半导体器件及其制造方法

文档序号:6831231阅读:435来源:国知局
专利名称:半导体器件及其制造方法
本案是申请号为97109515.9的中国专利申请的分案申请。
本发明涉及半导体器件及其制造方法,更具体地说,涉及以薄膜晶体管为代表的半导体器件及其制造方法。本发明涉及利用具有在玻璃基片和石英基片等的基片上形成的结晶性的硅薄膜的半导体器件及其制造方法,本发明还涉及薄膜晶体管等的绝缘栅型半导体器件及其制造方法。
以前,已经公知利用硅膜形成薄膜晶体管。这是利用在玻璃基片和石英基片上形成的硅膜构成薄膜晶体管的技术。之所以利用玻璃基片和石英基片作为基片是因为在有源矩阵型液晶显示器上利用薄膜晶体管。以前用非晶硅膜(a-Si)形成薄膜晶体管,但是为了达到更高的性能,现在正试验利用有结晶的硅膜(本说明书中,适合称为“结晶性硅膜”)制造薄膜晶体管。
利用结晶性硅膜形成的薄膜晶体管,比利用非晶硅膜形成的晶体管,能以两位数量级的高速度进行工作。因而,到此为止,由其它IC电路构成的有源矩阵型液晶显示器件的周边驱动电路,可能利用结晶硅膜其与有源矩阵电路相同地作入玻璃基片或石英基片这样的构成非常有利于整个器件的小型化和制造工艺的简略化,因而还可以降低制造的成本。
以前,用等离子CVD方法和减压CVD方法形成非晶硅膜后,进行加热处理或者用激光照射,使其结晶化,由此得到结晶硅膜。可是,在热处理情况,结晶化不均匀,目前要在大面积区域内得到要求的结晶性还很困难。在用激光照射的情况,虽然在部分区域能得到高结晶性,但是在大面积区域得到良好退火效果也很困难。这时,在获得优良结晶性的条件下,进行的激光照射、容易变成不稳定。
可是,本发明人以前开发出下列技术,把促进硅结晶化的金属(例如,镍)掺入非晶硅膜,用比以前更低的温度进行热处理,获得结晶性硅膜(特开平6-232059号,特开平7-321339号)。按照上述方法,不但能提高结晶化速度,缩短结晶化时间,而且和以前的只用加热进行结晶化的方法和只用激光照射使非晶硅结晶化的方法相比较,能够均匀地得到大面积优良结晶性,得到的结晶硅膜,具有耐用的结晶性。
可是,在用上述方法得到的结晶性硅膜中和硅膜表面,为促进硅结晶化,含有掺入的该金属,但是掺入量控制微妙,存在重复性和稳定性(得到器件的电气稳定性)问题。特别是由于残留的该金属元素的影响,例如,获得的半导体器件的特性时效变化,和如果是薄膜晶体管。存在截止(OFF)值大的问题。即,对于促进硅结晶化的金属元素,为了得到结晶性硅膜,利用贵重金属,以便起到有效的作用,但是在一端得到结晶性硅膜后,其存在引起各种问题,使促进硅结晶化的金属元素起相反的作用。
本发明人等,把促进硅结晶化的金属元素(例如镍)掺入上述的非晶硅膜中,然后加热处理,为解决在形成结晶硅膜情况存在的上述问题,重复地作了多次各种实验和进行研究,可以看出通过利用后面所述的特殊方法,找到能够极有效地减少以致除去残存在结晶硅膜中的该金属元素的工艺,从而实现本发明。
可是,例如有源矩阵型的液晶显示器是小型的和轻的,因为那样微细地表示高速动画,所以期待把它作为今后显示器的主要部分。但由于构成液晶显示器的基片必需具有透光性,所以基片的种类受到限制,例如,可举出塑料基片、玻璃基片、石英基片。
其中,塑料基片耐热性差,石英基片能耐1000℃甚至约1100℃的高温,但是价格很高,特别是在大面积的情况,其价格是玻璃基片的10倍以上,成本性能差。因而,考虑到耐热性和经济性的情况,通常广泛地采用玻璃基片。
现在,对液晶显示器件的性能要求越来越高,作为液晶显示装置的开关元件采用薄膜晶体管(下面称为TFT),对其性能和特征要求也越来越高。为此,正积极进行研究在玻璃基片上形成结晶性的硅膜,现在,为了在玻璃基片上形成结晶性硅膜,首先形成非晶硅膜,然后采用加热进行结晶化的方法和通过激光照射进行结晶化的方法。
即,玻璃基片耐热温度、虽然与品种有关,但通常是600℃或稍微高于600℃的温度,对于形成结晶硅膜的工艺,不能采用超过玻璃基片耐热温度的工艺。为此,以前为在玻璃基片上形成结晶硅膜,利用等离子CVD方法或者减压CVD方法,形成非晶硅膜,在低于上述耐热温度下,进行加热,使其结晶化。
若通过照射激光使硅膜结晶化的方法,可能在玻璃基片上也形成具有优良结晶性的结晶硅膜,利用激光加热具有不损伤玻璃基片的优点。
可是,在通过上述激光照射,使非晶硅膜结晶化的结晶硅膜上,由于悬挂键引起许多缺陷。这些缺陷成为TFT特性下降的原因,所以在利用结晶硅膜制造TFT的情况,需要对有源层与栅绝缘膜界面的缺陷和有源层硅的结晶粒和结晶界的缺陷进行钝化。特别是,结晶粒的缺陷是使电荷散乱的最大原因,但是,对结晶粒的缺陷进进行钝化非常困难。
另外,在石英基片上制造TFT的情况下,由于可能在例如1000℃或者1100℃的高温进行热处理,可能用硅补偿位于结晶硅膜结晶粒边界处的缺陷。于此相反,在玻璃基片上制造TFT的情况,进行高温处理有困难,通常,在最后阶段,在300℃到400℃的气氛中,用氢等离子处理,则用氢钝化结晶硅膜结晶粒边界的缺陷。
N沟道型TFT,通过氢等离子处理,具有可能实用的场效应迁移率。另一方面P沟道型TFT用氢等离子处理后,效果不太显著。其原因是,结晶缺陷的能级形成在导带下比较浅的区域。通过氢等离子处理,可能补偿结晶硅膜的晶粒边界的缺陷。但是,补偿缺陷的氢容易脱离,所以,经过氢等离子处理的TFT,特别是N沟型TFT,长时间的可靠性不稳定。例如,把N沟道型TFT在90℃温度加电48小时迁移率减少一半。
通过激光照射的结晶硅膜的膜质优良,如果该膜厚在1000以下,则在结晶硅膜的表面形成隆起物(凹凸)。即,如果向硅膜照射激光,则硅膜瞬间溶解,局部膨胀,通过膨胀来缓和内部的应力,在所得到的结晶硅膜的表面,形成隆起物(凹凸)。隆起物的高低之差是膜厚的1/2-1倍。例如,把700的非晶硅膜加热,结晶后照射激光和退火,则在表面形成100-300高的隆起物。
在绝缘栅型半导体器件,在结晶硅膜表面的隆起处,由于悬挂键和晶格变形则形成势垒和陷阱能级,使有源层和栅绝缘膜界面能级提高。此外,由于隆起处顶部陡峭,容易使电场集中,因此成为漏电流产生源,最终破坏绝缘。结晶硅膜表面的隆起物,损害由溅射法和CVD法淀积的栅绝缘膜的覆盖性,由于绝缘不良,导致可靠性降低。
本发明的目的是提供一种新颖特别有用的方法,利用促进非晶硅膜上结晶化的金属元素,形成结晶硅膜,然后除掉由此得到的结晶硅膜中的金属元素,或者减少硅膜中的金属元素的浓度。
本发明的另一个目的是提供半导体器件及其制造方法,利用促进非晶硅膜上结晶化的金属元素,得到结晶性硅膜,然后除掉该金属元素,或者减少硅膜中的金属元素浓度,利用得到的优良结晶性的硅膜,制造具有优良特性及可靠性的半导体器件。
本发明的目的是提供半导体器件的制造方法,为解决上述问题,不利用氢等离子处理,而可钝化使非晶硅膜结晶化的硅膜结晶粒边界产生的缺陷,获得该半导体器件的制造方法。本发明的另一个目的是提供具有高可靠性,高迁移率的半导体器件的制造方法,特别是提供具有由淀积膜形成的栅绝缘膜,在玻璃基片上形成的半导体器件,其可靠性和特性进一步改善,以及提供该器件的制造方法。此外,本发明还以下述构成为目的,为此,在下面进行补充说明。
(1)本发明提供半导体器件的制造方法,其特征是,具有下列工序按要求在非晶硅膜中掺入促进硅结晶化的金属元素,通过加热处理得到使非晶硅膜结晶化的结晶硅膜,在氧化气氛中进行第2次热处理,以便除去该结晶硅膜中的金属元素或者减少其中的金属元素,除掉由该工序形成的氧化膜,通过在除掉热氧化膜的区域表面上再次进行热氧化来形成热氧化膜。
(2)本发明提供半导体器件的制造方法,其特征是,具有下列工序按要求在非晶硅膜中掺入促进硅结晶化的金属元素通过加热处理得到使前述非晶硅膜结晶化的结晶硅膜,在氧化气氛中进行第2次热氧化处理,在该结晶性硅膜的表面形成热氧化膜,氧化膜吸收该金属元素,以便除掉或减少结晶性硅膜中存在的金属元素,除掉由该工序形成的热氧化膜,在除掉热氧化膜区域的表面再次进行热氧化来形成热氧化膜。
(3)本发明提供制造半导体器件的制造方法,其特征是,具有下列工序按要求在非晶硅膜中掺入促进硅结晶化的金属元素,通过第1加热处理,得到使非晶硅膜结晶化的结晶硅膜,在氧化气氛中进行第2次热氧化处理,以便除去或者减少存在结晶硅膜中的金属元素,除掉在该工序中形成的热氧化膜,通过构图形成薄膜晶体管的有源层,通过热氧化,把构成栅绝缘膜的至少一部分的热氧化膜形成在有源层的表面。
(4)本发明提供半导体器件的制造方法,其特征是具有下列工序在非晶硅膜中选择地掺入促进硅结晶化的金属元素,在与通过第1热处理选择地掺入金属元素的区域的膜平行的方向进行结晶生长,在氧化气氛中,通过第2热处理进行结晶生长区域的表面,形成热氧化膜,除掉该热氧化膜,利用除掉热氧化膜的区域,形成半导体器件的有源层。
(5)本发明提供半导体器件,其特征是,有夹在第1和第2氧化膜之间的结晶硅膜,在结晶硅膜中掺有促进硅结晶化的金属元素,在该结晶硅膜中,金属元素在第1和/或第2氧化膜的界面附近具有高的浓度分布。
(6)本发明提供半导体器件,其特征是具有由氧化膜构成底膜和在底膜上形成结晶硅膜,和在结晶硅膜上形成热氧化膜,在结晶硅膜中包含有促进结晶化的金属元素,促进硅结晶化的金属元素在底膜和/或热氧化膜界面附近具有高浓度分布,该热氧化膜构成薄膜晶体管栅绝缘膜的至少一部分。
(7)本发明提供半导体器件的制造方法,其特征是具有下列工序按要求在非晶硅膜中掺入促进硅结晶化的金属元素,通过第1加热处理,获得使非晶硅膜结晶化的结晶硅膜,在含有卤素元素的氧化气氛中进行第2次热处理,除掉或减少存在结晶硅膜中的金属元素,除掉由该工序形成的热氧化膜,在除掉热氧化膜区域的表面上再次进行热氧化,形成热氧化膜。
(8)本发明提供半导体器件的制造方法,其特征是具有下列工序按要求在非晶硅膜中掺入促进硅结晶化的金属元素,通过第1加热处理获得使非晶硅膜结晶化的结晶硅膜,在含有卤素元素的气氛中进行第2热氧化处理,在该结晶硅的表面形成热氧化膜,利用热氧化膜吸收金属元素,除去或减少存在结晶硅膜中的金属元素,除掉由该工序形成的热氧化膜,在除掉热氧化膜区域的表面上再次进行热氧化,以便形成热氧化膜。
(9)本发明提供半导体器件的制造方法,其特征是具有下列工序按要求在非晶硅膜中掺入促进硅结晶化的金属元素,通过第1加热处理获得使非晶硅膜结晶化的结晶硅膜在含卤素的氧化气氛中进行第2热氧化处理,除去或减少存在于结晶硅膜中的金属元素,除去由该工序形成的热氧化膜,通过在图形成薄膜晶体的有源层,把通过热氧化构成栅绝缘膜至少一部分的氧化膜形成在有源层的表面上。
(10)本发明提供半导体器件的制造方法,其特征是具有下列工序在非晶硅膜上选择地掺入促进硅结晶化的金属元素,在与通过第1加热处理选择地掺入金属元素的区域的膜平行的方向进行结晶生长,在含卤素元素的氧化气氛中进行第2加热处理,在进行结晶生长区域的表面形成热氧化膜,除掉热氧化膜,利用除掉热氧化膜的区域,形成半导体器件的有源层。
(11)本发明提供半导体器件,其特征是,具有夹在第1和第2氧化膜之间的结晶硅膜,在该结晶硅膜含有氢和卤素元素,并且包含促进硅结晶化的金属元素,在该结晶硅膜中,该金属元素在第1和/或第2氧化膜的界面附近,具有高浓度分布。
(12)本发明提供半导体器件,其特征是,具有由氧化膜构成的底膜,和在底膜上形成的结晶硅膜,和在结晶硅膜上形成的热氧化膜,在结晶硅膜中包含有促进硅膜结晶的金属元素,氢和卤素元素,促进硅结晶化的金属元素,在底膜和/或热氧化膜的界面附近具有高浓度分布,卤素元素在底膜和/或热氧化膜的界面附近具有高浓度分布,热氧化膜构成薄膜晶体管栅绝级膜的至少一部分。
(13)本发明提供半导体器件的制造方法,其特征是具有下列工序按要求在非晶硅膜中掺入促进硅结晶化的金属元素,通过第1热处理获得使非晶硅膜结晶化的结晶硅膜,对结晶硅膜照射激光或强光,在含有卤素元素的氧化气氛中,进行第2次热处理,以便除掉或者减少存在于结晶硅膜中的金属元素,除掉由该工序形成的热氧化膜,在除掉热氧化膜的区域表面上再次进行热氧化,形成热氧化膜。
(14)本发明提供半导体器件的制造方法,其特征是具有下列工序按要求在非晶硅膜中掺入促进硅结晶化的金属元素,通过第1热处理,获得使非晶硅结晶化的结晶硅膜,对结晶硅膜照射激光或强光,把该结晶硅膜中存在的金属元素扩散到该结晶硅膜中,在含有卤素元素的氧化气氛中进行第2次热处理,使存在于该结晶硅膜中的金属元素被吸收到形成的氧化膜之中,除去由该工序形成的氧化膜,在除去热氧化膜区域的表面上再次进行热氧化,形成热氧化膜。
