二次电池的保护电路及保护元件的利记博彩app

文档序号:6834069阅读:326来源:国知局
专利名称:二次电池的保护电路及保护元件的利记博彩app
技术领域
本发明涉及保护锂离子二次电池等的二次电池不至过充电的电池保护电路及保护元件。
背景技术
对二次电池超过适当条件的过充电,随着电解液的分解会引起气体的产生及发热,招致电池性能的劣化及破损等。尤其是,如果锂系二次电池充电时电压超过一定范围,则电池劣化及损伤的程度相当大,故为了保护二次电池不至被错误使用,设有电池保护装置。
所述电池保护装置由作为PTC(正温度系数热敏电阻)及电流断路阀装备在二次电池自身上的,以及形成有根据异常状态切断二次电池的充放电电路的电池保护电路的电路基板等构成。所述PTC是串联连接在二次电池的充放电电路上,因过大电流而自身发热,温度上升使电阻值急剧增大,从而阻止过大电流的,在较大型的二次电池中,配置在电池封口部内。此外,所述电流断路阀装备在二次电池的封口部,因二次电池内产生的气体导致内压上升而变形,当受到超过允许值的内压时破裂而放出气体,并由于破裂而切断充放电电路的通电电流。该PTC及电流断路阀在较大型的圆筒形锂离子二次电池中,作为二次电池自身具有的机构是众所周知的。
此外,所述电池保护电路已知的有日本专利第2872365号公报等所公开的装置,构成如图12所示。由控制手段33测出二次电池30的电压,当测出电压超过可充电电压时,将串联连接在充放电电路上的MOSFET(金属氧化物半导体场效应晶体管)31控制成切断状态,切断充放电电路来阻止充电电流。此外,当测出电压在可放电电压以下时,将串联连接在充放电电路上的MOSFET32控制成切断状态,切断充放电电路以阻止放电电流。利用该控制,可以保护二次电池30不至因过充电及过量放电而破损及劣化。
但是,当电池保护电路未正常工作时,尤其是,当防止过充电的控制未正常起作用时,二次电池30由于过充电状态的进行使电解液分解,有可能因温度上升及产生气体而导致破裂。因此,提出了这样一种电池保护电路,其构成如图13所示,设有进行控制防止过充电、过放电及过电流的控制手段34,以及当该控制手段34动作发生异常时,使过充电状态状态停止的过充电控制手段36。
在该构成中,利用控制手段34进行防止过充电、过放电及过电流的控制,当该控制手段34的过充电防止的控制功能发生故障及误动作等的动作异常时,因为利用过充电控制手段36能测出与过充电状态对应的的电压,所以,过充电控制手段36能将MOSFET35控制在导通状态。由于该MOSFET35的导通,电阻器18发热,使热耦合后的温度保险丝19熔断,切断二次电池30的充放电电路。
利用上述构成,能避免二次电池在最恶劣状态下持续进行过充电,由于设有双重阻止过充电的构成,能防止因过充电状态持续而产生气体,故也可以不再使用如上所述机械式切断通电电路的电流断路阀。
但是,上述构成的双重过充电防止电路虽然对防止因过充电状态的持续引起的电池破坏是有效的,但当第1控制手段有问题时工作的第2控制手段是使非复原的切断手段工作的,所以,不能检验其动作,并未能通过检查各部分动作状态来确保可靠的动作以获得可靠性。过充电保护电路的可靠动作对锂离子二次电池等能量密度高的二次电池是不可缺少的,各个二次电池或电池组件必须有检查保护电路动作以确保可靠性的过充电保护电路。
此外,温度保险丝及加热手段等是不可能组装入集成电路的部件,必须有它们的设置空间,而这又妨碍了使用小型二次电池来构成小型紧凑的电池组件,或妨碍了构成使保护电路与二次电池成为一体的带保护电路的二次电池。
此外,为了使便携式电器小型化,二次电池的小型化成为重要课题,并且进一步要求要实现小型化还要提高单位容积的能量密度。为了实现该要求,用电气结构代替机械性切断通电电路的电流断路阀是有效方法,使传统技术所示的电气性通电电路切断的构成进一步小型化,有效保护二次电池避免过充电状态持续的保护电路及该保护电路使用的保护元件有待开发。
本发明的目的在于,使能进行可靠的二次电池保护动作的保护电路的构成小型紧凑,并提供适合该保护电路的保护元件。

发明内容
为了达到上述目的,本申请第1发明的电池保护电路,其特征在于,具有这样的主保护电路和副保护电路,即,所述主保护电路检测二次电池的正负两极间的电压,当检测电压在第1充电禁止电压以下时,将串联连接在二次电池的充放电电路上的第1开关手段控制成导通状态,当检测电压为所述第1充电禁止电压以上时,将所述第1开关手段的充电方向控制成切断状态,并将切断状态保持到变为第1充电解除电压以下;所述副保护电路检测二次电池的正负两极间的电压,当检测电压在超过所述第1充电禁止电压的第2充电禁止电压以下时,将串联连接在二次电池的充放电电路上的第2开关手段控制成导通状态,当检测电压为所述第2充电禁止电压以上时,将所述第2开关手段的充电方向控制成切断状态。
