具有双磁态的磁性元件及其制造方法

文档序号:6832605阅读:267来源:国知局
专利名称:具有双磁态的磁性元件及其制造方法
技术领域
本发明涉及信息存储和/或读出用的磁性元件及其制造方法,尤其涉及一种双磁态磁性元件及其制造方法。
背景技术
在此引入与本申请有关且属于同一受让人的下述共同未决申请作参考Motorola卷号为CR 97-133而美国系列号为09/144,686的专利申请,它于1998年8月31日提出,其名称为“磁随机存取存储器及其制造方法”(“MAGNETIC RANDOM ACCESSMEMORY AND FABRICATING METHOD THEREOF”);Motorola卷号为CR 97-158而美国系列号为08/986,764的专利申请,它于1997年12月8日提出,其名称为“磁膜图形构成方法”(“PROCESS OF PATTERNING MAGNETIC FILMS”);Motorola卷号为CR 99-001而美国系列号为09/356,864的专利申请,它于1999年7月19日提出,其名称为“具有改进的磁场响应的磁性元件及其制造方法”(“MAGNETIC ELEMENT WITH IMPROVEDFIELD RESPONSE AND FABRICATING METHOD THEREOF”);此外,还引入受让人相同而专利号为5,768,181的美国专利作为参考,其颁证日是1998年6月16日,名称为“具有绝热和传导层的多层磁性器件”(“MAGNETIC DEVICE HAVING MULTI-LAYERWITH INSULATING AND CONDUCTIVE LAYERS”)。
一般而言,一种磁性元件诸如磁隧道结存储元件,在结构上它含有用一种非磁性衬垫层隔离的许多铁磁层。信息可按磁化向量的方向存储在磁性层中。例如,另一磁性层中的磁化向量自由地在同向和反向即所谓的“平行”和“反平行”状态间换向,相应地,某一磁性层中的磁化向量会在这个磁场作用范围内被固定或锁定。对应于平行和反平行状态,磁性存储元件表现出两种不同的阻抗。当两磁性层中的磁化向量大体上指向同向和反向时,相应地,阻抗就出现最小值和最大值。而阻抗变换的检测使得可用一种诸如MRAM(磁随机存取存储器)的器件,将信息存储在磁性存储元件中。阻抗的最大值和最小值之差除以最小阻抗值就是公知的磁阻率(MR)。
一种MRAM装置集成着磁性元件,尤其是许多磁性存储元件以及其它电路,例如磁性存储元件控制电路、检测某一磁性存储元件状态用的比较器、输入/输出电路等等。这些线路都是用CMOC(互补金属氧化物半导体)工艺制造的,以便降低器件的能耗。
另外,在结构上,磁性元件含有许多薄层,其中有些是数十埃厚的。磁性元件的阻抗对磁场响应是受这些薄层表面结构所制约的。为了使磁性元件能作为一种存储单元来操作,它处于闲置状态或没有外加磁场作用于它的状态时,至少需具备两种阻抗状态。对磁性元件的这种要求相当于它应有一个相对磁场响应的居中阻抗,必须纠正存在的拓朴正耦合和针孔耦合以形成居中阻抗。
在典型的MTJ(磁隧道结)磁性元件制造中,诸如MRAM存储元件制造中,会含有一种通过溅射沉积,蒸发,或外延工艺而生成的金属膜,其膜表面不是真正平的而是呈现出表面或界面波纹。这种表面和/或铁磁层间界面的波纹是自由铁磁层和其他铁磁层诸如固定层或被钉扎层之间存在的磁性耦合的原因,这就是公知的拓扑耦合或尼氏(Neel’s)桔皮耦合。这种耦合一般是不希望在磁性元件中存在的,因为它会造成自由层对外磁场响应的偏移。此外,在常用的自旋阀磁性元件的构成中,还存在电子交换耦合。为了补偿这类耦合,以及其他在MTJ和自旋阀元件中发现的各种耦合作用,必须进行补偿以产生一种居中阻抗,这样才能使器件在双态中操作。