(15)本发明提供半导体器件的制造方法,其特征是具有下列工序按要求并选择地在中非晶硅膜掺入促进硅结晶化金属元素,对非晶硅膜进行第1热处理,通过按要求和选择地掺入金属元素的区域,在与膜平行的方面进行结晶生长,照射激光或者强光使存在于结晶生长区域中的金属元素进行扩散,在含有卤素元素的氧化气氛中进行第2热处理,使存在于结晶生长区域的金属元素被吸收到形成的热氧化膜中,除掉由该工序形成的热氧化膜,在除去热氧化膜区域的表面上再次进行热氧化,形成热氧化膜。
(16)本发明提供半导体器件的制造方法,其特征是具有下列工序按要求在非晶硅膜中掺入促进硅结晶化的金属元素,通过第1加热处理获得使非晶硅膜结晶化的结晶硅膜,对结晶硅膜进行构图,形成半导体器件的有源层,对该有源层照射激光或者强度,在含有卤素元素的氧化气氛中进行第2次热处理,除掉或者减少存在该有源层中的金属元素,除掉由该工序形成的热氧化膜,在该有源层的表面再次进行热氧化,形成热氧化膜。
(17)本发明提供半导体器件的制造方法,其特征是具有下列工序按要求在非晶硅膜中掺入促进硅结晶化的金属元素,通过加热处理,获得使非晶硅膜结晶化的结晶硅膜,对结晶硅膜进行构图形成半导体器件的有源层,用激光或强光照射有源层,在含有卤素元素的氧化气氛中进行第2加热处理,除掉或者减少存在于有源层中的金属元素,除掉由该工序形成的热氧化膜,在有源层的表面再次进行热氧化,形成热氧化膜,有源层在侧面与底膜形成20°-50°的倾斜角。
(18)本发明提供半导体器件的制造方法,其特征是具有下列工序按要求在非晶硅膜中掺入促进硅结晶化的金属元素,通过第1热处理,获得使非晶硅膜结晶化的结晶硅膜,对结晶硅膜进行激光或强光照射,在氧化气氛中进行第2热处理,除去或者减少存在于结晶硅膜中的金属元素,除掉由该工序形成的热氧化膜,在除掉热氧化膜区域的表面上再次进行热氧化形成氧化膜。
(19)本发明提供制造半导体器件的方法,其特征是具有下列工序按要求在非晶硅膜中掺入促进硅结晶化的金属元素,通过第1加热处理,获得使非晶硅膜结晶化的结晶硅膜,对该结晶硅膜进行激光或强光照射,使存在于该结晶硅膜中的金属元素在结晶硅膜中扩散,在氧化气氛中进行第2次处理,使存在于该结晶硅膜中的金属元素被吸收在形成的热氧化膜中,除掉由该工形成的氧化膜,在除掉热氧化膜区域的表面上再次进行热氧化,形成热氧化膜。
(20)本发明提供制造半导体器件的方法,其特征是具有下列工序按要求和选择地在非晶硅膜中掺入促进硅结晶化的金属元素,对非晶硅膜进行第1热处理,通过按要求和选择地掺入金属元素区域,在与膜平行的方向进行结晶生长,通过照射激光或强光使存在于结晶生长区域的金属元素进行扩散,在氧化气氛中进行第2热处理,使存在于结晶生长区域中的金属元素被吸收在形成的热氧化膜中,除掉由该工序形成的热氧化膜,在除掉该热氧化膜区域的表面上,再次进行热氧化,形成热氧化膜。
(21)本发明提供制造半导体器件的方法,其特征是具有下列工序,按要求在非晶硅膜中掺入促进硅结晶化的金属元素,通过第1热处理获得使非晶硅膜结晶化的结晶硅膜,把结晶硅膜进行构图,形成半导体器件的有源层,用激光或强光照射有源层,在氧化气氛中进行第2次热处理,除掉或减少存在有源层中的金属元素,除掉由该工序形成的热氧化膜,在该有源层的表面再次进行热氧化,形成热氧化膜。
(22)本发明提供制造半导体器件的方法其特征是,按要求在非晶硅膜中掺入促进硅结晶化的金属元素,通过第1热处理,获得使非晶硅膜结晶化的结晶硅膜,把该结晶硅膜构图,形成半导体的有源层,对有源层进行激光或强光照射,在氧化气氛中进行第2次热处理,除掉或减少有源层中的金属元素,除掉由该工序形成的热氧化膜,在有源层的表面再次进行热氧化,形成热氧化膜,该有源层的侧面与底膜之间形成20°-50°的倾斜角。
(23)本发明提供半导体器件的制造方法,其特征是具有下列工序在具有绝缘表面的基片上形成非晶硅膜,按要求在非晶硅膜掺入促进硅结晶化的金属,在750℃-1100℃进行第1加热处理,获得使非晶硅膜结晶化的结晶硅膜,构图结晶硅膜,形成半导体器件的有源层,在包含卤素元素的氧化气氛中进行第2次氧化处理,除掉或减少存在有源层中的金属元素,除掉由该工序形的热氧化膜,除掉热氧化膜后再次进行热氧化形成热氧化膜,第2次热处理的温度比第1次热处理的温度高。
(24)本发明提供制造半导体器件的方法,其特征是具有下列工序在具有绝缘表面的基片上形成非晶硅膜,按要求在非晶硅膜中掺入促进硅结晶化的金属元素,在750℃-1100℃进行第1热处理,获得使非晶硅膜结晶化的结晶硅膜,构图结晶硅膜,形成半导体器件的有源层,在包含有卤素元素的氧化气氛中进行第2次热处理,使存在有源层中的金属元素被吸收到形成的热氧化层中,除掉由该工序形成的热氧化膜,在除掉热氧化膜后再次进行热氧化形成热氧化膜,第2次热处理的温度高于第1次处理的温度。
(25)本发明提供制造半导体器件的方法,其特征是具有下列工序在具有绝缘表面的基片上形成非晶硅膜,按要求和选择地在非晶硅膜中掺入促进硅结晶化的金属元素,在750°-1100℃进行第1加热处理,通过按要求和选择地掺入非晶硅膜的金属元素区域,与膜平行的方向进行结晶生长,进行构图,利用与该膜平行方向进行结晶生长的区域,形成半导体器件的有源层,在包含有卤素元素的氧化气氛中进行第2次热处理,使存在于有源层中的金属元素被吸收在形成的热氧化层中,除掉由该工序形成的热氧化膜,在除掉热氧化膜后再次进行热氧化形成热氧化膜,第2次热处理的温度比第1次热处理的温度高。
(26)本发明提供半导体器件的制造方法,其特征是具有下列工序形成非晶硅膜,在非晶硅膜表面保持和促进硅结晶化的金属元素进行接触,进行第1热处理获得使非晶硅膜结晶化的结晶硅膜,在包含氧,氢氟的气氛中在500℃-700℃下进行第2热处理,在该结晶硅的表面形成热氧化膜,除掉热氧化膜。
(27)本发明提供半导体器件的制造方法,其特征是具有下列工序形成非晶硅膜,在非晶硅膜表面保持和促进硅结晶化的金属接触,进行第1热处理获得使非晶硅膜结晶化的结晶硅膜,在含有氧、氢、氟、氯气氛中,在500℃-700℃进行第2热处理,在结晶硅的表面形成热氧化膜,除掉热氧化膜。
(28)本发明提供制造半导体器件的方法,其特征是具有下列工序形成非晶硅膜,在非晶硅膜表面保持和促进硅结晶化的金属接触,进行热处理获得使非晶硅膜结晶化的结晶硅膜,在包含氟和/或氯的气氛中在前序结晶硅膜的表面形成湿氧氧化膜,除掉该氧化膜。
(29)本发明提供半导体器件,是具有结晶硅膜的半导体器件,其特征是结晶硅膜上包含1×1016cm-3~5×1018cm-3的促进硅结晶化的金属元素,包含1×1015cm-3~1×1020cm-3的氟原子浓度1×1017cm-3~1×1021cm-3氢原子浓度。浓度单位“…cm-3”是指每立方厘米的原子数(原子/cm3),这与说明书中所述的相同。
(30)本发明提供半导体器件制造方法,其特征是具有下列工序形成非晶硅膜,形成使非晶硅膜结晶化的结晶硅膜,在添加氟化物的氧化气氛中加热,在结晶硅膜表面生长热氧化膜,除掉结晶硅膜上的热氧化膜,在结晶硅膜表面淀积绝缘膜。
(31)本发明涉及半导体器件的制造方法,其特征是具有下列工序形成非晶硅膜,照射激光使非晶硅膜膜结晶化,形成结晶硅膜,在添加氟化物的氧化气氛中进行加热,在结晶硅膜的表面生长热氧化膜,除掉结晶硅膜上的热氧化膜,在结晶硅膜的表面淀积绝缘膜。
(32)本发明提供半导体器件的制造方法,涉及在具有绝缘表面的基片上制造薄膜晶体管的方法,其特征是形成非晶硅膜,使非晶硅膜结晶化,形成结晶硅膜,在添加氧化物气体的氧化气氛中进行加热,在结晶硅膜的表面生长热氧化膜,除掉结晶硅膜上的热氧化膜,整形结晶硅膜,形成薄膜晶体管的有源层,在有源层的表面淀积绝缘膜,至少在沟道区的表面形成栅绝缘膜,在栅绝缘膜的表面形成栅电极,以栅电极作为掩模向有源层注入导电杂质,自对准地形成源和漏。
(33)本发明提供半导体器件的制造方法,涉及在具有绝缘表面的基片上制造薄膜晶体管的方法,其特征是具有下列工序形成非晶硅膜,形成使非晶硅膜结晶化的结晶硅膜,向结晶硅膜照射激光,在添加氟化物气体的氧化气氛中在结晶硅膜的表面生长热氧化膜,除掉结晶硅膜上的热氧化膜,整形结晶硅膜,形成薄膜晶体管的有源层,在有源层的表面淀积绝缘膜,至少在沟道区表面形成栅绝缘膜,在栅绝缘膜的表面形成栅电极,以栅电极作为掩模,向有源层注入导电杂质,自对准地形成源和漏。


图1是表示按本发明得到的结晶硅膜微细结构图(用光学显微镜得到的照片450倍)。
图2是表示按照本发明得到的结晶性硅膜微细结构图(用光学显微镜得到的照片、450倍)。
图3是表示按照本发明得到的结晶硅膜的微细结构图(TEM50000倍)。
图4是表示按照本发明得到的结晶硅膜的微细结构图(TEM250000倍)。
图5是表示按照本发明制造结晶硅膜工序典型方案中一个例子的简图。
图6是表示利用本发明的结晶硅膜制造半导体器件工序的典型方案中的一个例子。
图7是根据观察关于本发明的结晶硅膜的多个用显微镜拍摄的照片,用图解表示确定结晶生长的模式图。
图8是用图解说明半导体器件亚阈值特性(S值)等的简图。
图9是表示利用本发明的结晶硅膜的半导体器件的亚阈值特性(S值)等诸特性的简图。
图10是表示利用本发明结晶硅膜的半导体器件亚阈值特性(S值)等诸特性的简图。
图11是表示利用本发明结晶硅膜的半导体器件亚阈值特性(S值)等的诸特性的简图。
图12是用图解说明由N沟道型TFT和P沟道型TFT组合电路组成的环型振荡器特性的模式图。
图13是表示关于利用本发明结晶硅膜的N沟道型TFT和P沟道型TFT组合电路组成的环型振荡器的示波器(振荡波形)的简图。
图14是表示用本发明结晶硅膜制造的平面型薄膜晶体管的栅电流值的计测值的简图。
图15是表示用本发明结晶硅膜制造的平面型薄膜晶体管的栅电流值的计测值的简图。
图16是表示把非晶硅膜掺镍Ni结晶化后,在形成热氧化膜时开始沿膜断面方向计测Ni元素浓度分布的图。
图17是表示把非晶硅膜掺Ni结晶化后,在形成热氧化膜时开始沿膜断面方向计测Ni元素浓度分布的图。
图18是表示把非晶硅膜掺Ni结晶化后,在形成热氧化膜时开始沿膜面方向计测Cl浓度分布的图。
图19是表示把非晶硅膜掺Ni结晶化后,在形成热氧化膜时开始沿断面方向计测Ni元素浓度分布的图。
图20是表示把非晶硅膜掺Ni结晶化后,在形成热氧化膜时开始沿断面方向计测Ni元素浓度分布的图。
图21是表示把非晶硅膜掺Ni结晶化后,在形成热氧化膜时开始沿断面方向计测Cl的浓度分布的图。
图22是表示关于实施例4的制造工序图。
图23是表示关于实施例9的制造工序图。
图24是表示关于实施例10的制造工序图。
图25是表示关于实施例12的制造工序图。
图26是表示关于实施例13的制造工序图。
图27是表示关于实施例16的制造工序图。
图28是表示关于实施例21的制造工序图。
图29是表示关于实施例22的制造工序图。
图30是表示关于实施例24的制造工序图。
图31是表示关于实施例25的制造工序图。
图32是表示关于实施例28的制造工序图。
图33是表示关于实施例30的制造工序图。
图34是表示关于实施例31的制造工序图。
图35是表示关于实施例33的制造工序图。
图36是表示关于实施例34的制造工序图。
图37是表示关于实施例37的制造工序图。
图38是用图解说明向结晶硅膜照射激光时现象的图。
图39是表示关于实施例39的制造工序图。
图40是表示关于实施例41的制造工序图。
图41是表示关于实施例42的制造工序图。
图42是表示关于实施例44的制造工序图。
图43是表示关于实施例45的制造工序图。
图44是表示关于实施例48的制造工序图。
图45是表示关于实施例50的制造工序图。
图46是表示关于实施例52的制造工序图。
图47是表示关于实施例53的制造工序图。
图48是表示关于实施例54的制造工序图。
图49是表示关于实施例55的制造工序图。
图50是表示关于实施例58的制造工序图。
图51是表示关于实施例60的制造工序图。
图52是表示关于实施例61的制造工序图。
图53是表示关于实施例62的制造工序图。
图54是表示关于实施例63的制造工序图。
图55是表示关于实施例66的制造工序图。
图56是表示关于实施例67的制造工序图。
图57是表示关于实施例67的制造工序图。
图58是表示关于实施例68的制造工序图。