根据上述构成,当主保护电路发生故障、误动作等异常情况、不能进行阻止过充电的动作时,副保护电路测出过充电并切断二次电池的充放电电路。利用该构成构成双重过充电保护电路,能可靠阻止二次电池的过充电,防止会引起二次电池破坏的过充电的进行。该双重的过充电保护的构成能对每一过充电保护电路检查其动作,可以进行高可靠性的电池保护。此外,因为双重过充电保护电路能可靠防止过充电,所以,不会发生随过充电产生的气体,可以不再使用排放因产生气体引起的电池内异常内压用的气体排出阀等机构,容易构成不需要设置气体排出阀等空间的小型二次电池。此外,因为也可以做成利用半导体元件的电路,所以可以将保护电路做成集成电路,可以使电池组件小型化及将保护电路收容在二次电池内。
在上述构成中,副保护电路可以做成通过检测第2充电禁止电压,将第2开关手段的的充电方向控制成切断状态,并将切断状态保持到测出第2充电解除电压为止的构成。即,通过将第2充电解除电压设定在第1充电禁止电压以下,通过副保护电路使第2开关手段呈切断状态,能使充电呈不可进行状态。此外,当因第2开关手段的切断动作使充电电路跳开时,使电池电压下降,因此能防止从切断状态恢复到导通状态而过充电保持的状态被开放。
此外,副保护电路可以做成在通过第2充电禁止电压的检测将第2开关手段的充电方向控制成切断状态之后,固定切断状态的构成,利用这样的构成,固定利用过充电检测的第2开关手段的切断状态,就能保护二次电池,使其避免因主保护电路的故障导致的电池保护功能的丧失而损坏。
此外,第1及第2各开关手段分别是其内部有寄生二极管的功率MOSFET,所述寄生二极管的顺方向连接为二次电池的放电方向,利用这样的构成,通过过充电状态的检测,即使第1及第2开关手段呈切断状态,通过寄生二极管也可以放电,即使在过充电的阻止功能起作用的状态下,也可以使用二次电池。
此外,为了达到上述目的,本申请第2发明涉及的电池保护电路具有这样的主保护电路和副保护电路,即,所述主保护电路检测二次电池的正负两极间的电压及放电电流,当检测电压在第1充电禁止电压以下且第1放电禁止电压以上时,将串联连接在二次电池的充放电电路上的第1开关手段控制成导通状态,当检测电流在规定值以上时,将所述第1开关元件控制成切断状态,当检测电压变为第1充电禁止电压以上时,将所述第1开关元件控制成充电方向切断/放电方向导通的状态,当检测电压变为放电禁止电压以下时,将所述第1开关元件控制成放电方向切断/充电方向导通的状态;所述副保护电路检测二次电池的正负两极间的电压,当检测电压在第2充电禁止电压以下时,将串联连接在二次电池的充放电电路上的第2开关手段控制成导通状态,当检测电压为所述第2充电禁止电压以上时,将所述第2开关手段的充电方向控制成切断状态,并将切断状态保持到测出第2充电解除电压为止。
根据上述构成,主控制电路检测二次电池的电压及放电电流,正常时将开关元件控制成导通状态,将二次电池控制成可使用状态,根据异常状态,相应地将第1开关手段控制成切断状态或仅可充电、仅可放电的状态。当该主保护电路发生故障、误动作等异常情况、不能进行阻止过充电的动作时,副保护电路检测过充电并切断二次电池的充放电电路,从而构成了双重的过充电保护电路,能可靠阻止二次电池的过充电,防止会引起二次电池破坏的过充电的进行。该双重的过充电保护的构成能逐个检查其动作,可进行可靠性高的电池保护。此外,因为双重的过充电保护电路能可靠防止过充电,所以,不会产生随着过充电产生的气体,也可以不再使用排放因产生气体引起的电池内的异常内压用的气体排出阀等的机构,不需要设置气体排出阀等空间可以容易地构成小型的二次电池。此外,因为可以用半导体元件构成电路,故可以将保护电路做成集成电路,可以实现电池组件的小型化及将保护电路收容在二次电池内。
在上述构成中,第1开关元件是其内部无寄生二极管的FET,利用其触发电压而呈各状态,利用一个FET能控制过充电、过放电及过大电流的阻止动作,能使电池保护电路小型化。
此外,为了达到上述目的,本申请第3发明涉及的电池保护电路的特征在于,具有这样的主保护电路和副保护电路,所述主保护电路设有使加热手段与串联连接在二次电池的充放电电路上的PTC热耦合、控制对该加热手段的通电的第1开关手段,检测二次电池正负两极间的电压,当检测电压在第1规定电压以下时将所述第1开关手段控制成切断状态,而当检测电压在所述第1规定电压以上时,将所述第1开关手段控制成导通状态从而对所述加热手段通电,并保持该导通状态直到测出第1解除电压为止;所述副保护电路检测二次电池正负两极间的电压,当检测电压为超过所述第1规定电压的第2规定电压以下时,将串联连接在二次电池的充放电电路上的第2开关手段控制成导通状态,当检测电压在所述第2规定电压以上时,将所述第2开关手段的充电方向控制成切断状态,并保持切断状态直到测出第2解除电压为止。