还有,在MRAM存储单元磁场换向时一般存在两种偏移。第一种如前所述是铁磁耦合或正耦合,它是由与拓扑结构相关的静磁耦合引起的,在零外磁场下只能导致低阻抗存储状态。事实上这种存储单元不能工作。要使存储器发挥作用,在零磁场下至少要具备两种存储状态。单元的另一种换向偏移可称作反铁磁性耦合或负耦合。它是由处于长宽比等于或大于1的存储单元端部的静磁耦合引起的。它的作用在于当零外磁场时出现高阻抗存储状态。没有外加的读入磁场这种存储器也不工作。较佳地,应当在不施加由电流脉冲引起的磁场下即可进行读取,以节约能耗并达到高速度。
所以,必须制造一种含有存储单元端部静磁边缘磁场(bit endmagnetostatic fringing fields)的器件,它将抵消这种结构的全部正耦合,从而在零外磁场下实现双磁态。
据称,铁磁耦合强度正比于表面磁荷密度而且确定为夹层厚度指数值的倒数。有一项1998年6月9日颁证且专利号为5,764,567的美国专利,它的名称是“具有用于改进磁场响应的非铁磁性界面层的磁隧道结器件”(“MAGNETIC TUNNEL JUNCTION DEVICEWITH NONFERROMAGNETIC INTERFACE LAYER FORIMPROVED MAGNETIC FIELD RESPONSE”),其中指出在磁隧道结结构中于靠近氧化铝隧道阻挡层处加一种非磁性的铜层,可以提高磁性层间的间距,达到降低铁磁性桔皮耦合或拓扑耦合。但是,附加铜层会降低隧道结的MR,从而使器件性能恶化。另外,铜层的夹杂也会增加金属蚀刻工艺的复杂性。

发明内容
因而,本发明的目的在于提供一种经过改进的磁性元件,相对外加磁场它有居中阻抗响应曲线,因而能够实现双态操作。
本发明的另一目的在于提供一种经改进的磁性元件,它可对存在的铁磁耦合,尤其是拓扑起因的铁磁耦合或交换耦合予以补偿。
本发明进一步的目的在于提供一种磁性元件,其中的单元端部退磁场(bit end demagnetizing fields)将抵消这种结构的全部正耦合以在零外磁场下获得双磁态。
本发明更进一步的目的在于提供一种制造磁性元件的方法,该元件有对磁场响应的居中阻抗,从而能够实现双态操作。
本发明进一步的目的还在于提供一种制造磁性元件的方法,该元件有对磁场响应的居中阻抗且可改进为适合于大批量生产。
所有这些以及其他需求基本上都是通过提供一种磁性元件来满足的,它含有许多薄膜层,其中的单元端部退磁场可抵消这种结构的全部正耦合以在零外磁场下获得双磁态。此外,也公开了一种通过许多薄膜层制造磁性元件的方法,其中,各薄膜层上的单元端部退磁场将抵消这种结构的全部正耦合以在零外磁场下获得双磁态。


图1~5表示许多磁性元件的横剖视图,它们都有本发明所述的已改进的磁场响应;图6说明拓扑耦合磁场和根据本发明计算的相对于固定磁性层厚度的退磁场的实验结果;图7说明本发明所述磁性元件的金属薄膜层的磁极。
叙述时,用于说明本发明各图中相同的元件都用同样的数字标记。
具体实施例方式