图59是表示关于实施例68的制造工序图。
图60是表示关于实施例69的制造工序图。
图61是表示关于实施例69的制造工序图。
图62是表示本发明半导体器件各种应用例中的几个例的图。
图63是表示本发明半导体器件应用例中的几个例的图。
本发明典型的状态,是在预先形成的非晶硅膜表面掺入促进硅结晶化的金属元素,利用金属元素形成结晶硅膜。其次,利用在结晶硅膜表面形成热氧化膜,使金属元素转移以至于吸附到热氧化膜中,使结晶硅膜中的金属元素浓度降低或除掉结晶硅膜中的金属元素。
利用等离子CVD方法和减压CVD方法以及其它合适的方法,能形成上述的非晶硅膜。非晶硅膜形成在适当的固体面上,但是,在构成半导体器件的情况下,形成在基片上。对于基片不特别限制,除使用玻璃基片和石英基片对使用陶瓷基片以及其它基片,非晶硅膜形成在这些基片的表面上,例如,形成在氧化硅膜等膜上,但是,对于本说明书中的基片,是包括这些情况的意思。
其次,在上述预形成非晶硅膜的表面,掺入促进硅结晶化的金属元素。促进硅结晶的金属元素,选用铁(Fe),镍(Ni),钴(Co),钌(Ru),铑(Rh),钯(Pd),锇(Os),铱(Ir),白金(Pt),铜(Cu),金(Au)中的一种或多种金属元素。关于这些金属元素,在本说明书中所述的无论哪个发明,都是使用促进硅结晶化的金属元素,在本说明书中对于所包含的这些金属元素,都称为适合的“以镍代表的促进硅结晶化的金属元素”掺入这些金属元素的位置是全部非晶硅膜(1)整个非晶硅膜面,(2)非晶硅膜面适当位置的槽形面(这样的形状,最好设置在非晶硅膜面槽状开口处),(3)非晶硅膜面的端部(例如,如果是矩形非晶硅膜面,是在其一方端部,二方端部,三方端部,四方端部,如果是圆形非晶硅膜面,是在其周围部分等),(4)非晶硅膜面中央部分,(5)点状(即,在非晶硅膜面有预定间隔的点状)等,但不特别限制,最好以上述(1)-(2)的形状掺入。
对于在上述(2)槽状面掺入的情况,不特别限定槽状开口部分的尺寸,例如其掺入的方法,在涂覆下述金属盐溶液的情况,恰当地根据溶液的沾润性和流动性,设置其宽度为例如20μm以上。纵向长度任意确定,例如可取几10μm-30μm的长度。还可以把金属元素掺入非晶硅膜的背面,可在其表面和背面两面掺入金属元素。
作为把这些金属元素掺入非晶硅膜的方法,如果采用使有关金属元素存在于非晶硅膜表面或内部的方法,不用特别限制,例如,可使用溅射方法,CVD法,等离子处理法(包含等离子CVD方法),吸附法,涂覆金属盐溶液的方法。其中利用溶液的方法简便、容易调整金属元素的浓度。可能利用各种盐作为金属盐,除了以水作为溶剂以外,可利用醇类、醛类、醚类、其它的有机溶剂、或者含有水的混合溶液,不限于完全溶解这些金属盐的溶液,可以使金属盐的一部分或全部以悬浊状态存在于溶液之中。
关于金属的盐类,如果能得到上述溶液的盐或悬浊液的盐,就都能使用无机盐或有机盐。例如,作为铁盐的有溴化1铁,溴化2铁,醋酸2铁,氯化1铁,氧氯二铁,硝酸2铁,磷酸1铁,磷酸2铁等,作为钴盐有溴化钴,醋酸钴,氧化钴,氟化钴,硝酸钴等。
作为镍盐可举出溴化镍,醋酸镍,草酸镍,碳酸镍,氯化镍,碘化镍,硝酸镍,硫酸镍,甲酸镍,氧化镍,氢氧化镍,乙酰醋酸镍,4-环乙基酷酸镍,2-乙基乙烷酸镍等。还有,作为钌盐的例子有氯化钌等,作为铑盐的例子有氯化铑等,作为钯盐的例子有氯化钯等,作为锇盐的例子有氯化锇等,作铱盐的例子有3氯化铱和4氯化铱等,作为白金盐的例子有氯化2白金,作为铜盐的例子有醋酸2铜,氯化2铜,硝酸2铜,作为金盐的例子有3氯化金,氯化金等。
把以上的金属元素掺入非晶硅膜后,利用有关金属元素形成结晶硅膜。通过热处理(热结晶化固态结晶化)、激光或者紫外线、红外线等强光照射进行结晶化,最好采用热处理。在热处理的情况,其后最好进行激光照射或者强光照射。在包含氢或氧的加热气氛进行该结晶化,但是最好利用氮或氩等的惰性气氛。在本说明书中把其加热处理或者加热处理温度适宜称为“第1热处理”或第1热处理温度。
上述第1热处理能够在450℃-1100℃的范围进行,最好能够在约550℃-1050℃范围进行。甚至在400℃进行结晶化,但由于此时结晶化速度慢,时间长,所以结晶化的温度要在450℃以上,最好在550℃以上。在利用石英基片等耐热的基片作为基片时,其温度优选为700℃以上,最好为750℃以上。如果比其加热处理温度高,得到优良的结晶,此外能提高结晶化速度。
作为基片,例如利用形变点为667℃的玻璃基片情况下,把与其形变点有关的第1加热温度限制在600-650℃,如果利用较高耐热性的基片,能够采用其以上的温度。在石英基片的情况,能够适用到约1100℃,最好用于1050℃以下。如果超过1050℃,由石英形成的夹具变形了,成了装置的负担。这意味着最好用于980℃以下,但是,在利用较好耐热性夹具的情况下,能够在1100℃进行实施。并且,在其加热处理后,能够进行照射激光或者照射红外线和紫外线等强光。
其次,在其结晶硅膜的表面形成热氧化膜。在本发明,由此把有关金属元素移到该热氧化膜中或者吸收到热氧化膜中,则能够降低或者除掉结晶硅膜中金属元素。在形成热氧化膜时,利用氧化气氛,但是作为优选的气氛,利用(1)氧气氛,(2)包含氧的气氛,(3)包含在形成热氧化膜的温度能放出氧的化合物的气氛(4)包含卤素的气氛,(5)包含①-③中的氧和卤的气氛。
其热氧化膜的形成,与前述热结晶所用的温度范围相同,即,能够在450℃-1100℃范围进行,理想的是约700-1050℃,最好在约800-1050℃进行。关于其温度,能利用与结晶化时采用的温度(第1加热处理温度)相同的温度,但最好采用比热结晶化时采用的温度高的温度。由此形成热氧化膜,同时,与采用和第1加热处理温度相同的温度相比,能够更促进热结晶。
这样,在结晶硅膜的表面形成热氧化膜,此时通过氧化气氛中的氧作用,卤素的作用,或者氧和卤素的作用,在氧化膜中吸收有关金属元素,结果降低结晶硅膜中的金属元素浓度或者除去金属元素。并且,由于形成热氧化膜,结晶硅膜的结晶性得到改善。形成热氧化膜的热处理或温度,在本说明书中适宜称为“第2热处理”或“第2热处理温度”。
其次,除掉吸收该金属元素的该热氧化膜。作为除掉热氧化膜的方法,如果是能够除掉该热氧化膜的方法不特别地加以限制,例如,能利用缓冲氢氟酸和其它氢氟酸腐蚀剂。这样一来,获得了具有高结晶性的,除掉金属元素或者降低该金属元素浓度的结晶硅膜。这样的结晶硅膜,作为半导体器件的各种元件具有优良的特性,特别是作为有源层具有非常优良的特性。
图1-图4是根据本发明得到的结晶硅膜数例显微镜照片。图1和图2是由光学显微镜放大450倍的放大照片,图3是由透射电子显微镜(TEM)放大50000倍的(5万倍)放大照片,图4是由相同透射电子显微镜放大250000倍(25万倍)的放大照片。
其中图1是把镍元素掺入长方形非晶硅膜一端用作结晶化,得到的结晶硅膜图,图2是把镍元素掺入整个非晶硅膜用作结晶得到的结晶硅膜图,从图1所示的照片可见,结晶从一端向另一端平行地或大致平行地进行生长。在把镍元素用于非晶硅膜的整个表面进行结晶生长的情况,由图2所示的照片可见星状的浓淡状况,看出结晶是以多数点为中心,放射状地进行生长。
图3-图4是透射电子显微镜的放大照片,图3-图4所示的结晶硅膜,概略地由以下(A)-(G)工序得到(这些工序与后面所述的实施例21的工序相类似)。图5以图解的方式表示(A)-(G)的工序。
(A)洗净具有非常平滑平面的石英基片,利用减压热CVD方法(LPCVD方法),在其表面形成500A厚的非晶硅膜。(B由利用TEOS(四乙基原硅酸盐)的CVD方法,形成700A厚的氧化硅膜,把其构图,形成开口。由此,形成宽为30μm,长为3cm的开口。在开口的底部露出非晶硅膜。
(C)如图5(C)所示,通过旋涂100ppm浓度(按重量换算)醋酸镍水溶液来涂布镍。(D)把醋酸镍水溶液在附着状态氮气氛中,600℃下(相当于第1加热处理温度),热处理8小时。(E)除掉氧化硅膜的掩模,获得具有横向生长的结晶硅膜。
(F)在按体积比含3%,HCl的氧化气氛中(常压)、温度为950℃(相当于第2热处理温度)、热处理20分。结果形成200厚的氧化膜,则硅膜的厚度变成400。热氧化膜形成时,减少结晶硅膜的厚度,氧经膜的形成消耗未结晶状态的或者完全没结晶化的硅,改善结晶性和钝化结晶粒边界。接着用缓冲氢氟酸除掉在(G)和(F)工序形成的氧化膜。
由图3和图4可知,关于本发明的结晶硅膜中的结晶,具有下述①-③的特征。(1)结晶格子的结构在大致特定的方向连续地连接。②生长成细的棒状结晶或者细的扁平棒状结晶。(3)生长成许多细的棒状结晶或者细的扁平棒状结晶,并且,那些结晶相互有一定间隔地平行地或大致平行地生长。由图4照片可见,例如,从左下到右上倾斜的方向,有宽度为0.15μm的细棒状结晶延伸,在宽方向两端有明确的边界(结晶粒边界)。由图3和图4的照片,可见线状的浓度差别,各棒状结晶间的结晶面方向不同。
关于这一点,对后述各实施例得到的结晶硅膜,通过光学显微镜和透射电子显微镜分别观察,观察到了结晶直径(宽度)不同,但都具有①-③的特征[各结晶棒的直径(宽度)为0.1-1μm,有某种程度的差别]。
为此,对本发明的结晶硅膜中的结晶进行宏观和微观的观察,观察到平行地或大致平行地生长,具有上述①-③的特征。然后如果改变其看法,那些结晶的每一个都是单晶,把各结晶作为整体来看,是一种多结晶(多晶)。
图7(a)和图7(b)是涉及按照本发明得到的结晶硅膜,根据用上述图1-图4所代表的多个显微镜照片,观察结果设想的其结晶生长状态图。首先图7(a)是作为一个例子表示在非晶硅膜表面的一端存在助长硅结晶化的金属元素进行结晶生长的情况。此时,硅结晶以线状的平行或大致平行地进行生长,从掺入金属区域开始的晶格连续地互相连接。
图7(b)是表示使促进硅结晶化的金属元素存在于非晶硅膜的整个表面进行结晶生长的图。此时,硅结晶从非晶硅膜整个表面无数的点中心放射状地生长,放射状的各结晶以棒状进行生长,使各晶格连续地相互连接。如果观察从各点中心延伸的相邻放射状结晶棒的位置关系,可看到各结晶棒相互平行或大致平行地进行生长(从整体上看呈放射状,即逐渐扩展,但观察结晶方向的一部分,则各结晶棒相互平行或大致相互平行)。
可是,例如要想TFT(一般MO3型晶体管是相同的,其中以TFT作为例子,把其设置在中心)的工作速度高把沟道长度作短是有效的。但是如果沟道长度小于1μm,则使短沟道效果不适合。具体地说,发生亚阈值特性恶化,阈值减少的问题。
其中,阈值特性(称为S值),如图8用图解所示,意味着TFT开启时上升特性。具体地说,如果急速地上升,则阈值特性良好,TFT能高速地工作。另一方面,阈值特性不好的TFT上升曲线倾斜小(曲线平直),则不适合高速工作。
对于因短沟道效应使阈值特性变坏,根据现有技术(现有技术知识或过去理论),说明如下。沟道变短,意味着源与漏区域之间距离缩短。一般,沟道区是本征(I型半导体)区,源区和漏区是N型或P型半导体区。例如,如果本征半导体与N型半导体相互连接,N型半导体的性质要影响本征半导体的内部,由pn结模型来理解这种情况。
在TFT的情况,上述的影响涉及到沟道的内部。即N型或P型的影响从源区,漏区达到沟道内部。这种影响,即该影响涉及的距离不改变沟道的缩短。如果沟道长度不断地缩短下去,与沟道长度尺寸相关的上述源区、漏区对沟道的影响不能忽视。极端的情况,由源漏区域对沟道内部影响的距离可能存在比沟道长度还要长的情况。这样的状态,在由栅极旋加电场,控制沟道导电类型的变化,使源漏区之间电导率变化的TFT(与MOS型晶体管相同)的动作产生障碍。其结果使阈值特性发生恶化。
因而,根据上述的技术认识(现有的技术乃至过去的理论),使用本发明得到的结晶硅膜的TFT,当然会出现短沟道效应。但是,使用本发明得到的结晶硅膜的TFT,如果1μm以下的沟道长度,不出现短沟道效应,则不发生上述的障碍和恶化。
由本发明得到的具有前述①-③特征的结晶硅膜的结晶,即(1)晶格构造在大致特定方向连续地连接,(2)生长成细的棒状结晶或者细的扁平棒状结晶,或(3)生长成许多细的棒状结晶或者细的扁平棒状结晶,并且,这些结晶间隔地平行生长或间隔地大致平行地生长,在结晶中不仅没看到结晶的短沟道效应,具有现有技术没有说明的非常良好的阈值特性,而进行适合的高速动作。