根据上述构成,主保护电路在根据二次电池的电压测出过充电状态时,将第1开关手段控制成导通状态而对加热手段通电,利用加热手段加热串联连接在二次电池的充放电电路上的PTC。PTC元件因温度上升而使电阻值急剧增大,限制对二次电池的充电电流,保护二次电池避免过充电状态。当该主保护电路因故障、误动作等异常而不能进行过充电的阻止动作时,副保护电路检测过充电来切断二次电池的充放电电路,构成双重的过充电保护电路,能可靠阻止二次电池的过充电,防止会引起二次电池破坏的过充电的进行。该双重的过充电保护的构成,能逐个检查其动作,能进行可靠性高的电池保护。此外,因为双重的过充电保护电路能可靠防止过充电,所以,不会产生因过充电产生的气体,也就可以不再使用排放因产生气体引起的电池内异常内压用的气体排出阀等机构,不需要设置排出阀等的空间,容易构成小型的二次电池。此外,因为可以用半导体元件构成电路,故可以将保护电路做成集成电路,可以实现电池组件的小型化及将保护电路收容的二次电池内。
在上述构成中,加热手段可以由与PTC热耦合的第2PTC构成。PTC可以做成平板状,将两个PTC面对面接合,可以获得良好的热耦合状态,利用对第2PTC通电引起的温度上升来加热PTC、使其电阻值增大而限制充电电流这样的结构可以做得小型紧凑。
为了达到上述目的,本申请第4发明涉及的电池保护电路的特征在于具有检测二次电池正负极间电压、当测出超过规定值的电压时输出控制信号的电压检测手段;与串联连接在所述二次电池上的PTC热耦合、由通电使温度上升的加热手段;根据来自所述电压检测手段的控制信号对所述加热手段通电的开关手段,当电压检测手段测出超过规定值的电压例如过充电状态持续时的电压时,开关手段根据输出的控制信号动作,向加热手段通电,加热手段加热热耦合的PTC。PTC对温度显示正特性的电阻值变化,尤其是具有在规定的临界温度以上时呈电阻值剧增的跳开状态的特征,在平时是微小的电阻值,因二次电池的输入输出电流引起的电压下降很小,对输入输出电路无妨碍,但当流过过大电流时,因自身发热使电阻值激增而阻止过大电流。该PTC在被加热手段加热时,也会因温度上升而电阻值激增,限制二次电池的输入输出电路。因此,当所述电压检测手段测出表示过充电状态持续等异常状态的电压时,利用PTC的跳开来限制二次电池的输入输出电流,所以,能防止因过充电状态的持续而引起二次电池的破坏。
在上述构成中,加热手段可以作为与所述PTC热耦合的第2PTC来构成,如果向第2PTC通电使温度上升,就能加热热耦合的PTC,使PTC呈跳开状态。
此外,本申请第5发明涉及的电池保护电路的特征在于具有检测二次电池正负极间电压、当测出超过规定值的电压时输出控制信号的电压检测手段;与串联连接在所述二次电池上的温度保险丝热耦合的加热用PTC;以及,根据来自所述电压检测手段的控制信号对所述加热用PTC通电的开关手段,当电压检测手段测出超过规定值的电压例如过充电状态持续时的电压时,根据输出的控制信号,开关手段动作,对加热用PTC通电,加热用PTC因通电电流而温度上升,将热耦合的温度保险丝熔断。因此,当所述电压检测手段测出表示过充电状态持续等异常状态的电压时,二次电池的输入输出电路被切断,所以,能防止二次电池因过充电状态持续而损坏。
在上述第4及第5的发明中,由电压检测手段测出的超过规定值的电压设定为比测出过充电状态的电压要高的电压,这样,就能双重保护避免二次电池因过充电引起损伤。即,在检测过充电或过放电等状态来切断二次电池的输入输出电路的控制电路另外构成时,过充电状态的初始值会被所述控制电路测出而阻止过充电,但当该控制电路发生异常时,二次电池由于过充电的持续而会发生破裂等的损伤。做成电压检测手段测出比所述初始值高的电压时输出控制信号的构成,这样,测出因过充电持续而上升的电压、就进行阻止过充电状态的动作,即使控制电路产生异常时也能保护二次电池。
此外,本申请第6发明涉及的保护元件特征在于,将做成平板状的多个PTC元件层叠形成热耦合状态,如果将一个PTC元件与二次电池串联连接,将另一PTC元件连接在控制其通电的通电控制电路上,则当对与二次电池串联连接侧的PTC元件热耦合的另一PTC元件通电时,由于通电引起的加热,与二次电池串联连接的PTC元件温度上升而呈电阻值激增的跳开状态时,就能限制二次电池的输入输出电流。通电控制电路因测出过充电等二次电池的异常状态而向加热一侧PTC元件通电,以这样的构成,将多个PTC元件热耦合的保护元件就能作为二次电池的保护元件有效发挥作用。
在上述构成中,各PTC元件的形状尺寸及电气特性可以任意选择并加以组合,可以根据保护电路的电路构成构成适当的组合。
此外,将形成为平板状的两片PTC元件在其平板面间夹入电极材而接合,并在各PTC元件的外侧面上也分别接合电极材来构成保护元件,就能在节省空间的情况下构成热耦合的两片PTC元件。
此外,任意的电极材用铜镍合金或铜镍合金与镍的复合材料形成,这样,因为焊接性及熔接性良好且导电性及热传导性也出色,在所需部位采用该材料,就能提高作业性、电气及机械性能。