图1和图2用横剖视图说明本发明所述MTJ磁性元件的二种实施例的结构。具体地,在图1中说明了一种构图完整的磁性元件结构10。它含有合成的反铁磁性结构11。这种结构含有衬底12,底层电极多层叠片14,含氧化铝的衬垫层16以及顶层电极多层叠片18。底层电极多层叠片14和顶层电极多层叠片18都含有铁磁层。底层电极层14是形成在金属引线13上的,金属引线13又是形成在衬底12上的。底层电极层14含有许多沉积在底部金属引线13上的底层20,它起仔晶层和模板层的作用,还含有反铁磁性钉扎材料层22,被钉扎铁磁层24,钌制夹层26以及形成在其上且与下面的反铁磁性钉扎层22交换耦合的固定铁磁层28。
底层20一般用钽和钌(Ta/Ru)形成。它们对反铁磁性钉扎层22起定向底座的作用。反铁磁性钉扎层22一般由铱锰(IrMn)或铂锰(PtMn)组成。
被钉扎铁磁层24是受钉扎的,它的磁矩交换耦合于钉扎层22,以便当出现一个足够大的外磁场去使自由磁性层30翻转时它的磁矩保持不翻转。铁磁层24一般由镍(Ni)、铁(Fe)和钴(Co)中一种或多种的合金形成。其次,夹层26一般由钌形成,其作用是在被钉扎铁磁层24和固定铁磁层28间诱发反铁磁性交换耦合。最后,固定铁磁层28是做在钌制夹层26的上表面的。固定铁磁层28是受固定或钉扎的,以便当出现一个足够大的外磁场去使自由铁磁层30翻转时,它的磁矩被阻止翻转。
顶层电极叠片18含有自由铁磁层30和保护层32。自由铁磁层30的磁矩是不固定的,或不受交换耦合钉扎的,在出现外磁场时它可自由地在两种状态之间翻转。自由铁磁层30一般用镍铁合金(NiFe)形成。
固定铁磁层28的厚度用t1表示,一般在3~100范围。被钉扎铁磁层24的厚度用t2表示,一般小于100。衬垫层16的厚度用t3表示,一般小于50。这是对于磁隧道结结构或带铜衬垫的自旋阀型薄膜而言的。在这个具体实施例中,为了补偿横越衬垫层16的正耦合,固定铁磁层28的厚度要做得比被钉扎铁磁层24的大,即t1>t2。应该明白在这里的披露中考虑到了反向或倒装结构。具体地,考虑到了所公开的磁性元件可以通过包含一个顶层固定或被钉扎层来形成,由此描述为一种顶层受钉扎结构。
所有磁性层可以是一种单一的磁性材料,或者是用多层磁性层制成的一种组合磁性层,彼此相邻而很好地调整它们的磁参数,诸如换向磁场,磁阻等等。在本实施例中,固定铁磁层28有M1和T1两个参数,M=磁化强度,T=厚度,被钉扎铁磁层24有M2和T2两个参数,自由铁磁层30有M3和T3两个参数。
为了补偿固定铁磁层28和自由铁磁层30之间存在的正拓扑耦合,乘积M1T1应大于M2T2。可以使T1>T2,M1=M2,或使T1=T2,M1>M2,或使T1>T2,M1>M2来达到。调整M1和T1,与M2T2间的差值即可使正耦合得以全部消除。当M1T1>M2T2时,在固定铁磁层28的端部将会有未补偿的磁极或磁荷。在长/宽比等于或大于1的高密度存储单元中,存在于自由铁磁层30和固定以及被钉扎铁磁层端部之间的静磁耦合是反磁性的,形成了闭合磁通。这种反铁磁性耦合可通过M1T1和M2T2之差来予以调整以完全消除正耦合。
图2是构图完整的磁性元件结构的一种可供选择的实施例,请参阅10’,它含有合成的反铁磁性结构11’。应当指出第一实施例与第二实施例所有相同的部件都标以相同的标号,加一个撇号以表示不同的实施例。与图1所示的结构相同,此结构含有衬底12’,底层电极多层叠片14’,衬垫层16’以及顶层电极多层叠片18’。底层电极多层叠片14’和顶层电极多层叠片18’都含有铁磁层,与图1中的叠片14和18基本相同。底层电极层14’是形成在金属引线13’上的,而金属引线13’又是形成在衬底12’上的;该电极层14’还含有许多底层20’,底层20’包括沉积在金属引线13’上的第一仔晶层21和一个模板层23。