表1和表2及图9表示一个例子。其中使用的半导体器件,在接续前述图5所示的工序,大体利用下述的(H)-(L)工序制造。这些工序如图6所示。图6中的(G)工序相当于图5中的(G)工序。把由(H),(A)-(F)工序形成的结晶硅膜构图,形成薄膜晶体管的有源层。在(I)工序,用SiH4+N2O的混合气体作为成膜气体,由等离子CVD方法形成氧化膜作为GI膜(栅绝缘膜)。
(J)工序,在按体积含3%HCl氧气氛中,在950℃热处理28分。结果,形成300热氧化膜,250的结晶硅膜。形成热氧化膜时,由于结晶硅膜厚度减少,未结晶状态或者完全没结晶化的硅,在热氧化膜形成时被损耗,结晶性改善,结晶粒边界被钝化。其中,形成的热氧化膜,由于在GI膜中进入活化氧分子,则形成有源层表面。
(K)工序,通过溅射方法,形成4000厚的铝膜,并且使该铝膜按重量含有0.18%的钪。再在铝膜表面形成约100的阳极氧化膜。(L)设置光致抗蚀剂掩模,对铝模构图,制造栅电极的图形。
表1和表2分别是关于P型TFT和N型TFT的实测值。表1和表2中测定点1-20意味着在按上述情况制造的一批结晶硅膜表面各位置制造的TFT。由表1可知,在N沟型TFT构成情况,其中尤其是S值(S-值)的数值非常小,大约80mv/每10个左右,从整体看70-90mv/10个范围内,在第13测定点,S值为72.53mv/10个,表示小的数值。
S值(亚阈值系数)定义为图8所示的ID-VG曲线上升部分最大斜率的倒数,换句话说,为了使漏电流增加一个数量级,就要增加必要的电压。即,S值越小,则上升部分的斜率变得陡峭,开关元件响应性优良,能够高速动作。
由理论推导的S值的理想值为60mv/decade,从前利用单晶片制得的晶体管,获得其近似值,过去由普通的多晶硅制得的TFT,S值为300-500mv/dacade。由此,由本发明的结晶硅膜制得的TFT上,称为80mv/decade前后的S值,这是非常优良的特性,是令人惊异的特性。
表2是关于由本发明结晶硅膜制成P沟道TFT情况的实测值。这种情况的S值(S-值)与N沟道TFT的情况相同,此时,S值非常小,大约80mv/decade,作为全体S值为70-100mv/decade特别测定点S值为72.41mv/decade,表示小的数值。这些值意味着只在相反方向见到加(+),减(-)数值,与上述的N沟型TFT情况相同。
此外,表1-表2中各特性(符号)的意思如下所述。由表1-表2可知,表示都可充分胜任的数值。Iom是TFT处于开态时的漏电流,VD=1V(1伏)用Ion-1表示(在Ion-1中的横“-”,通常撰写在表1中文字的下部,把其写在文字中心。关于这一点,对于具有横“-”的各符号是相同的,VD=5V时,用Ion-2表示。Ion越大的TFT,越能在短时间内流出多的电流。
所谓Ioff是TFT处于关闭状态时流过的漏电流,VD=1V(1伏)时表示Ioff-1,VD=5V时,表示为Ioff-2。如果OFF时流出电流,只消耗部分电力,所以使Ioff小极为重要,如果Ioff大,例如,发生使保持液晶的电荷由Ioff流出的问题。
对于Ion/Ioff-1、Ion/Ioff-2,例如,所谓Ion/Ioff-1,是选取Ion-1与Ioff-1之比,仅表示开启电流和关闭电流有多少位数不同。Ion/Ioff之比越大,开关特性越优良,这对提高配电盘的对比度是重要的。
Vth是一般称为阈值电压的参数,例如,定义为把TFT转换到开启状态时的电压。以VD=5时作为研究对象,采用ID平方根外插法,得到表中的值。如果Vth大,必须在栅电极上施加高电压,则增加驱动电压,增加消耗电力。
μFE是场效应迁移率,称为迁移率。μFE是表示容易迁移载流子的参数,μFE大的TFT适于高速工作。由表1和表2可知,这些特性表示可充分耐用的数值。
图9(a)和图9(b)是从上述实例数据选取代表值,由实测数据用曲线表示ID-VG特性的曲线图。其中图9(a)表示N沟道TFT的情况,图9(b)表示P沟道TFT的情况,都是VD=1V(1伏)的情况。图9(a)-图9(b)的横轴表示栅电压(V),纵轴表示漏电流,纵轴的刻度为“1E-13”到“1E-01”即1×1013到1×10-1A(安培)。
对于图9(a)的N沟道型TFT的情况,ID-VG曲线上升部分的斜率,即线性部分曲线,呈现出非常陡峭的形状。由于照原样呈现出对应于前述S值小的特性,其变成完全开启状态的时间,非常短,则开关元件响应性优良,可高速工作。图9(a)中,在栅电压为-6~0.5V范围是对应于前述表1中Ioff的部分,在OFF状态时流动漏电流非常小,由此可知具有优良特性。
在图9(b)中,在P沟道型TFT情况,线性部分曲线极为陡峭,在OFF状态流过的漏电流极小,与上述N沟道型TFT情况一样,显示出优良的特性。这些技术意味着,和N沟道型TFT情况相比,只是改变正(+)、负(-)符号。
表3-表4和图10表示,在向非晶硅膜涂布醋酸镍盐溶液后进行结晶化时,与上述情况相比,以比第2加热处理温度低的温度加热(700℃),并且进行激光照射来制造结晶硅膜。其中的结晶硅膜,如下述(1)-(3)所述,按照以后叙述的实施例28的制造工序进行制造,其中所用的半导体器件,用与前述(H)-(L)相同的工序进行制造。
即,(1)利用石英基片作为基片,用等离子CVD方法在石英基片的表面制造非晶硅膜,(2)把100ppm浓度的醋酸镍盐水溶液涂布在非晶硅膜的整个表面(结晶生长的方向是与膜同垂直的方向,即在纵向方向生长),(3)把其在氮气氛中在600℃加热处理4小时,除使第2加热温度达700℃外、照射激光(照射时不加热基片)的其它工序与实施例28的情况相同。
由表3和表4可知,和前述表1和表2的数据相比,有某种程度的差异,但这种情况,包括S值,表示出优良特性,由图10(a)和图10(b)可知,ID-VG曲线的上升部分的斜率,即线性区域曲线和图9(a)-图9(b)相比,有某种程度的平缓,尽管如此,还是显示出相当陡峭线性部分。
图11(a)是关于N沟道型TFT的图,把图9(a)和图10(a)所示的曲线汇总,用图解表示的曲线。其中,用图11(a)中符号K表示的曲线相当于图9(a)中的曲线,用符号T表示的曲线相当于图10(a)中的曲线。由图11(a)可知,线性部分的斜率都是陡峭的,K曲线比T曲线更陡峭,其对应于线性部分更小的S值。
在饱和部分的开启电流[图11(a)中,从近似0.5V栅电压处向右的区域Ion],K曲线比T曲线的电流大。截止区域[图11(a)中,从近似-0.3V栅电压向左的区域Ioff]电流,K曲线的情况比T曲线小。
图11(b)是表示使用非晶质(非晶)硅的TFT的代表特性,这被认为是现在使用非晶硅的TFT的理想特性。
把图11(b)和图11(a)相互对比,对于图11(b)曲线在曲线K的情况,线性部分的曲线(S值),在截止区域的电流值有很大差异,在曲线T的情况,对于图11(b)的曲线,在截止区域的电流值大致相同或稍小,线性部分的曲线(S值)特别陡峭,显示出优良的特性。
表1-表2和图9是表示利用比表3和表4及图10所示情况的第2加热温度(700℃)高的第2加热温度(950℃),制造结晶硅膜的情况。表1-表2和图9的情况表示,和表3-表4及图10的情况相比,得到包含S值在内的更优良的特性。然而,按照上述情况,在表3-表4及图10的情况,和使用过去非晶硅膜中最优良的非晶硅膜制造的TFT相比,显示出相当优良的有效特性。
图13(a)-(b)表示,由具有上述图9所示特性的N沟道型TFT和P沟道型TFT组合的电路构成9级环形振荡器,使其工作得到的振荡波形(振荡波形)。这种电路使N沟道型TFT和P沟道型TFT同时使其互补动作,一个TFT输出电荷情况下,另一个TFT输入电荷。
图12是说明图13用的概略图,但作为整体看图12的情况,振荡波形的十侧波形主要关于N沟道型的工作,一侧主要关于P沟道型的工作。因而,例如,在152.0MHz或在252.9MHz的频率进行振荡的情况,其振荡波形十侧或一侧如果保持对称,在该频率,N沟道型TFT和P沟道型TFT对称地工作,成为以同样的特性正常地工作。
因此,所看到的图13(a)和图13(b)的振荡波形,其是纯正弦波形,并且线性部分没有畸变,上下左右对称。这样,按照本发明的结晶硅膜,把其用N沟道型和P沟道型情况,都具有优良的特性,并且两者之间,在实质上、特性上没有差别。
可说明以上现象和特性的模型如下所述。首先如图3和图4所示的电子显微镜照片,由本发明获得的结晶硅膜成为构成TFT的硅半导体膜,如上所述,在特定方向的结晶成为有连续性的构造,由电子显微镜观察许多样品,认为向特定方向的结晶构造具有连续性。
根据同样上述的观察结果,认为上述状态是在向特定方向有一定间隔的单晶连续状态。当然理解容易沿晶格构造连续方向移动载流子。即,利用本发明获得的结晶硅膜制成的TFT。集中许多细长沟道构成沟道区域。
其中,把微小的沟道和沟道分隔开,通过图3和图4所示的电子显微镜照片观察,有线状的结晶粒边界,但没有看到特别杂质偏析的状态。
该结晶粒边界,是电气活性度低的惰性晶粒边界,具有不存在或者几乎不存在深间隙能级的构造。然而,可认为由不均性和非连续性导致其能级比其它区域的能级高。因而,认为有把载流子移动限制在结晶构造连续的方向的功能。这样一来,如果形成微小的沟道,由影响这微小沟道内部的源区及漏区所影响的浸透距离、相应于其狭小区域,相应地变小。
上述电气的影响,可解释为,例如为使得从在无障碍物场所的电磁波扩大方向类推。理想的是通过2维的或3维等方向性进一步扩大类推。如果那样考虑,由本发明的结晶硅膜制造的TFT,为了实现形成多数微小宽度狭小沟道的状态,抑制由涉及每个沟道的源区及漏区对沟道的影响,这整体地抑制短沟道效应。
如图14和图15所示,对于满足本发明经过多次研究试验,利用促进硅膜结晶化的金属元素形成结晶硅膜,采用降低形成结晶硅膜中该金属元素浓度的结晶硅膜,发明者们由此试制成平面型薄膜晶体管,上述附图表示计测该晶体管栅电流的计测值。图14和图15不同是由于形成栅绝缘膜的方法不同,或者采用热氧化方法、或者采用等离子CVD方法。
图14是表示利用热氧化膜形成栅绝缘膜情况的计测值的简图,图15是表示利用等离子CVD方法形成栅绝缘膜情况的计测值的简图。在图14及图15,横轴表示栅电流,纵轴表示取样数。其中采用石英基片作为基片。在非晶硅的表面保持和镍接触,在640℃加热4小时,利用这样的结晶化方法,形成有源层。在950℃的氧气氛中形成热氧化膜。
从图14可知,通过取样,栅电流值大大分散。这表示栅绝缘膜质分散。如图15所示,用等离子CVD方法形成的栅绝缘膜制造的薄膜晶体管,栅电流分散少,其数值也极小。图14和图15所示的计测值不同。由以下的理由进行说明。
而且由热氧化膜再形成栅绝缘膜的取样,在热氧化膜形成时,从有源层中吸入镍元素。结果在热氧化膜中存在阻碍其绝缘性的镍元素。由于镍元素的存在,则增加栅绝缘膜中的漏电流,使其值变成分散数值。
这样,通过SIMS(二次离子分析方法),得到图14和图15计测值的取样,证实了计测栅绝缘膜中的镍浓度。即用热氧化法形成的栅绝缘膜中计测到1017cm-3多以上的镍浓度、用等离子CVD方法形成的栅绝缘膜中,确认镍元素浓度为1016cm-3多以下。在本说明书中记载的杂质浓度,把用SIMS(2次离子分析方法)计测的计测值,定义为最小值。
通过实施本发明,经过多次实验研究确认其特性和效果之后,上述情况是本发明者们得到见识的数例情况,本发明是以这样的见识为根据的,而且,上述事实是本发明的各种方案(形态)共同的事实。
不论是非晶硅膜,还是结晶硅膜,对于由硅膜形成的薄膜晶体管(TFT)制成的半导体器件,上述金属元素通常是有害物质,为此有必要尽可能把金属元素从硅膜中除掉。按照本发明,对于促进这些硅膜结晶化的金属元素,在用于形成结晶硅膜之后,能够非常有效地除掉或者减少。
按照本发明,在利用促进硅结晶化的金属元素得到的结晶硅膜表面。形成热氧化膜,该热氧化膜吸收金属元素,结果降低结晶硅膜中的该金属元素浓度或者除去该金属元素。本发明由此能够得到具有优良结晶特性的半导体器件。把前述①-⑥的本发明主要方案叙述如下。
在(1)-(2)的本发明,首先形成非晶硅膜。其次,使该非晶硅膜通过以镍为代表的促进硅结晶化金属元素的作用,获得结晶化的结晶性硅膜,再加热处理使其结晶化。加热处理后的状态,在结晶硅膜中包含按要求掺入的相当高浓度的金属元素。
把上述状态的结晶硅膜在氧化气氛中进行热处理,在结晶硅膜的表面形成热氧化膜。此时,由于氧化气氛中氧的作用,在热氧化膜中吸收该金属元素,则降低结晶硅膜中该金属元素的浓度或者除掉该金属元素。随后,除掉吸收该金属元素的热氧化膜。