此外,从各电极材延伸形成引脚部,就能使电路连接容易。
此外,从各电极材引出的引脚部的延伸方向形成为相反的两个方向,就能形成各自不同的方向,能根据电路构成的状态任意选择。
此外,各电极材形成为比接合的PTC元件外形尺寸要小,就能很好进行使电极材与PTC元件之间接合的焊接。
此外,本申请第7发明涉及的二次电池保护元件的特征在于,温度保险丝与PTC元件形成为热耦合状态,所以,如果将温度保险丝与二次电池串联连接,将PTC元件与控制其通电的通电控制电路连接,则当对PTC元件通电时,通电导致的加热使温度保险丝熔断,就能切断二次电池的输入输出电流。通电控制电路因测出过充电等二次电池的异常状态而对PTC元件通电,以这样的构成,就能作为二次电池的保护元件有效起作用。
此外,用隔热材料覆盖热耦合的多个PTC,以这样的构成,能抑制散热,有效发生热耦合。


图1所示为本发明第1实施形态的电池保护电路的构成方框图。
图2所示为过充电状态持续时电池电压和电池温度变化的曲线图。
图3所示为装在MOSFET内的寄生二极管的FET电路图。
图4所示为本发明第2实施形态的电池保护电路的构成方框图。
图5所示为本发明第3实施形态的电池保护电路的构成方框图。
图6所示为本发明第4实施形态的保护电路的构成方框图。
图7所示为保护元件的构成分解立体图。
图8A为保护元件的侧视图,图8B为保护元件的电气记号图。
图9所示为保护元件的另一形态的立体图。
图10所示为本发明第5实施形态的保护电路的构成方框图。
图11A为该实施形态的保护元件的侧视图,图11B为该实施形态的保护元件的俯视图。
图12所示为现有技术的电池保护电路的构成方框图。
图13所示为现有技术的电池保护电路的构成方框图。
具体实施例方式
以下参照附图对本发明的实施形态进行说明,以供理解本发明。又,以下所示实施形态为本发明具体化之一例,并不是限定本发明的技术范围的。
图1所示为本发明第1实施形态的电池保护电路的构成图,具有保护作为锂离子二次电池构成的二次电池3避免其受到过充电、过放电及过大电流的主保护电路A,以及与所述主保护电路A一起双重保护二次电池3避免过充电的副保护电路B。
在图1中,二次电池3的负极侧与负输入输出端子5之间,串联连接有构成主保护电路A的第1FET(第1开关手段)11和第2FET12及构成副保护电路B的第3FET(第2开关手段)13。第1-第3FET11-13分别用功率MOSFET构成,第1和第2FET11、12由主控制手段1分别控制成导通/切断的二种状态,第3FET13由副控制手段2控制成导通/切断的二种状态。在二次电池3正常充放电条件下,它们均被控制成导通状态,将二次电池3的负极与负输入输出端子5之间连接成导通状态,成为在正输入输出端子4与负输入输出端子5之间连接二次电池3的状态。
上述入控制手段1检测二次电池3的正负两极间的电压,当其达到判定为预先设定的过充电状态的第1充电禁止电压(例如4.30V)以上时,将第1FET11控制成切断状态而切断充电电流,保护二次电池3避免过充电。二次电池3有可能因过充电而分解电解液,并因随之产生的气体而引起电池破坏,利用该过充电防止的功能,能防止二次电池3损坏。利用主控制手段1的第1FET11的切断状态一直保持到测出比第1充电禁止电压低的第1充电解除电压为止。
此外,主控制手段1检测二次电池3的正负两极间的电压,当其达到判定为预先设定的过放电状态的放电禁止电压(例如2.60V)以下时,将第2FET12控制成切断状态而切断放电电流,保护二次电池3避免过放电。二次电池3由于过放电会导致电池性能的劣化,但利用该过放电防止的功能,能防止二次电池3的劣化。利用主控制手段1的第2FET12的切断状态一直保持到测出比放电禁止电压高的放电解除电压为止。
还有,主控制手段1检测第2FET12的两端电压,当其为与预先设定的过大放电电流对应的电压以上时,将第1和第2FET11、12控制成切断状态而切断放电电流,保护二次电池3避免因过大放电电流而损坏。当正输入输出端子4与负输入输出端子5之间或与它们连接的设备侧发生短路时,二次电池3会暴露于过大放电电流,但此时即使第2FET12的内部电阻很微小(20-50mΩ),也由于过大的放电电流,其两端电压上升,所以能将其测出而切断过大电流。
如上所述,因为第1主保护电路A具有阻止过充电、过放电及过大电流的功能,所以,将其与二次电池3一起构成电池组件的形态,就能保护二次电池3,避免因设备故障或错误使用导致损伤。但在主保护电路A动作发生异常时,二次电池3会受到显著的损伤。该动作异常在主保护电路A发生故障时,在二次电池3过充电进行的同时,因电解液分解产生的气体引起电池内压异常上升,并随着温度上升会陷入发生破裂的事态。为了防备这样的电池内压异常上升而装备上述的电流断路阀,当二次电池3是小型化、薄型化的二次电池时,就很难将电流断路阀装在电池内,就不能期望其可靠动作。如果能可靠阻止过充电,也就可以不再使用所述电流断路阀,就可以保护小型化、薄型化的二次电池3。