电极层14’还有反铁磁材料层22’,在其上形成且和下面的反铁磁层22’交换耦合的被钉扎铁磁层24’,耦合夹层26’以及和被钉扎层反铁磁性耦合的固定铁磁层28’。铁磁层24’和28’是受钉扎或固定的,在出现外磁场时它们的磁矩是被阻止翻转的。顶层电极叠片18’含有自由铁磁层30’和保护层32’。自由铁磁层30’的磁矩是不固定或不受交换耦合钉扎的,在出现外磁场时它的磁矩可自由地在两种状态间翻转。
固定铁磁层28’的厚度用T1表示。被钉扎铁磁层24’的厚度用T2表示。在这个具体实施例中,为了补偿横越衬垫层16’的正耦合,固定铁磁层28’的厚度要形成得比被钉扎铁磁层24的大些,即T1>T2。应当明白在这里的披露中考虑到了反向或倒装结构。具体地,考虑到了所公开的具有SAF(合成反铁磁结构)结构的磁性元件可以包含顶层固定或被钉扎层来形成,由此描述为一种顶层受钉扎结构。
这项具体实施例的制造含有两项蚀刻工序。首先,所有各层被蚀刻以确定该磁性器件10’,然后,保护层32’和自由铁磁层30’被蚀刻以确定偏移40。具体地,低于自由铁磁层30’的各层要大于自由铁磁层30’一个偏移量40。对器件10’的这种蚀刻保证了避免跨过衬垫层16’的短路。
现在参阅图3,示出了本发明所述磁性器件的另一种实施例的简化横剖视图。具体地,示出了器件50,它和图1的器件10基本相同,只是在本具体实施例中,磁性元件50不含耦合夹层和固定铁磁层。与图1所述的结构一样,该结构含有衬底52,底层电极多层叠片54,衬垫层56以及顶层电极多层叠片58。底层电极多层叠片54和顶层电极多层叠片58都含有铁磁层,与图1中的叠片14和18基本相同。底层电极层54是形成在金属引线53上的,而金属引线53又形成在衬底52上的;该电极层54含有许多底层60,包括在金属引线53上沉积形成的第一仔晶层61和一个模板层63。底层电极多层叠片54还含有被钉扎铁磁层64。被钉扎铁磁层64是固定或受钉扎的,在出现低于一定强度的外磁场时它的磁矩是被阻止翻转的。顶层电极叠片58含有自由铁磁层70和保护层72。自由铁磁层70的磁矩是不固定或不受交换耦合钉扎的,在出现高于一定强度的外磁场时它的磁矩可自由地在两种状态之间翻转。
与图2所述的实施例基本相同,器件50可以含有一个偏移74,见图4。应当明白图3的实施例与图4的实施例所有相同的部件都标以相同的标号,加一个撇号以表示不同的实施例。
在图4所述实施例中,偏移74提供了降低从被钉扎铁磁层64’向自由铁磁层70’的退磁场的作用,从而消除被钉扎铁磁层64’和自由铁磁层70’之间的正耦合。应当明白在这里的披露中考虑到了反向或倒装结构。具体地,考虑到了所公开的磁性元件可以通过包含一个顶层固定或被钉扎层来形成,由此描述为一种顶层受钉扎结构。
再次参阅图4,这项具体实施例的制造含有两项蚀刻工艺。首先,所有各层被蚀刻以确定磁性器件50’。然后,保护层72’和自由铁磁层70’被蚀刻以确定偏移74。具体地,位于自由铁磁层70’以下的各层要大于自由铁磁层70’一个偏移量74。对器件50’的这种蚀刻保证了避免跨过衬垫层56’的短路。