通过这些处理,具有高结晶性,并且,得到除掉该金属元素的结晶硅膜或者降低该金属元素浓度的结晶硅膜。例如利用缓冲氢氟酸,其它氢氟酸腐蚀剂,能够除掉上述的热氧化膜。关于这种氧化膜的除去处理,与下述各发明的氧化膜除去处理是相同的。
关于(3)的发明,接着上述工序,进行构图,形成薄膜晶体管的有源层。由除掉上述金属元素的结晶硅膜或者降低该金属元素浓度的结晶硅膜构成有源层。其次,通过热氧化在有源层的表面形成构成栅绝缘膜至少一部分的热氧化膜,由该热氧化膜构成半导体器件。
关于(4)的发明,首先形成非晶硅膜,然后在非晶硅膜上选择地掺入促进硅结晶化的金属元素。作为选择地掺入金属元素的形态,如果是在非晶硅膜中在与硅面平行的方向得到的使硅结晶化的形态,则(a)掺入非晶硅膜的一端部,(b)成间隔地掺入非晶硅膜的一端部,(c)按间隔成点状地掺入整个非晶硅膜面,不特别的限制,但最好采用前述(1)-(5)形态中的(2)形态,即从膜面适当位置的槽状表面掺入。以后,通过第1加热处理,在与选择地掺入该金属元素区域平行的方向进行结晶生长。
其次,在氧化气氛中进行第2加热处理,在进行结晶生长区域的表面形成热氧化膜。此时通过氧化气氛中的氧化作用,在热氧化膜中吸收该金属元素,降低结晶硅膜中该金属元素的浓度或者除掉该金属元素。除掉热氧化膜,并且在除掉热氧化膜的区域形成半导体的有源层。
在这些形态中的任一形态,和第1加热处理相比,第2加热处理的温度要高是令人满意的,在除掉热氧化膜以后,把其在含有氧和氢的等离子体气氛中进行退火是令人满意的。最好使非晶硅膜中含氧浓度为5×1017cm-3~2×1019cm-3。
关于(5)的发明,首先在玻璃基片或者石英基片上形成氧化硅膜或者氮化硅膜。其次,与上述相同,得到半导体器件,其在第1和第2氧化之间夹有结晶硅膜,结晶硅膜含有促进硅结晶化的金属元素,在结晶硅膜中,在第1和/或第2氧化膜界面附近具有高浓度分布的金属元素。作为半导体器件的形态如下构成,第1氧化膜是形成在玻璃基片或石英基片上的氧化硅膜或氮氧化硅膜,由结晶硅膜构成薄膜晶体管的有源层,第2氧化膜是构成栅绝缘膜的氧化硅膜和氮氧化硅膜。
关于(6)的发明,和上述情况相同,具有由氧化膜形成底膜,和在该底膜上形成的结晶硅膜,和在该结晶硅膜上形成热氧化膜,在该结晶硅膜中包含促进硅结晶化的金属元素,在底膜和/或热氧化膜界面附近促进结晶化的金属元素,具有高浓度分布,该热氧化膜构成薄膜晶体管绝缘膜的至少一部分,由此得到半导体器件。
下面叙述前述(7)-(12)的本发明的主要方案。
关于(7)的发明,首先形成非晶硅膜。在非晶硅膜按要求掺入促进硅结晶化的金属元素,通过第1加热处理使非晶硅膜结晶化,则得到结晶硅膜。通过热处理使其结晶化。这样加热处理后,在结晶硅膜中包含该金属元素。接着在包含卤素元素的氧化气氛中进行第2加热处理,形成热氧化膜。
这时,由于氧的作用,卤的作用,以及卤和氧的作用,使金属元素迁移以致吸入热氧化膜中,由于氯等卤素同时作用使镍元素以气化形式排除到外部。降低结晶硅膜中金属元素浓度或者除掉金属元素。其次,在除掉形成的热氧化膜后,在除掉热氧化膜的区域的表面上,通过再次氧化形成热氧经膜。
关于(8)的发明,首先形成非晶硅膜。在按要求把促进硅结晶化的金属元素掺入非晶硅膜后通过第1加热处理使该非晶硅膜结晶化而得到结晶硅膜。接着,在含有卤素的氧化气氛中进行第2加热处理,在该结晶硅的表面形成热氧化膜,把该金属元素迁移以致吸入到该热氧化膜中,此时由于氯等卤素的作用,把镍通过气化排除到外部。由此除去或者减少存在于结晶硅膜中的该金属元素。此后除掉在那里形成的热氧化膜,通过在除掉热氧化膜区域的表面上再次热氧化,形成热氧化膜。
关于(9)的发明,首先形成非晶硅膜。按要求在非晶硅膜中掺入促进硅结晶化的金属元素后,通过第1加热处理使该非晶硅膜结晶化得到结晶硅膜。接着,在含有卤素元素的氧化气氛中进行第2加热处理,金属迁移以致吸入到此时形成的热氧化膜,此时,由于氯等卤素的作用,把镍通过气化排除到外部。由此,除去或减少在该结晶硅膜中存在的金属元素。除掉在那里形成的热氧化膜后,进行构图,形成薄膜晶体管的有源层,再次氧化,在有源层的表面,形成构成栅绝缘膜至少一部分的热氧化膜。
关于(10)的发明,首先形成非晶硅膜。选择地在非晶硅膜掺入助长硅结晶化的金属元素。作为选择地掺入金属元素的形态,如果是在非晶硅膜中在与硅膜表面平行的方向使硅结晶化的形态,(a)掺入非晶硅膜的一端部,(b)间隔地掺入非晶硅膜的一端,(c)间隔地点状地掺入非晶硅膜的整个表面,虽然对此不特别的限制,理想的是采用前述(1)-(5)形态中的(2)形态,即从非晶硅膜面适当位置的槽形表面掺入金属元素。其后,进行第1热处理,从选择掺入该金属元素的区域,在与膜平行的方向进行结晶生长。
接着,在包含卤素的氧化气氛中进行第2热处理,在进行结晶生长区域的表面形成热氧化膜,把该金属元素迁移以致吸入到热氧化膜中同时,由于氯等卤素的作用,把镍通过气化排列外部。由此,除去或者减少存在于结晶硅膜中的该金属元素。在除去热氧化膜后,利用除掉热氧化膜的区域形成半导体器件的有源层。由除去上述金属元素的结晶硅膜或者降低该金属元素浓度的结晶硅膜,构成该有源层。
作为用上述(7)-(10)的制造半导体器件方法的含卤素元素的氧化气氛,能够使用把HCl,HF,HRr,Cl2,F2,Br2中的一种或多种气体添加到O2气中的气氛。作为各加热温度,理想的是采用比第1加热处理温度高的第2加热处理温度,在除掉热氧化膜后,理想的是在含有氧和氢的等离子体气氛中进行退火处理。在非晶硅膜中含氧浓度为5×1017cm-3~2×1019cm-3是理想的。
关于(11)的发明,首先,在玻璃基片或者石英基片上形成氧化膜或者氮化硅膜。接着与上述相同,在第1和第2氧化膜之间形成结晶硅膜,在结晶硅膜中含有促进硅结晶化的金属元素,在结晶硅膜中在第1和/或第2氧化膜界面附近具有高浓度分布的金属元素,由此得到半导体器件。
在该半导体器件,在第1氧化膜中及/或第1氧化膜和结晶硅膜交界附近,含有高浓度分布的卤元素,此外在结晶硅膜的第2氧化膜的界面附近含有同浓度分布的卤素元素。这种情况,第1氧化膜是形成在玻璃基片或石英基片上的氧化硅膜或氮化硅膜,由结晶硅膜构成薄膜晶体管的有源层,由构成栅绝缘膜的氧化硅膜或氮化硅膜构成第2氧化膜。
关于(12)的发明,与上述情况相同,具有由氧化膜构成底膜,和在底膜上形成结晶硅膜,和在结晶硅膜上形成热氧化膜,在结晶硅膜中含有促进硅结晶化的金属元素及氢和卤素元素,在底膜及/或热氧化膜界面附近具有高浓度分布的促进硅结晶化的金属元素,在底膜及/或热氧化膜界面附近具有高浓度分布的卤素元素,由热氧化膜构成薄膜晶体管栅绝缘膜的至少一部分,由此构成半导体器件。
下面叙述前述(13)-(17)的发明主要形态。
关于(13)的发明,首先形成非晶硅膜。按要求在非晶硅膜掺入促进硅结晶化的金属元素,通过第1加热处理,得到使非晶硅膜结晶化的结晶硅膜。以后,对结晶硅膜进行激光或强度照射。接着,在含有卤素的氧化气氛中进行第2加热处理,除掉或者减少存在于结晶硅膜中的该金属元素。除掉在这里形成的热氧化膜,在除掉热氧化膜的区域的表面再次热氧化,形成热氧化膜。
关于(14)的发明,首先形成非晶硅膜。在非晶硅膜按要求掺入促进硅结晶化的金属元素,通过第1加热处理得到使非晶硅膜结晶化的结晶硅膜。对结晶硅膜进行激光或强光照射,在结晶硅膜中扩散存在于该结晶硅膜中的金属元素。
接着,在含有卤素元素的氧化气氛中进行第2加热处理,使存在于该结晶硅膜中的该金属元素迁移下至吸入到形成的热氧化膜中。除掉在这里形成的热氧化膜,在除掉热氧化膜的区域表面上再次进行热氧化,形成热氧化。
关于(15)的发明,首先形成非晶硅膜。在非晶硅膜上选择地掺入促进硅结晶化的金属元素。作为选择掺入金属元素的形态,如果是在非晶硅膜中在与硅膜平行的方向使硅结晶化的形态,(a)掺入非晶硅膜的一端部,(b)间隔地掺入非晶硅膜的一端部,(c)间隔地点状掺入整个非晶硅膜,尽管不特别限制,但理想的是采用前述(1)-(5)形态中的(2)形态,即从非晶硅膜表面相当位置的槽状表面掺入金属元素。
此后,对于该非晶硅膜,通过第1加热处理,在选择掺入金属元素的区域,在与膜平行的方向进行结晶生长。接着,照射激光或者强光,扩散存在于结晶生长区域中的该金属元素。在包括卤素元素的氧化气氛中进行第2次加热处理,使存在于结晶生长区域中的该金属元素,迁移或吸入到由第2次热处理形成的热氧化膜中。接着,在除去这里形成的热氧化膜后,在除去热氧化膜区域的表面上再次热氧化,形成热氧化膜。
关于上述的(13)-(15)的发明,理想的是采用第2处理温度为超过600℃但在750℃以下,理想的是利用再次生长的氧化膜,形成栅的绝缘膜。关于这些发明,含有卤素元素的氧化气氛,是采用在O2气氛中添加选自HCl,HF,HBr,Cl2,F2,Br2中的一种或多种气体的气氛。
对于这些(13)-(15)的发明,理想的是采用的第2加热处理温度要高于第1加热处理温度,在除掉热氧化膜后,能够在含有氧和氢的等离子气氛中进行退火。对于这些发明,最好使非晶硅膜含氧浓度为5×1017cm-3~2×1019cm-3。
关于(16)的发明,首先形成非晶硅膜。在非晶硅膜按要求掺入促进硅结晶化的金属元素后,通过第1加热处理,得到使非晶硅膜结晶化的结晶硅膜。接着对结晶硅膜进行构图,形成半导体器件的有源层,然后用激光或者强光照射有源层。此后,在含有卤素的氧化气氛中进行第2加热处理,除掉或者减少存在有源层中的该金属元素。接着,除掉这里形成的热氧化膜,通过再次热氧化有源层的表面,形成热氧化膜。
关于前述(17)的发明,首先形成非晶硅膜。向非晶硅膜按要求掺入促进硅结晶化的金属元素,通过第1加热处理,得到使非晶硅膜结晶化的结晶硅膜。构图结晶硅膜,形成半导体器件的有源层对有源层照射激光或者强光。接着,在含卤素的氧化气氛中进行第2加热处理,除去或者减少有源层中存在的金属元素。以后,除掉这里形成的热氧化膜,再次热氧化有源层,形成热氧化膜。此时,构成倾斜状的有源层,其侧面与底面成20°-50°的角。
关于上述(16)-(17)的发明,利用再次热氧化膜能形成栅绝缘膜。第1加热处理温度和第2加热处理温度的上限为750°以下是理想的。在含卤素的氧化气氛中、理想的是采用在O2气氛中添加选自HCl,HF,HBr,Cl2,F2,Br2中的一种或多种气体的气氛。
对于这些发明,采用高于第1处理温度的第2处理温度是理想的,除掉热氧化膜后,能够在含有氧和氢的等离子体气氛中进行退火。在非晶硅膜中含氧浓度为5×1017cm-3~2×1019cm-3是理想的。
下面叙述前述的(18)-(22)的发明主要方案。
关于(18)的发明,首先形成非晶硅膜。在非晶硅膜按要求掺入促进硅结晶生长的金属元素,通过第1加热处理,得到使该非晶硅膜结晶化的结晶硅膜。接着对结晶硅膜照射激光或者强光,在氧化气氛中进行第2加热处理,除掉或者减少存在于该结晶硅膜中的该金属元素。以后除掉由该工序形成的热氧化膜,在除掉热氧化膜区域的表面上再次进行热氧化,形成热氧化膜。
关于(19)的发明,首先形成非晶硅膜。在非晶硅膜按要求掺入促进硅结晶化的金属元素后,通过第1加热处理,得到使该非晶硅膜结晶化的结晶硅膜。接着对该结晶硅膜照射激光或者强度,使存在于结晶硅膜中的该金属元素在结晶该硅膜中扩散。此后,在氧化气氛中进行第2加热处理,使存在于结晶硅膜中的金属元素迁移或吸入到形成的热氧化膜中。在除掉在这里形成的热氧化膜后,在除掉热氧化膜的区域表面上再次热氧化,形成热氧化膜。
关于(20)的发明,首先形成非晶硅膜。在该非晶硅膜按要求选择地掺入促进硅结晶化的金属元素。作为选择地掺入该金属元素的形态,如果是在该非晶硅膜中在与硅膜面平行的方向得到使硅结晶化的形态,(a)掺入非晶硅膜的一端部,(b)间隔地掺入非晶硅膜中的一端,(c)间隔地点状掺入整个非晶硅膜中,虽然不特别限制,理想的是采用前述(1)-(5)中的(2),即从非晶硅膜表面适当区域的槽状表面掺入金属元素。
接着,对该非晶硅膜进行第1加热处理,从按要求和选择地掺入金属元素区域在与膜平行的方向进行结晶生长。此后,照射激光或者强度、扩散存在于该结晶生长区域中的该金属元素。接着,在氧化气氛中进行第2加热处理,把存在于结晶生长区域中的金属元素迁移或者吸入到由第2加热处理形成的热氧化膜中。除掉在这里形成的热氧化膜,在除掉热氧化膜的区域的表面上面再次进行热氧化,形成热氧化膜。