上述副保护电路B是为了双重保护二次电池避免过充电而设置的,当利用主保护电路A的过充电阻止功能未能正常发挥时,利用该副保护电路B就可以阻止过充电。副保护电路B通过副控制手段2检测二次电池3的电压,当测出比主控制手段为了防止过充电而检测的充电禁止电压高的第2充电禁止电压(例如4.45V)以上的电压时,将第3FET13控制成切断状态,切断充电电流,并将切断状态保持到测出第2充电解除电压为止。
图2示出了对过充电状态持续时二次电池3的电压变化和温度变化进行测定的试验数据,示出了当利用主保护电路A的过充电阻止动作未能正常进行时,随着过充电状态的进行,电池电压渐渐上升,电池温度迎来了急剧上升的情况。因为电池温度开始急剧上升时的电池电压超过4.5V,所以,在副保护电路B的副控制手段2中,如上所述将第2充电禁止电压设定在4.45V,则当测出该第2充电禁止电压时,就可以利用副控制手段2将第3FET13控制成切断状态,在电池温度开始急剧上升之前充电电流就被切断,可以防止因过充电状态持续引起的电池损坏。
以上说明过的第1实施形态涉及的电池保护电路所使用的第1-第3各ET11、12、13如图3所示,分别在漏极-源极间有寄生二极管D,并连接成这样的状态即使在为了防止过充电而将第1FET11或第3FET13控制成切断状态时,第1及第3FET11、13的寄生二极管D的顺方向为放电电流方向,因此可以从二次电池3进行放电。此外,还连接成在为了防止过放电而将第2FET12控制成切断状态时,第2FET12的寄生二极管D的顺方向为充电电流方向,因此可以对二次电池3进行充电。
接着说明本发明第2实施形态。图4示出第2实施形态的电池保护电路的构成,该电池保护电路具有主保护电路C和副保护电路B。副保护电路B与第1实施形态所示的构成相同。
在图4中,主保护电路C将主控制手段6和第1FET14做成集成电路片,第1FET14根据由主控制手段6施加的激发电压,变成①导通状态,②切断状态,③充电方向导通/放电方向切断,④充电方向切断/放电方向导通这样4种状态。该由主控制手段6和第1FET14构成的主保护电路C作为Unitrode公司制造的集成电路片市场已有销售,作为美国专利第5,581,170号已公开。
上述第1FET14不是如第1实施形态中的第1和第2FET11、12那样是有寄生二极管D的,作为一个开关元件,根据其激发电压的变化,如上所述变化成4种状态。
4种状态之中,导通状态是二次电池3在正常使用状态下的情况,是第2主控制手段6测出的二次电池3的电压处于正常充放电条件下的状态。此外,切断状态是当从串联连接在二次电池3的充放电电路上的第1FET14的两端电压检测到允许值以上的过大放电电流时,切断充放电电路,保护二次电池3避免过大电流的状态。此外,充电方向导通/放电方向切断是当由主控制手段6测出与二次电池3的过放电状态对应的电压时,使放电方向为切断状态以停止放电,并一直保持到测出放电解除电压为止,同时使充电方向为导通状态,从而可以进行充电。此外,充电方向切断/放电方向导通是当主控制手段6测出与二次电池3的过充电状态对应的电压时,使充电方向为切断状态以停止充电并一直保持至测出充电解除电压为止,并使放电方向为导通状态,从而可以进行放电。
利用主保护电路C的构成,可以保护二次电池3避免受到过充电、过放电及过大电流。但是,该主保护电路C也如在第1实施形态已叙述过的那样,当发生误动作或故障等的动作异常时,二次电池3会受到显著损伤。尤其是当过充电的防止功能停止时,二次电池3在过充电进行的同时,因电解液分解产生的气体导致电池内压异常上升,随着温度上升最终陷入破裂的境地。因此,如图4所示,与主保护电路C并列设置副保护电路B,就能双重保护二次电池3避免最容易陷入严重破损状态的过充电,电池保护电路能可靠保护二次电池3。即,副保护电路B利用副控制手段2测出二次电池3的电压,当由主保护电路C进行的过充电阻止动作未能正常进行时,就会测出比主控制手段6为了防止过充电而检测的充电禁止电压高的第2充电禁止电压(例如4.45V)以上的电压,所以,此时将FET13控制成切断状态,切断充电电流并保持切断状态直至测出第2充电解除电压为止。由于该副保护电路B的工作,在因过充电的进行导致电池温度开始急剧上升之前,充电电流就被切断,能防止因过充电状态的持续导致电池破坏。
以下说明本发明的第3实施形态。图5示出第3实施形态涉及的电池保护电路,该电池保护电路具有主保护电路E和副保护电路B,副保护电路B与第1及第2实施形态所示的是相同的。
在图5中,二次电池3的正极侧通过构成主保护电路E的第1PTC21与正输入输出端子4连接,第2PTC(加热手段)22与第1PTC21成热耦合状态而构成保护元件10。众所周知,PTC属于当因流过电流而自身发热或被加热而温度上升到规定温度以上时、其电阻值急剧增大的正特性热敏电阻,在规定温度以下的平时电阻值微小,故通电引起的电压下降极小,不会妨碍充放电电路。