现在参阅图5,示出了本发明所述磁性元件另一种实施例的简化横剖视图。具体地,示出了磁性元件80,它没有耦合夹层和固定铁磁层。与图4提示的结构相同,它含有衬底82,底层电极多层叠片84,第一衬垫层86,第二衬垫层或隧道阻挡层88以及顶层电极多层叠片90。底层电极多层叠片84和顶层电极多层叠片90都含铁磁层,和图1中的叠片14和18基本相同。底层电极多层叠片84是形成在底层金属引线83上的,而该引线83又是形成在衬底82上的;底层电极多层叠片84还含有许多底层,包括在底层金属引线83上沉积形成的第一仔晶层81和选择性的模板层85。底层电极多层叠片84还含有铁磁层92。铁磁层92是固定或受牵的,在出现低于一定强度的外磁场时它的磁矩被阻止翻转。底层电极多层叠片84另外还含有衬垫层86和自由铁磁层94。自由铁磁层94的磁矩是不固定或不受交换耦合钉扎的,在出现大于一定强度的外磁场时它可自由地在两种状态间翻转。顶层电极叠片90含有第二固定铁磁层96和保护层98。铁磁层92和96由于端静磁耦合(end-magneto static coupling)而具有反平行排列。
与图4所述的实施例基本相同,器件80可选择性地含有偏移100,如图5所示。偏移100提供了降低从铁磁层92或96的至少一个向自由铁磁层94的退磁场的作用,从而消除铁磁层92或96与自由铁磁层96之间的正耦合。应当明白在这里的披露考虑到了一种反向或倒装结构。
本具体实施例的制造在存在偏移100时含有二项蚀刻工序。首先,各层被蚀刻以确定磁性器件80,然后保护层98和铁磁层96被蚀刻以确定偏移100。具体地,位于铁磁层96以下的各层要大于被钉扎铁磁层96一个偏移量。对器件80的这种蚀刻保证了避免跨过衬垫层88的短路。
现在参阅图6,它图解说明诸如图1中的固定铁磁层28厚度相对于这类磁性元件的拓扑耦合磁场(Hcp1)和单元端部退磁场或负磁场的作用。如图所示,随着图2和图4所述器件层的偏移的增大,退磁场将会减小。偏移小于3000则会引发一个较大的负磁场或退磁场。磁性元件通常是用在信息存储和/或读出装置上的,它必须利用薄的自由层保持低的换向磁场,然而,当设计的器件具有这些薄自由层时会使拓扑耦合磁场Hcp1增强。相应地,为了补偿或消除这种拓扑磁场Hcp1,可以对在此公开的磁性元件其余结构作出调整,以利用退磁场去补偿或消除这类正耦合磁场。
参阅图7,它示意了利用调整磁层厚度的方法来减弱耦合磁场,诸如调整图1中相对于被钉扎层24的固定层28的层厚。如其所示,固定层28的层厚提高到比被钉扎层24的大时,存在的正耦合磁场Hcp1就会受到补偿。存在的正端磁极和相对的负端磁极可消除诸如拓扑、针孔和正电子交换等各种正耦合。相应地,如图7所示,一种和图1中的磁性元件10基本相同的磁性元件,它除了包含自由层30,还有层厚大于被钉扎层24的固定层28,在层28和30间提供某一差值,从而抵消正耦合并提供相对于磁场响应的居中阻抗并能操作于双态的平衡器件。
更具体地参阅图7,磁端极在层24和28之间形成。固定层28的厚度增加到比被钉扎层24的大,便可在磁性元件10中实现对正耦合的补偿。
下面将公开非磁性的仔晶和模板层,如图3中的层61和63,它的利用将会导致磁场响应耦合的减弱而不需包含SAF结构。该模板层不向该结构施加磁矩,由此,唯一的端静磁耦合是结构中薄被钉扎层导致的结果。相应地可以对此进行调整以便消除其耦合强度使器件能在双态下进行操作。当模板层63是非磁性的且不存在SAF结构时,存在由于已构图形状端部的磁极引起的负静磁耦合,因此,通过被钉扎层64相对于自由层70的厚度便可控制正耦合。可以选择被钉扎层64的厚度以抵消静磁耦合,给出居中回线。因此,通过减小被钉扎层64的厚度使其厚度小于被钉扎层70,正耦合的抵消作用便可以在磁性元件50中得以实现。