关于上述(18)-(20)的发明,对于第2加热处理温度,利用超过600℃又在750℃以下的温度是理想的,再次利用热氧化膜能够形成栅绝缘膜。对于这些发明,利用高于第1处理温度的第2处理温度是理想的。对于这些发明,除掉热氧化膜后,在含有氧和氢的等离子体气氛中能够进行退火。理想的是在非晶硅膜中含氧的浓度为5×1017cm-3~2×1019cm-3。
关于(21)的发明,首先形成非晶硅膜。在该非晶硅膜中按要求掺入促进硅结晶的金属元素,通过第1加热处理,得到使非晶硅膜结晶化的结晶硅。接着,构图结晶硅膜,形成半导体器件的有源层,对有源层照射激光或强光。然后,在氧化气氛中进行第2加热处理,除掉或者减少存在有源层中的金属元素。接着除掉这里形成的热氧化膜,再次热氧化有源层的表面,形成热氧化膜。
关于(22)的发明,首先形成非晶硅膜。在该非晶硅膜按要求掺入促进硅结晶的金属元素后,通过第1热处理得到使非晶硅膜结晶化的结晶硅膜。接着构图该结晶硅膜,形成半导体器件的有源层,对该有源层照射激光或者强光。此后,在氧化气氛中进行第2次加热处理,除去或者减少存在有源层中的该金属元素。除掉这里形成的热氧化膜,再次热氧化有源层的表面,形成热氧化膜。此时构成倾斜的有源层,其侧面与底面形成角,理想的是20°-50°的倾斜角。
关于上述(21)-(22)的发明,能够再次利用热氧化膜构成栅绝缘膜。第2处理温度,超过600℃又在750℃以下是理想的。第2加热温度比第1加热温度高是理想的。这些发明在除掉热氧化膜后,在含氧和氢的等离子体气氛中进行退火是理想的,在非晶硅膜中含氧的浓度为5×1017cm-3~2×1019cm-3是理想的。
下面叙述前述的(23)-(25)的发明主要方案。关于(23)的发明,首先在有绝缘表面的基片上形成非晶硅膜,在该非晶硅膜按要求掺入促进硅结晶化的金属元素。接着,在750℃-1100℃进行第1加热处理,得到使该非晶硅膜结晶化的结晶硅膜后,构图该结晶硅膜,形成半导体器件的有源层。
此后,在包含卤素的氧化气氛中进行第2加热处理,除掉或者减少存在有源层中的金属元素。除去这里形成的热氧化膜,除掉热氧化膜后,再次热氧化,形成热氧化膜。这时,最好利用比第1加热处理温度高的该第2加热处理温度进行再次热氧化。
关于(24)的发明,首先在有绝缘表面的基片上形成非晶硅膜后,在该非晶硅膜按要求掺入促进硅结晶化的金属元素。接着,在750℃-1100℃的温度进行第1加热处理,得到使该非晶硅膜结晶化的结晶硅膜。以后,构图该结晶硅膜,形成半导体器件的有源层后,在含有卤素的氧化气氛中进行第2热处理,把存在有源层中的该金属元素迁移或吸入到通过第2加热处理形成的氧化膜中。接着除掉由该工序形成的热氧化膜后,再次进行热氧化形成热氧化膜。这时,最好采用比第1热处理温度高的第2加热处理温度。
关于(25)的发明,首先在具有绝缘表面的基片上形成非晶硅膜,然后按要求和选择地向非晶硅膜掺入促进硅结晶化的金属元素。作为选择地掺入金属元素的形态,如果是在该非晶硅膜在与硅膜面平行的方向得到硅结晶化的形态,(a)掺入非晶硅膜的一端,(b)间隔地掺入非晶硅膜的一端部,(c)间隔地点状地掺入非晶硅膜的整个表面,虽然不特别地限定,但理想的是采用前述①-⑤形态的(2),即从非晶硅膜面适当位置的槽状表面掺入金属元素。
接着,在温度750℃-1100℃进行第1加热处理,从按要求和选择地掺入该非晶硅膜的该金属元素区域在与膜平行的方向进行结晶生长。接着进行构图,利用在与膜平行方向进行结晶生长的区域,形成半导体器件的有源层。此后在含有卤素元素的氧化性气氛中进行第2加热处理,把有源层中存在的该金属元素迁移或吸收到通过第2热处理形成的热氧化膜中。除掉该热氧化膜后,通过再次热氧化形成热氧化膜。这时,最好采用比第1热处理温度高的第2热处理温度。
关于(23)-(25)的发明,最好利用石英基片作为形成非晶硅膜的基片,利用再次形成的热氧化膜形成栅绝缘膜。关于(23)-(25)的发明,除掉热氧化膜后,在包含有氧和氢的等离子体气氛进行退火,在非晶硅膜中含氧浓度为5×1017cm-3~2×1019cm-3是理想的。
下面叙述前述(26)-(29)发明的主要方案。
关于(26)的发明,首先形成非晶硅膜。在该非晶硅膜的表面,保持与促进硅结晶化的金属元素接触后,通过第1加热处理得到使非晶硅膜结晶化的结晶硅膜。接着在包含氧、氢、氟的气氛中,在温度500℃-700℃进行第2加热处理,在结晶硅膜的表面形成热氧化膜后,除掉该热氧化膜。
关于(27)的发明,首先形成非晶硅膜。在该非晶硅膜的表面,保持与促进硅结晶的金属元素接触后,通过第1次加热处理,得到使非晶硅膜结晶化的结晶硅膜。接着在含有氧、氢、氟和氯的气氛中,在温度500℃-700℃进行第2次热处理,在结晶硅的表面形成热氧化膜后,除掉该热氧化膜。
关于(28)的发明,首先形成非晶硅膜。在非晶硅膜的表面,保持和促进硅结晶化的金属元素接触后,通过加热处理,得到使非晶硅膜结晶化的结晶硅膜。接着,在含有氟及/或氯的气氛中,在前述结晶硅膜的表面形成湿氧化膜,然后除掉该氧化膜。
关于(26)-(28)的发明,在该氧化膜中金属元素浓度,最好要高于结晶硅膜中的金属元素浓度。在第2加热处理的气氛中,含氢浓度最好是在1%容量以上,爆炸界限以下。第1加热处理最好在还原气氛中进行,对于第1加热处理的结晶硅膜,能够进行激光照射。
关于(29)的发明,是关于具有结晶性硅膜的半导体器件,其特征是,在结晶硅膜中包含促进硅结晶化的金属元素的浓度为1×1016cm-3~5×1018cm-3,含氟原子浓度为1×1015cm-3~1×1020cm-2含氢原子浓度1×1017cm-3~1×1021cm-3。能够按照上述(26)-(28)的利记博彩app制造该半导体器件。半导体器件的硅膜,最好是形成在绝缘膜上,在绝缘膜和硅膜的界面附近,最好存在高浓度分布的氟原子。
下面叙述前述的(30)-(33)的发明主要形态。
关于(30)的发明首先形成非晶硅膜,然后形成使非晶硅膜结晶化的结晶硅膜。接着,在含氟化合物气体的氧化气氛中加热结晶硅膜,在结晶硅膜表面生长热氧化膜,再除掉结晶硅膜表面上的热氧化膜。以后,在结晶硅膜表面,淀积绝缘膜,由此制造半导体器件。
关于(31)的发明,形成非晶硅膜,然后对其照射激光形成结晶化的结晶硅膜。接着,在含有氟化物气体的氧化气氛中进行加热结晶硅膜,在结晶硅膜表面生长热氧化膜后,除掉结晶硅膜表面的热氧化膜。然后,在结晶硅膜的表面淀积绝缘膜,由此制造半导体器件。
关于(32)的发明,是在具有绝缘表面的基片上制造薄膜晶体管的方法。首先形成非晶硅膜,然后形成使该非晶硅膜结晶化的结晶硅膜。其后在含有氟化合物气体的氧化气氛中进行加热,在结晶硅膜的表面生长热氧化膜后,除掉结晶硅膜表面上形成的热氧化膜。
接着整形该结晶硅膜,形成薄膜晶体管的有源层后,在有源层的表面淀积绝缘膜,至少在沟道区域的表面形成栅绝缘膜。在栅绝级膜的表面形成栅电极,以该栅电极作为掩模。在有源层注入导电型的杂质离子,自对准地形成源和漏,由此制造半导体器件。
关于(33)的发明,是关于在具有绝缘表面的基片上制造薄膜晶体管的方法,首先形成非晶硅膜,然后形成使非晶硅膜结晶化的结晶硅膜。接着,在对结晶硅膜照射激光后,在含有氯化合物气体的氧化气氛中进行加热,在结晶硅膜表面生长成热氧化膜后,除掉结晶硅膜表面上形成的热氧化膜。
接着,整形上述结晶性硅膜,形成薄膜晶体管的有源层,在该有源层的表面淀积绝缘膜,至少在沟道区域的表面形成栅绝缘膜,并且在栅绝缘膜的表面形成栅电极。以栅电极作为掩模,在有源层注入导电型的杂质离子,自对准地形成源和漏、由此形成半导体器件。
关于(30)-(33)的发明,热氧化膜的厚度,理想的是200-500A,形成该非晶硅膜工序之后,在非晶硅膜掺入的金属元素浓度,理想的是1×1016cm-3~5×1019原子(atoms)/cm-3。在形成结晶硅膜时,最好使用金属元素,作为金属元素能够采用Fe,Co,Ni,Ru,Rh,Pd,OS,Ir,Cu,Au中至少一种以上的元素。关于这一点,与前述发明的情况相同。
实施例下面,根据实施例更详细地说明本发明,但不用说本发明不限于这些实施例。首先,作为实施例1-实施例3,其使用金属元素和根据金属元素的作用,使硅膜结晶化表示除掉或者减少结晶硅膜中金属元素的效果和卤素的浓度,并顺序记载对应于上述(1)-(33)的发明的实施例。
《实施例1》图16是表示把非晶作为金属元素使非晶硅膜结晶以后,在形成热氧化膜时,在膜剖面方向计测镍浓度的分布图。利用SIMS(2次离子分析方法)对其进行计测。
对其计测值的样品的制作工序、简略地叙述如下。
在石英基片上形成4000厚的氧化膜作为底膜后,利用减压热CVD方法,形成500厚的非晶硅膜。接着,在非晶硅膜上施加醋酸镍盐水溶液来掺入镍。在650℃热处理4小时使其结晶化得到结晶硅膜。然后在950℃温度的氧化气氛中进行热处理,形成700厚的热氧化膜。
由图16可知,镍元素从结晶硅膜(多晶硅膜)移到氧化硅膜(热氧化膜),包含在热氧化膜中。镍元素在结晶硅膜中比热氧化膜中相对的多,认为这是由作为SiO2的热氧化膜中的O2被大量夺取的结果。热氧化膜表面的镍浓度高,这是因为受到表面凹凸不平和吸着物将产生的表面状态影响造成的,不是有意设计的结果。同样的理由,在界面附近的数据,稍微有些误差。
《(实施例2》作为形成热氧化膜的方法,是在950℃在含3容量%HCl的氧化气氛中进行加热处理,其它的工序与实施例1的工序相同,最后形成500厚的热氧化膜。图17是关于这种情况的样品测定数据图。从图17可知,结晶硅膜中的镍浓度更低,可是热氧化膜中的镍浓度相对地增加。这意味着被氧化膜吸出(吸收)镍来。
图16和图17不同,只是因为形成氧化膜时所在气氛是否有HCl造成的。因而能得到结论,上述的吸收效果,除氧以外,与HCl有很大关系。不认为是HCl成分中的氢(水素)产生的吸收效果,而认为是由Cl(盐素)作用产生的吸收效果。知道了图16和图17表示吸收效果不同的原因。
除掉吸收镍元素的热氧化膜,能够得到镍浓度低的结晶硅膜。图18是关于用与具有图17所示数据的样品相同条件制作的样品,表示Cl元素浓度分布的曲线图。从图18可知,Cl元素集中地存在于结晶硅膜与热氧化膜界面附近。
《实施例3》实施例3,替换成作为获得实施例1-实施例2中记载的数据的结晶硅膜的初始膜的非晶硅膜,是关于利用等离子体CVD方法形成的非晶硅膜情况的实施例,其它的制造条件与实施例1的情况相同。用等离子(体)CVD方法形成的非晶硅膜,由于与用减压热CVD方法形成的非晶硅膜在膜质方面不同,所以形成结晶硅膜后其吸收作用也不同。
首先如图19所示,是表示在950℃氧气氛形成热氧化膜情况的样品的测定数据图。由图19可知,镍元素迁移到热氧化膜,但在结晶硅膜中存在比较高浓度的镍元素。掺入镍的条件相同,可是和图16相比,结晶硅膜中的镍浓度却高。由于用等离子CVD方法形成的非晶硅膜质细密、缺陷多,所以镍在膜中更容易扩散。
如果从别的观点看上述事实,能够利用下面的看法。即在涂布醋酸镍水溶液之前,为了改善沾润性。利用紫外(UV)氧化法在非晶硅膜表面形成极薄的氧化膜,这氧化膜的厚度,因受到下面非晶硅膜质不同的影响,有不同厚度的可能性。
图20是表示在形成热氧化膜时,在氧气氛中包含有1%容量Hd情况的数据图。由图20可知,对于结晶硅膜中的镍浓度,比图19所示数据低,对应于图19的氧化膜中镍浓度变高。
这样的事实意味着,由于热氧化膜中氯的作用,吸收镍元素。这样,由于在含氯的气氛中形成热氧化膜,在这样的氧化膜中能使吸收结晶硅膜中的镍元素有更好的效果。然后,除掉吸收镍元素的热氧化膜,能够得到降低镍浓度的结晶硅膜。
如图21所示的曲线图,是研究用与图20所述数据的样品相同的制造条件得到的样品的氯浓度的结果。由图21可知,氯存在于底膜与结晶膜界面附近,以及结晶硅膜与热氧化膜交界面附近区域。图21是对应于图18,但是象图21那样形成氯浓度的分布,初始膜的非晶硅膜由等离子CVD方法制造,其膜质不细密。
由图20可知,这种情况,即使在底膜与结晶硅膜的界面附近也有镍浓度变高的倾向。这理解为由于在与底膜交界的附近(或底膜中)存在氯的作用,镍被吸入底膜。这种现象,认为该底膜是在掺卤素的情况下所得到的。
以上是关于实施例1-实施例3证实的效果,根据迁移、吸入本发明的金属元素到热氧化膜的具体情况,能更有效地进行。下面,采用变形状态,记述对应前述(1)-(33)发明的各种实施例。