所述保护元件10通过将形成为板状的第1PTC21与第2PTC22夹着电极板面接合,形成第2PTC22的温度易于传递给第1PTC21的热耦合状态。关于该保护元件10的结构将在后面的第4实施形态作详细叙述。又,第2PTC22也可以做成电阻器或加热器等因流过电流而温度迅速上升的加热手段。
此外,二次电池3的负极侧通过构成副保护电路B的第3FET13与负输入输出端子5连接,在二次电池3处于正常充放电条件下的状态时,第3FET13由副控制手段2控制成导通状态,呈二次电池3的负极侧与负输入输出端子5连接的状态。
主保护电路E通过主控制手段7测出二次电池3的正负两极间电压,当其在预先设定的判定为过充电状态的第1充电禁止电压(例如4.30V)以下时,将第1FET15控制成切断状态。当测出因过充电而超过所述第1充电禁止电压的电压时,主控制手段7将第1FET15控制成导通状态,并一直控制至测出比第1充电禁止电压低的第1充电解除电压为止。由于第1FET15导通,形成第2PTC22的通电电路,由于其发热,热耦合的第1PTC21被加热。由于该加热,第1PTC21变成电阻值急增的跳开状态,由于其增大的电阻值,限制了流过二次电池3的充放电电路的电流,阻止二次电池3的过充电状态。
但是,该主保护电路E也如在第1及第2实施形态中已叙述过的那样,当发生误动作及故障等的动作异常时,二次电池3会受到显著损伤。尤其是当过充电的防止功能停止时,与二次电池3过充电进行的同时,因电解液分解产生的气体导致电池内压异常上升,随着温度上升最终会陷入破裂的境地。因此如图5所示,与上述构成的主保护电路E并列设置副保护电路B,就能双重保护二次电池3使其避免最容易陷入严重破损状态的过充电,电池保护电路就能可靠完成二次电池3的保护。即,副保护电路B通过副控制手段2检测二次电池3的电压,当利用主保护电路E的过充电阻止动作未能正常进行时,副控制手段2就会测出比主控制手段7为了防止过充电而检测的充电禁止电压高的第2充电禁止电压(例如4.45V)以上的电压,所以,此时将FET13控制成切断状态,切断充电电流并将切断状态保持至测出第2充电解除电压为止。由于该副保护电路B的工作,在因过充电的进行使电池温度开始急剧上升之前,充电电流就被切断,能防止因过充电状态的持续导致的电池破损。
以下参照图6说明本发明第4实施形态。第4实施形态的电池保护电路具有主保护电路A和副保护电路F而构成,主保护电路A与第1实施形态所示的是相同的。
在图6中,二次电池3的正极侧通过构成保护元件10的第1PTC21与正输入输出端子4连接,负极侧通过第1FET11和第2FET12与负输入输出端子5连接。此外,为了能从设备侧尤其是从充电器检测该二次电池3和保护电路的温度,在温度检测端子47上连接有热敏电阻43。这样分别串联配置在二次电池3的正极侧及负极侧的所述第1PTC21、第1FET11和第2FET12是为了根据二次电池3的各种异常状态来限制或切断通电电流而设置的,以下对异常时通电电路的切断动作进行说明。
上述第1PTC21在二次电池3的温度为规定温度以下的平常时候,电阻值微小,通电引起的电压下降极小,对充放电电路不会造成妨碍,但当温度上升到规定温度以上时,因电阻值剧增而限制通电电路的电流。该电阻值的剧增称为跳开,电阻值可以增大至平常时的10的3次方至4次方。该跳开状态也可以因流过第1PTC21的电流使PTC21自身发热而引起,所以,当因短路等而流过过大电流时,自身发热使电阻值剧增,就限制二次电池3的输入输出电流,因此能防止因短路等而损伤二次电池3。
此外,第1和第2FET11、12作为开关元件工作,由主控制手段1控制成导通/切断的两种状态。它们在二次电池3正常进行充放电的条件下,均被控制成导通状态,将二次电池3的负极与负输入输出端子5之间连接成导通状态。
所述主控制手段1检测二次电池3的正负两极间的电压,当该电压达到预先设置的被判定为过充电状态的第1充电禁止电压(例如4.30V)以上时,将第1FET11控制成切断状态而切断充电电流,保护二次电池3避免过充电。利用该防止过充电的功能,能防止二次电池3受到损伤。利用主控制手段1的第1FET11的切断状态保持至测出比第1充电禁止电压低的第1充电解除电压时为止。
此外,主控制手段1检测二次电池3正负两极间的电压,当该电压变为预先设定的被判定为过放电状态的放电禁止电压(例如2.60V)以下时,将第2FET12控制成切断状态来切断放电电流,保护二次电池3避免过放电。利用该防止过放电的功能,能防止二次电池3劣化。利用主控制手段1的第2FET12的切断状态保持到测出比放电禁止电压高的放电解除电压为止。