再次参阅图7,示出了图1中磁性元件10的结构,显示出磁极,其中单元端部静磁退磁场消除了该结构的全部正耦合,以便在零外磁场下获得双磁态。
因而,公开了一种能在双态下操作的磁性元件及其构成方法,其中磁耦合被消除,或补偿,这是基于彼此相对的各磁性层厚度或磁化强度与厚度的乘积之上的。该技术可应用于使用构图的磁性元件的器件,诸如磁传感器、磁记录头、磁记录介质以及其他等等。相应地,这些例举也为本公开说明所覆盖。
权利要求
1.一种磁性元件(10,10’,50,50’,80)其特征在于多个薄膜层,其中单元端部静磁退磁场(bit end magneto-staticdemagnetization fields)消除该结构的全部正耦合以在零外磁场下获得双磁态。
2.根据权利要求1所述的磁性元件,其中,多个薄膜层形成一种自旋阀结构或磁隧道结(MTJ)结构。
3.根据权利要求2所述的磁性元件,其中,多个薄膜层形成一种SAF结构,它含有固定铁磁层(28)和被钉扎铁磁层(24),固定铁磁层具有大于被钉扎铁磁层的厚度,从而消除固定铁磁层与自由铁磁层之间的正耦合。
4.根据权利要求2所述的磁性元件,其中,多个薄膜层形成一种结构,它含有具有不同的换向磁场的多个铁磁层,其中铁磁层之间的偏移提供了铁磁层之间的退磁场的减弱,从而消除铁磁层之间的正耦合。
5.根据权利要求4所述的磁性元件,其中,多个铁磁层含有被钉扎铁磁层(24)和自由铁磁层(30),且所述偏移提供了从被钉扎铁磁层向自由铁磁层的退磁场的减弱,从而消除被钉扎铁磁层和自由铁磁层之间的正耦合。
6.根据权利要求2所述的磁性元件,其中,多个薄膜层形成一种结构,它含有自由铁磁层(30),多个衬垫层(16)以及多个铁磁层,多个铁磁层具有由于端静磁耦合(end-magneto static coupling)导致的反平行排列,其中,调整多个铁磁层中至少一个的厚度以提供消除自由铁磁层和多个铁磁层中至少一个之间的正耦合。
7.一种磁性元件,其特征在于第一电极(14)其特征在于有固定铁磁层(28),在存在一特定强度的施加磁场时其磁化强度可固定在某一优选方向,该固定铁磁层具有厚度1(t1),被钉扎铁磁层(24)具有厚度2(t2),以及位于固定铁磁层和被钉扎铁磁层之间的耦合夹层(26);第二电极(18)其特征在于有自由铁磁层(30),它有一表面,其磁化强度当存在足够的施加磁场时可自由翻转;衬垫层(16),它位于第一电极的固定铁磁层和第二电极的自由铁磁层之间;其中固定铁磁层的厚度t1大于被钉扎铁磁层的厚度t2,从而消除固定铁磁层和自由铁磁层之间的正耦合;以及衬底(12),第一和第二电极以及衬垫层都是在该衬底上形成的。
全文摘要
一种改进且新颖的磁性元件(10;10’;50;50’;80),它含有许多薄膜层,其中单元端部静磁退磁场将抵消这种结构的全部正耦合以在零外磁场下获得双磁态。另外还公开了一种通过提供多个薄膜层来构成一种磁性元件(10)的方法,其中单元端部静磁退磁场将抵消这种结构的全部正耦合以在零外磁场下获得双磁态。
文档编号H01F10/32GK1591675SQ20041006411
公开日2005年3月9日 申请日期2000年12月15日 优先权日1999年12月17日
发明者陈佑俊, 乔恩·迈克尔·斯劳夫特, 马克·杜尔拉姆, 马克·德赫勒拉, 赛德·N.·特拉尼 申请人:自由度半导体公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1