《实施例4》实施例4是关于在玻璃基片上,利用镍元素得到结晶硅膜的实施例。首先由于镍元素的作用,得到高结晶性的结晶硅膜。接着,利用热氧化法,在该结晶硅膜上成形。这时,在热氧化膜中吸收残存在结晶性硅膜的镍元素。然后,吸收的结果,除掉含有高浓度镍元素的热氧化膜。由此,得到在玻璃基片上形成的具有高结晶性的低浓度的结晶硅膜。
图22是表示实施例4制造工序的图。首先在康宁1737(コ-ニング1737)玻璃基片1(形变点667℃)上形成厚度为3000氧氮化硅底膜2。例如,用硅烷,N2O和氧化原材料气体的等离子CVD方法或者用EOS气体,N2O气体的等离子CVD方法氧氮化硅膜,这里使用前者。
该氧氮化硅膜,在后续工序中,具有抑制杂质(以制造半导体的标准看,玻璃基片中包含大量的杂质)从玻璃基片向外扩散的功能。作为底膜能用氧化硅膜代替氧氮化硅膜。为了最大限度地获得抑制杂质扩散的功能,采用最合适的氮化硅膜,但是,氮化硅膜因为应力的关系,从基片剥落,所以在玻璃基片的情况不实用。
把底膜2限制成高硬度是重要的。通过对最终得到的薄膜晶体管作耐久性实验,其结论是,底膜越硬(即腐蚀速率小),可靠性越高。其理由,详细说不清楚,但认为大概是由于在制造薄膜晶体管的制造过程中,掩蔽了来自基片的杂质的功效。
另外,在底膜2中,微量地包含以氯为代表卤素元素是有效的。由此,在以后的工序中,通过卤素能够吸收存在半导体层中的促进硅结晶化的金属元素。形成底膜后,进行氢等离子处理是有效的。另外,在含有氢和氧的混合气氛中进行等离子处理是有效的。通过这些处理,除掉在底膜的表面吸着的碳,这有效地提高以后形成的半导体膜的界面特性。
以后用减压CVD方法,形成500厚的以后变成结晶硅膜的非晶硅膜3。其中采用减压热CVD方法,这在以后得到的结晶硅膜质量是优良的,具体地说,膜质是细密的。除了上述的减压热CVD方法,还能利用等离子CVD等方法。其中制造的非晶硅膜,膜中含氧浓度理想的是5×1017cm-3~2×1019cm-3。其原因是,在后续工序,即在促进硅结晶化的金属元素的除气工序中,氧起重要作用。但是氧浓度比上述浓度范围更高情况下,非晶硅膜结晶受阻,所以必须注意其它杂质浓度,例如,氯和碳的杂质浓度要极低,具体地说,必需在2×1019cm-3以下。其中非晶硅膜3的膜厚,是1600。非晶硅膜的厚度,需要比最终必要的膜厚要厚。
只进行加热得到的非晶硅3时,初始膜(非晶硅膜)的厚度为800~5000μm,最好为1500-3000。比该膜范围厚的情况,成膜时间长,从生产成本考虑不经济。比该膜范围薄的情况,结晶化不均匀,工序再现性(重复性)差。这样得到如图20(A)所示的形态。接着,为了使非晶硅膜3结晶,掺入镍元素。其中,通过把100ppm(重量换算)的含镍的醋酸镍盐水溶液涂布在非晶硅膜3的表面,而掺入镍元素。
掺入镍元素的方法,除了上述的使用镍盐水溶液方法之外,还能使用溅射法,CVD法,等离子处理方法和吸附法。其中,使用溶液方法简单,由于能简单地调整金属溶液逍度,所以它是有用的。作为镍盐,能使用各种盐,作为溶剂,除水以外,能利用乙醇之类的其它有机溶剂或者水和有机溶液的混合溶液。
本实施例,通过涂布上述醋酸镍盐溶液,形成如图22(B)所示的水膜4。在这种状态,利用没用图表示的旋涂方法把剩余的溶液甩掉。这样使镍元素保持和非晶硅3的表面接触。如果考虑以后加热工序杂质的残留问题,采用不含碳的的含镍溶液,例如,硫酸镍溶液代替醋酸镍盐溶液那是理想的。其原因是担心,由于醋酸镍盐溶液含有碳,其在后续加热工序中因碳化残留下来。能够通过调整溶液中的镍盐浓度来调整掺镍的数量。
其次,如图22(C)所示的形态,利用450℃-650℃加热处理,使非晶硅膜3结晶,得到结晶硅膜5。该加热处理是在还原气氛中进行。其中,在含3容量%氢的氮气气氛中加热处理的温度为640℃时间为4小时。这样一来,如图22(C)所示,得到结晶硅膜5。在通过加热处理进行结晶化时,在还原气氛中进行,这是为了防止在加热处理工序形成氧化物,更具体地说,为了抑制镍和氧反应在膜表面和膜中生成NiOx。
可是,氧在以后的吸收工序,和镍结合,主要用来吸收镍。可是,在上述结晶化阶段,氧和镍相结合,已知这要损害结晶化。因而,在通过加热的结晶化工序,极大地抑制氧化物的形成是重要的。在为结晶化而进行热处理的气氛中,氧的浓度为ppm数量级,最好是1ppm以下。
用于上述结晶化的热处理气氛,占大部分的气体是氮和氩等惰性气体,也能利它们的混气体,本发明采用氮气。对于用作上述结晶化的加热处理温度的下限,从实现其效果和重复性来看,最好为450℃以下。另一方面,其上限最好为使用的玻璃基片形变点以下,本实施例使用形变点为667℃的康宁1737玻璃基片,为留有富裕度,上限为650℃。
这方面,如果用石英基片作为基片,能够提高温度到900℃或者900℃以上。这种情况,能得到有高结晶性的结晶硅膜,并且,能在更短的时间得到结晶硅膜。得到结晶硅膜5后,再次进行热处理。该热处理形成了含镍元素的热氧化膜。其中在氧100%气氛中进行该加热处理。
图22(D)是说明该加热处理工序的简图。该工序是从结晶硅膜5中除掉为结晶化在初始阶段按要求混入的镍元素(其它促进硅结晶化的金属元素)的工序。其加热处理,用比进行前述结晶化而实行的热处理高的温度来进行。这是有效吸收镍元素的重要条件。
该加热处理在满足上述条件的情况下,即550℃-1050℃最好在600℃-980℃进行上述加热处理。其原因是,在600℃以下,这没达到效果,相反,若超过1050℃,由石英形成的夹具变形,影响支撑装置(这意味着最好在980℃以下进行热处理)。该热处理温度的上限,受到使用的玻璃基片变形点的限制)。如果用玻璃基片变形点以上的温度进行热处理,必需要注意基片变形。
本实施例由于使用形变点为667℃的康宁1737玻璃基片,加热温度选为640℃。按这种条件进行加热处理,形成如图2(D)所示的热氧化膜6。其中进行12小时的热处理,形成200厚的热氧化膜6。由于形成热氧化膜6,结晶硅膜3的膜厚度成1500。这样的热处理,在温度为600℃到700℃的情况,处理时间(加热时间)为10-48小时,典型的处理时间为24小时。加热温度为750℃-900℃的情况,处理时间为5到24小时,典型的为12小时。
在加热温度为900℃-1050℃的情况,处理时间为1-12小时,代表性为6小时。不言而喻,根据要得到的氧化膜厚度,适当的设定处理时间。在此工序,在形成的氧化膜6中吸收镍元素。这样的吸收,除了氧气氛之外,存在结晶硅膜中的氧起重要作用。即通过氧和镍相结合形成氧化镍,这样形式的镍被吹入到热氧化膜6中。
如前所述,如果超过其浓度,对于如图22(C)所示的结晶工序,氧成为阻碍非晶硅膜3结晶化的重要因素。可是,如上述那样,其存在在吸收镍过程中,起重要作用。因而,控制作为初始膜的非晶硅膜的氧浓度是很重要的。通过这种工序,除掉结晶硅膜中的镍元素或者,使其浓度低于初始浓度。
在上述工序,由于形成的氧化膜中吸收镍元素,使氧化膜中的镍浓度比其它区域高。在硅膜5和氧化膜6的界面,观察到在硅膜5侧附近的镍浓度变高。认为这是主要吸收镍的区域是在硅膜和氧化膜界面附近的氧化膜一侧的原因。
形成氧化膜6后,除掉含有高浓度镍的热氧化膜。例如,利用缓冲氢氟酸(其它氢氟酸系列腐蚀剂)的湿腐蚀,干腐蚀,除掉热氧化膜6,本实施例利用前者。因此,如图22(E)所示,得到降低含镍浓度的低结晶硅膜7。由于在得到的结晶硅膜7的表面附近,含有比较高镍浓度,在进一步腐蚀上述热氧化膜6时,能有效地稍微过腐蚀结晶硅膜7的表面。
《实施例5》实施例5是关于实施例4所示的构成,通过如图22(C)所示的热处理得到结晶硅膜后,照射激光,表示促进其结晶性情况的例子。如图22(C)所示,在降低加热温度,缩短处理时间的情况,即,由于工序上的原因,在限制加热温度和限制加热时间的情况,可能得不到必要的结晶性。象这种情况,通过利用激光照射退火,能得到必要的高结晶性。
对于这种情况,照射激光,和使非晶硅直接结晶化情况相比较,许可照射激光的条件变宽,此外,重复性能够提高。最好在如图22(C)所示的工序后,照射激光。如图22(A),作为初始膜的非晶硅膜3的膜厚为200-2000是很重要的。其原因是,非晶硅膜的厚度薄,通过照射激光进行退火的效果好。
对使用的激光不特别限制,理想的是紫外激光,例如,使用紫外准分子激光,具体地说,能够使用KrF准分子激光(波长为248nm)和XeCt准分子激光(波长为308nm)等,但是本实施例使用KrF准分子激光(波长为248nm)。此外,不用激光,而照射由紫外线灯和红外线灯发射的强光,能够进行退火。
《实施例6》实施例6是用红外线灯光代替实施例5中的激光的实施例。利用红外线的情况,能够选择地加热硅膜而不使基片过热。能够有效地热处理,而不损伤基片。
《实施例7》实施例7是关于实施例4的构成,作为促进硅结晶化的金属元素,使用Cu的例子。利用铜元素的情况,作为掺入Cu的溶液,能利用例如2醋酸铜[Cu(CH3COO)2]和2氯化铜[CuCl22H2O]等溶液,本实施例使2醋酸铜[Cu(CH3COO)2]水溶液。
《实施例8》实施例8是关于在实施例4的构成,以石英基片为基片的例子。本实施例,作为初始膜的非晶硅膜3的膜厚为2000。在形成如图22(C)所示的加热处理的氧化膜时,加热温度为950℃以上。这种情况,氧化膜形成速度快,不能得到充分的吸收效果,氮气氛中的氧浓度低。具体地说,氮气氛中的氧浓度为10容量%。
本实施例的上述处理时间为300分。在这样条件下,能得到约500膜厚的热氧化膜。同时,能争取到吸收的必要时间。在100%氧的气氛中,在950℃热处理的情况,经过约30分时间得到500以上厚度的热氧化膜。
这种情况,由于不能充分地吸收镍,在结晶硅膜7内、残留比较高浓度的镍元素。因而通过调整本实施例所示的氧浓度,争取充分吸收的时间,形成的热氧化膜是理想的。象这样的方法,在热氧化膜厚度和形成温度变化的情况,通过调整气氛中的氧浓度,能够设定吸收金属元素的必要时间。
《实施例9》实施例9是进行与实施例4不同形态结晶生长的例子。本实施例是关于利用促进硅结晶化的金属元素,在与基片平行的方向,进行称为横向生长的结晶生长的方法。图23是表示实施例9的制作工序图。首先,在康宁1737玻璃基片8上,通过减压热CVD方法,形成3000厚的氧化氧化氮化硅膜作为底膜9。不用说也可用石英基片代替玻璃基片。
接着,利用减压热CVD方法,形成2000厚的要成为结晶硅膜初始膜的非晶硅膜10。对于这非晶硅膜厚度,理想的是如上述那样的2000以下。最好用等离子CVD方法代替热CVD方法。其次,形成没有用图表示的1500厚的氧化硅膜,对它构图,形成用符号11表示的掩模。在用12表示的区域,把掩模形成开口。在开口12的区域露出非晶硅膜10。
开口12从图面深度向眼前的长度方向形成长方形。该开口12的宽为20μm以上为佳,长度方向为任意,在该例其宽为30μm,长为5cm。而且,如实施例4所示那样,涂布按重量计算包含100ppm的镍元素的醋酸镍水溶液后,用没有用图表示的旋涂机甩干,除掉残存的溶液。这样的镍元素作为溶液如图23(A)的虚线B所示,在露出非晶膜10的表面和非晶硅膜保持接触。
接着,在容积3%的氢尽可能不含氧的氮气氛中,在温度640℃进行4小时的热处理。这样一来,进行如图23(B)中用14表示的在与基片平行的方向的结晶生长。其结晶生长,从掺入镍元素的开口12区域向周围进行。在与基片平行的方向进行结晶的生长,在说明书中称为横向生长或者横向的生长。
按照实施例9的条件,能够进行100μm以上的横向生长。这样得到具有横向生长区域的结晶硅膜15。在形成开口12的区域,从硅膜表面向衬底界面,在垂直方向进行纵向生长。其次,除掉用于选择地掺入镍元素的由氧化膜构成的掩模11。这样得到如图23(C)所示的状态。在这种状态,在硅膜15中存在有纵向生长区域,横向生长区域,以及没有结晶生长的区域(非晶区域)。
在这种状态,在氧气氛中,在640℃加热处理12小时。在此工序,形成含有高浓度镍元素的氧化膜16,同时能相对地减少硅膜15中的镍元素浓度。此处形成200厚的热氧化膜16。该热氧化膜中含有吸收的高浓度的镍元素。通过形成热氧化膜16,结晶硅膜15由当初的2000变成为1900厚。
接着,与前述实施例4的情况一样,除掉含有高浓度镍的热氧化膜16。对于这种状态的结晶硅膜,在结晶硅膜的表面存在高浓度的镍元素分布。因此,在除掉热氧化膜16以后,通过腐蚀结晶硅膜的表面,除掉含有高浓度镍的区域。即,通过腐蚀含有高浓度镍元素的结晶硅膜表面,得到含有较低镍浓度的结晶硅膜。