还有,主控制手段1检测第2FET12两端的电压,当该电压达到预先设定的与过大放电电流对应的电压以上时,将第1和第2FET11、12控制成切断状态来切断放电电流,保护二次电池3避免因过大放电电流而损伤。当正输入输出端子4与负输入输出端子5之间或与它们连接的电器侧发生短路时,二次电池3会暴露于放电电流,但此时即使第2FET12的内部电阻微小(20-50mΩ),也由于过大的放电电流,其两端电压上升,所以能将其测出而切断过大电流。
当利用该主保护电路A的对通电电路的切断动作不能正常发挥作用、过充电状态持续下去时,二次电池3因电解液的分解使内压上升,有可能导致二次电池3破裂。为了防止发生这样的不测事态,设置了副保护电路F。
副保护电路F通过副控制手段40检测二次电池3的电压,当其达到设定电压以上时,将第3FET41控制成导通状态。由于第3FET41导通,与所述第1PTC21热耦合并形成为保护元件10的形态的第2PTC22及放电电阻24就通电。由于该通电,第2PTC22的温度上升并加热热耦合的第1PTC21,由此发生“跳开”,由于其电阻值剧增,限制了对二次电池3的充电电流。
通过所述副控制手段40使第3FET41作导通动作的设定电压设定为比主控制手段1检测过充电的充电停止电压大的检测电压值。例如,在充电器侧设定的充电结束电压为4.20V时,通过主控制手段1的充电停止电压设定为4.30V,利用副控制手段40的过充电持续状态的检测设定电压设定为4.45V。如图2所示,随着过充电状态的进行,电池电压也渐渐上升,以致电池温度急剧上升,但当电池温度开始急剧上升时的电池电压超过了4.5V,通过将副控制手段40的检测设定电压如上所述预先设定为4.45V,就能在电池温度开始急剧上升之前使第1PTC21跳开,从而限制充电电流,因此能防止因过充电状态持续导致的电池破坏。
此外,副控制手段40将测出过充电持续后的状态维持到测出比过充电持续状态的检测设定电压还低的规定电压以下的电压为止,保持第3FET41的导通状态。因此,副控制手段40测出过充电持续的状态被保持,能防止因主保护电路A或充电器动作异常引起二次电池3损伤。
因为上述构成中的第2PTC22对第1PTC21的加热是间接性加热,所以,通过热耦合的热传导要可靠是不可缺少的,在本实施形态中,将第1PTC21与第2PTC22做成成为一体性结构的保护元件10。关于该保护元件10的详细构成以下进行说明。
图7是将保护元件10分解示出的图,在第1PTC元件21a与第2PTC元件22a之间配置有中间电极材45,在第1PTC元件21a的外侧面配置有下电极材46,在第2PTC元件22a的外侧面配置有上电极材44。它们如图8A所示,相互叠合接合成层叠的一体结构。与第1、第2PTC元件21a、22a接合的各电极材44、45、46的外形形状形成为比与其分别面对面的各PTC元件21a、22a小一圈,与在其周围形成的各PTC元件21a、22a的露出面用焊锡等接合手段相互接合。此外,在各电极材44、45、46上分别延伸形成有配线连接用的引脚44a、45a及46a。各引脚44a、45a、46a预先加工成位于同一平面,从而便于安装到构成保护电路的电路基板上。这样形成的保护元件10如果用电气符号表示则如图8B所示,第1PTC21与第2PTC22一体化成热耦合状态。
构成该保护元件10的第1PTC21如图6所示,与二次电池3串联连接,当由短路等流过过大电流时,因过大电流而自身发热,当其温度变为跳开温度时电阻值急剧增大,所以二次电池3的输入输出电流受到限制,阻止了过大电流。此外如上所述,当副控制手段40测出表示过充电状态持续的电压时,副控制手段40使第3FET41作导通动作,对第2PTC22通电。由于该通电,第2PTC22温度上升而对第1PTC21进行加热。一旦由于该加热使第1PTC21变为跳开状态,就与上述过大电流的阻止动作一样,限制二次电池3的充电电流。
保护元件10的引脚的形成也可以如图9所示,使引脚44b、45b、46b从各电极材44、45、46的分别不同的三个方向延伸而构成。通过各电极材44、45、46的材质使用铜镍合金,可以做成焊接等的接合性及热耦合所需的热传导性出色的电极材。该铜镍合金的使用也可以不是应用于所有的电极材44、45、46,而是有选择地仅应用于热耦合用的成为热传导体的中间电极材45。此外使用铜镍合金与镍的复合材料来代替铜镍合金,也能获得同样的功能。
此外,第1PTC21及第2PTC22其各自的形状尺寸及电气特征可以选择组合。第1PTC21选择其形状尺寸及电气特性时要满足这样的条件在平时电阻值尽可能要低以抑制二次电池3的输入输出电流引起的电压下降,而流过所设定的过大电流值以上的过大电流时要变成温度迅速上升电阻值急剧增大的跳开状态。另一方面,第2PTC22选择其形状尺寸及电气特性时要满足这样的条件提高平时的电阻值以增大通电时的发热量,其发热量要能够以其温度使第1PTC21变成跳开状态。
