体流动性和电流开/关比。还描述了含有至少一种本发明化合物的半导体器件;以及含有所述半导体器件的制品,如薄膜晶体管或晶体管阵列,及场致发光灯。
文档编号H01L51/00GK1835941SQ200480023410
公开日2006年9月20日 申请日期2004年6月25日 优先权日2003年8月15日
发明者克里斯多佛·P·格拉赫 申请人:3M创新有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1