以上说明过的保护元件10是将两种PTC元件组合而构成的,但也可以将第1PTC21夹在两片第2PTC22之间,来促进利用热耦合进行的加热。此外,加热第1PTC21的也可以不是PTC元件,而是使用因通电而温度上升的电阻体等。
接着对本发明第5实施形态的电池保护电路进行说明。又,本构成如图10所示,是使用将加热用PTC49与温度保险丝48组合成的保护元件50而构成的,其它的构成与第4实施形态的构成一样,相同的要素标上相同的符号并省略其说明。
在图10中,当副控制手段40测出过充电持续状态的检测设定电压时,使第3FET41导通,则因电流流过加热用PTC49使温度上升,并加温温度保险丝48。当因该加热用PTC49的加热而温度保险丝48熔断时,对二次电池3的充电电流被切断,可防止因过充电的持续而损坏二次电池3。
上述保护元件50的构成如图11A、图11B所示,将温度保险丝48与加热用PTC49重叠成热耦合状态。该保护元件50如图所示,在温度保险丝48上安装有引脚48a、48a,在加热用PTC49上安装有引脚49a、49a,可以安装在电路基板上构成保护电路。
在作为现有技术的双重保护避免过充电的构成中,因为是将非复原的切断手段作为副保护电路来构成,所以,不能检查其动作是否正常,可靠性低,而以上说明的各实施形态中的电池保护电路可以改进上述缺点。即,施加第2充电禁止电压以下的电压,第3FET13就成导通状态,施加第2充电禁止电压以上的电压,第3FET13就呈切断状态,副保护电路B对此可以进行检查,能构成可靠性高的电池保护电路。
此外,在各实施形态中的电池保护电路能将主要部分构成为集成电路,使用的电子元件数少,所以能构成小型化、薄型化的二次电池3,并能构成小型紧凑的电池组件。还有,还可以将保护电路收容在二次电池3内而构成内装有保护电路的二次电池3。此外,由于具备双重的过充电阻止功能,故抑制了因过充电引起的气体发生,所以,释放内压用的电流断路阀也可以不再使用,即使在小型化、薄型化、难以获得机械结构的电流断路阀设置空间的情况下,也能防止因过充电引起电池破损。
以上说明过的保护元件10、50通过用隔热材料包覆来抑制向外部的散热,利用PTC22、49进行的加热能更有效进行。
如以上说明的那样,若根据本发明,设置双重的阻止过充电的功能,防止过充电引起电池破坏的构成不是用机械性电流断路装置,而是能利用电气进行,所以,也能方便地应用于缺少空间来配置机械性切断电流结构的小型二次电池。
此外,因为与主保护电路并列设置的副保护电路是不使用温度保险丝等非复原的电路断路手段的可复原型构成,所以,当过充电状态解除时就能恢复成正常时的状态,并且能进行对非复原型来说是不可能的副保护电路动作的检查,能对电池保护电路各动作逐个进行检查后上市,所以,对于构成小型且可靠性高的电池保护电路是有用的。
权利要求
1.一种电池保护电路,其特征在于,具有检测二次电池(3)正负极间电压、当测出超过规定值的电压时输出控制信号的电压检测手段(40);与串联连接在所述二次电池(3)上的PTC(21)热耦合、因通电使温度上升的加热手段(22);根据来自所述电压检测手段(40)的控制信号对所述加热手段(22)通电的开关手段(41)。
2.根据权利要求1所述的电池保护电路,其特征在于,由所述电压检测手段测出的超过规定值的电压设定为比测出过充电状态的电压要高的电压。
3.根据权利要求1所述的电池保护电路,其特征在于,所述加热手段是与与PTC(21)热耦合的第2PTC(22)。
4.一种电池保护电路,其特征在于,具有检测二次电池(3)正负极间电压、当测出超过规定值的电压时输出控制信号的电压检测手段(40),与串联连接在所述二次电池(3)上的温度保险丝(48)热耦合的加热用PTC(49),以及,根据来自所述电压检测手段(40)的控制信号对所述加热用PTC(49)通电的开关手段(41)。
5.根据权利要求4所述的电压检测手段,其特征在于,由所述电压检测手段测出的超过规定值的电压设定为比测出过充电状态的电压要高的电压。
全文摘要
提供防止因过充电状态持续引起电池破坏的二次电池的保护电路和应用于该电路的保护元件。利用主保护电路(A)和副保护电路(B)双重保护二次电池(3),使其免过充电,所述主保护电路(A)具有检测二次电池(3)的过充电、过放电和过大放电电流,将第1 FET(11)或第2 FET(12)控制成切断状态的主控制手段(1),所述副保护电路(B)具有当利用主控制手段(1)的过充电阻止功能未能正常发挥时,将第3 FET(13)控制成切断状态的副控制手段(2)。
文档编号H01M10/44GK1645665SQ200410083139
公开日2005年7月27日 申请日期2000年5月17日 优先权日1999年5月17日
发明者祝园芳宣 申请人:松下电器产业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1