接着,通过构图,如图23(E)所示,由横向生长区域形成图形区17。其中在区域17,不存在纵向区域,非晶硅以及横向生长前端区域,是重要的。这是因为,在纵向秘横向生长的区域,含镍的浓度相对的高,在比上结晶生长的非昌区域,其电气特性变坏。这样一来,在区域17中残留的镍元素浓度和实施例4所示的情况相比较能够成为更低。
这是在横向生长区域中含金属元素浓度起始低的原因。具体地说,由横向生长区域变成的区域17中的浓度可能容易达到1017cm-3以下的数量级。此外,在利用横向生长区域,形成薄膜晶体管的情况,和利用如实施例4所示的纵向生长区域(实施例4的情况,全面纵向生长)的情况相比较,能够得到高迁移就绪的半导体器件。
形成图23(E)所示的图形后,进行腐蚀处理,用来除去图形表面上存在的镍元素。形成图17后,没有有效地形成用来吸收的热氧化膜。这种情况,确实得到吸收热氧化膜的效果,但是由于除去热氧化膜也腐蚀底膜,所以也腐蚀岛状结晶硅膜的下侧。
这种状态,成为以后布线断线和元件工作不良的因素。本实施例,形成图形17后,形成热氧化膜18。该热氧化膜18,如果形成薄膜晶体管,在以后形成为栅绝缘膜的一部分,伴随有上述的吸收效果,但不必除掉。
《实施例10》本实施例10,利用本发明的结晶硅膜,形成设置有有源矩阵型液晶显示器件和有源矩阵型的EC显示器件的象素区域的薄膜晶体管。图24是表示本实施例10的制造工序。
首先用实施例4或实施例9的工序、在玻璃基片上形成结晶硅膜,但本实施例中采用实施例4的工序。其中,对所得到的结晶硅膜构图,得到图24(A)所示的状态图。在图24(A)中,标号20表示玻璃基片,21表示底膜,22表示由结晶硅膜构成的有源层。在得到图24(A)表示的状态后,在氧和氢混合的减压气氛中,进行等离子处理。通过高频放电形成等离子。
通过上述等离子处理,除掉有源层22露出表面上存在的有机物。确切的说,通过氧等离子,使有源层表面吸收的有机物氧化,并且通过氢等离子,使氧化的有机物还原气化。这样,使有源层22露出的表面存在的有机物被除掉。除掉这种有机物,对于抑制有源层22表面上的固定电荷的存在方面,非常有效。因为有机物的存在引起的固定电荷,阻碍器件的工作,成为特性不稳定的因素,固定电荷少非常有用。
除去上述有机物后,在640℃的氧化气氛中进行热氧化,形成100的热氧化膜19。这种氧化膜,与半导体层的界面特性好,以后成为栅绝缘膜的一部分。这样得到如图24所示的状态。其后,形成1000厚的构成栅绝缘膜的氧化氮化硅膜23。作为成膜方法,可能使用氧与硅烷和N2O的混便气体的等离子CVD法,或者TEOS和N2O的混合气体的等离CVD方法等,但是在这里使用前者。氧化氮化硅膜23与氧化膜19合在一起,作为栅绝缘膜。
在氧化氮化硅膜23中,含有卤素元素是有效的。即,由于卤素元素的作用,使镍元素固定化,由于有源层22中存在镍元素(与其它的促进硅结晶化的金属元素情况相同)的影响,能够预防作为栅绝缘膜的绝缘膜的功能下降。作为氧化氮化膜,由于其细密的膜质,使金属进入栅绝缘膜困难。如果金属进入栅绝缘膜,则绝缘膜功能低下,成为薄膜晶体管特性的不稳定性和分散的原因。利用通常使用的氧化膜作为栅绝缘膜。
起到栅绝缘膜功能的氧化氮化硅膜23形成以后,利用溅射法形成作为栅电极的铝膜(没有图表示)。在铝膜中,含有按重量0.2的钪。在铝膜中含有钪在以后的工序中,能够抑制小丘和晶须的产生。其中,小丘和晶须意味着通过加热,使铝异常生长结果形成针状的或者刺状的突起部分。
在形成铝膜后,形成没有用图表示的细密的阳极氧化膜。该阳极氧化膜是用按重量含有3%酒石酸的乙二醇溶液作为电解液形成的。在这电解液中,以铝膜作为阳极,白金作为阴极进行阳极氧化,在铝膜的表面形成有细密膜质的阳极氧化膜。此图没有表示的细密膜质的阳极氧化膜厚度为100。这样的阳极氧化膜对以后形成抗蚀剂掩模密着性的提高起作用。通过控制阳极氧化时所施加的电压束控制阳极氧化膜的膜厚。
接着形成抗蚀剂图形25,按照铝膜24的图形构图。这样得到图24(B)所示的图形。对此再次进行阳极氧化。其中,把按重量3%的草酸水溶液作为电解溶液。在该电解溶液中,把铝图形26作为阳极,进行阳极氧化,形成用标记27表示的多孔阳极氧化膜。这种工序,由于上部在非常细密的抗蚀剂掩模25,所以在铝图形侧面选择地形成阳极氧化膜27。
那样的阳极氧化膜,能够生长数μm的膜厚。此处,其膜厚为6000。其生长距离,能够通过控制阳极氧化的时间来进行控制。然后,除掉抗蚀剂25,再次得到细密的阳极氧化膜。即用前述的含有3%重量的酒石酸的乙二醇溶液作为电解溶液,进行阳极氧化。这一来,由于在多孔阳极氧化膜27中进行电解溶液,形成由标记28表示的细密膜质的阳极氧化膜。
细密的阳极氧化膜28的厚度为1000。通过调整施加电压来控制膜厚。其中,腐蚀露出的氧化氮化膜23和热氧化膜19。利用干腐蚀进行腐蚀。然后,利用醋酸,硝酸和磷酸的混合酸,除掉多孔状的阳极氧化膜27,得到如图24(D)所示的状态。
得到图24(D)所示的状态后,进行杂质注入。其中,为了制造N沟型薄膜晶体管,利用等离子掺杂法,进行磷(リン)离子注入。在这个工序,形成重掺杂区域(30和34)及轻掺杂区域(31和33)。其原因是,残留的氧化硅膜29的一部分,起半透过掩模的作用。能够遮蔽注入离子的一部分。
接着,利用激光照射,使注入杂质的区域活化。也能够用强光照射代替激光照射。这样一来,自对准地形成源区30,沟道形成区32、漏区34、低浓度掺杂区31和33。其中,在图24(D)中标记33表示的区域是称为LDD(轻掺杂漏区)区域的区域。当细密阳极氧化膜28的厚度为2000以上的情况,由其膜厚能在沟道形成区32的外侧形成偏移区域。
本实施例,形成偏移区域,但尺寸小,关于其存在聚集小,还有图面复杂,所以在图24(D)中没有记载。接着,形成氧化硅膜,或氮化硅膜,或其叠层膜作为层间绝缘膜。此处利用氧化硅膜。最好,在氧化硅膜或氮化硅膜上形成树脂层来构成层间绝缘膜。接着形成接触孔,再形成源电极36和漏电极37。这样一来,如图24(E)所示,制成薄膜晶体管。
《实施例11》实施例11,涉及实施例10所示的构成,是关于栅氧化膜23形成方法的实施例。在以石英基片和耐热性高的玻璃基片等作为基片的情况,作为形成栅绝缘膜的方法,采用热氧化方法是适合的。热氧化方法,由于其膜质细密,适于得到具有可靠性的薄膜晶体管。即,用氧化方法形成的氧化膜,由于细密,内部存在的可动电荷少,是最适用作为栅绝缘膜之一的氧化膜。
本实施例,作为热氧化膜的形成方法,是在950℃的氧化气氛中进行热处理。这时,在氧化气氛中混合HCl等是有效的。这样,在形成热氧化的同时,能使存在有源层中的金属元素固定。在氧化气氛中混合N2O气体,能有效地形成含有氮成分的热氧化膜。其中,如果N2O气体混合比最合适,则可能得到由热氧化法形成的氧氮化硅膜。在本实施例的情况,不必要特别形成热氧化膜19,本实施例,不形成热氧化膜。
《实施例12》
实施例12是用与实施例10-11所示工序不同的工序来制造薄膜晶体管。图25是表示本实施例制造工序图。首先,按照实施例4或实施例5所示的工序,在玻璃基片上形成结晶硅膜,但是此处利用实施例4的工序形成结晶硅膜。接着把其构图,得到如图25(A)所示的状态图。
以后,在氧和氢的混合减压气氛中进行等离子处理。如图25(A)所示,39表示玻璃基片,41表示用结晶硅膜构成的有源层。此外,在除掉用于吸收的热氧化膜后,再次形成热氧化膜38。在获得如图25(A)所示的状态后,再次形成构成栅绝缘膜的氧化氮化硅膜42,其厚度为1000。
对于形成膜的方法,能够应用采用氧,硅烷和N2O混合气体的等离子CVD方法,或者采用TEOS和N2O混合气体的等离子CVD方法,本实施例采用TEOS和N2O的混合气体。氧化氮化硅膜42和热氧化膜38一起构成栅绝缘膜。还能够用氧化硅膜代替氧化氮化硅膜42。形成起栅绝缘膜作用的氧化氮化硅膜42后,以后用溅射法形成铝膜作为栅电极,但没有用图表示。在该铝膜中含有重量的0.2%的钪。
形成铝膜后,再形成细密的阳极氧化膜,没有用图表示。用含有重量3%酒石酸的乙二醇溶液作为电解溶液,形成阳极氧化膜。在电解液中以铝作为阳极,白金作为阴极,进行阳极氧化,在铝膜的表面,形成有细密膜质的阳极氧化膜。具有这种细密膜质的阳极氧化膜的膜厚为100。这种阳极氧化膜,具有使以后形成的抗蚀剂掩模的附着性提高的作用。对于阳极氧化膜的膜厚,能够通过调整阳极氧化时施加的电压来进行控制。
接着,形成抗蚀剂掩模43,构图铝膜、形成用标记44表示的图形。接着,对此再进行阳极氧化。在阳极氧化时,用重量3%的草酸溶液作为电解液。在电解液中,以铝图形44作为阳极进行阳极氧化,形成以标记45表示的多孔状的阳极氧化膜。
在该工序,上部有附着性高的抗蚀剂掩模43,在铝侧面选择地形成阳极氧化膜。该阳极氧化膜能生长数μm厚的膜。本例的膜厚为6000。通过调整阳极氧化的时间,能控制其生长厚度。
接着,除掉抗蚀剂掩模43后,再次形成细密的阳极氧化膜。即,用前述含有重量3%酒石酸的乙二醇溶液作为电解液,再次进行阳极氧化。这样一来,在多孔状的阳极氧化膜45中浸入电解液,则形成具有细密膜质的阳极氧化膜,如图25(C)中46所示。
其中,进行最初始杂质注入。这工序,由于除掉了抗蚀剂掩模43,此时进行最好。通过注入该杂质,形成源区47和区49。在区域48不注入杂质离子。用醋酸,硝酸和磷酸的混合酸,除掉多孔状的阳极氧化膜45。这样,得到如图25(D)所示的状态图。
在得到图25(D)所示的状态后,再次进行杂质离子注入。利用比最初杂质离子注入条件轻的掺杂条件。进行杂质离子注入。在该工序,形成轻掺杂区域(50和51),并且,在图25(D)中,用标号52表示的区域,成为沟道区。接着,用紫外线灯照射强光,使注入杂质离子的区域活化。能用激光代替强光。这样,自对准地形成源区47,沟道区52,漏区49,低浓度杂质区50和51。
其中,图25(D)中标号51表示的区域是称为LDD(轻掺杂漏区)的区域。接着,形成氧化硅膜,或者氮化硅膜或者其叠层作为层间绝缘膜,该例利用氮化硅膜。最好由树脂材料在氧化硅膜或氮化硅膜上形成的层构成层间绝缘膜。以后,形成接触孔,源电极54和漏电极56。这样,制成如图25(E)所示的薄膜晶体管。
《实施例13》本实施例13是关于互补地构成N沟道型薄膜晶体管和P沟道型薄膜晶体管的实施例。例如,在绝缘表面上集成化的各种薄膜集成电路能够得到利用本实施例所示的构成,此外,例如在有源矩阵型液晶显示器件的周围驱动电路能够利用本实施例的构成。
图26表示在实施例13的制造工序图。首先,如图26(A)所示,在玻璃基片57上面形成氧化硅膜或者氧化氮化硅膜作为底膜58。理想的是利用氧化氮化硅膜,本例利用氧化氮化硅膜。接着,没用图表示,利用等离子CVD方法或减压热CVD方法等形成非晶硅膜,本例用减压热CVD方法形成非晶硅膜。
并且,利用与实施例4表示的相同方法,把该非晶硅膜变成结晶硅膜以后,利用形成的热氧化膜,吸收镍元素。接着,在氧和氢的混合气氛中,进行等离子热处理后,把得到的结晶硅膜进行构图,得到有源层(59和60)。再形成构成栅绝缘膜的热氧化膜56。
这样,在得到如图26(A)所示的状态后,形成氧化氮化硅膜61。在利用石英作为基片的情况,希望使用前述热氧化方法仅用热氧化膜也能构成栅绝缘膜。接着,形成4000厚的用于构成栅电极的铝膜,没有用图表示。关于铝膜以外的膜,能够利用可能阳极化的金属,例如钽金属等。在形成铝膜后,利用前述的方法,在其表面,形成极薄的细密的阳极氧化膜。
接着,在铝膜上面设置没有用图表示的抗蚀剂掩模,在形成铝膜的图形后,把得到的铝膜图形作为阳极进行阳极氧化,形成多孔状的阳极氧化膜(64和65)。该多孔状的阳极氧化膜厚度为5000。此外,按照形成细密阳极氧化膜的形成条件再次进行阳极氧化,形成细的阳极氧化膜(66和67)。其中细密的阳极氧化膜66和67的厚度为800。这样,得到图26(B)所示的状态图。
接着,通过干腐蚀除去露出的氧化硅膜61和热氧化膜56,得到图26(C)所示的状态图。其后,利用醋酸,硝酸和磷酸的混合酸,除掉多孔的阳极氧化膜64和65。这样得到图26(D)所示的状态。其中,交替地设置抗蚀剂掩模,在左侧的薄膜晶体管注入P(磷)离子,右侧的薄膜晶体管注入B(硼)离子。
通过注入这些杂质离子,自对准地形成高浓度的N型源区70和漏区73。此外同时形成低浓度的掺磷离子的弱N型区域71,以及同时形成沟道形成区域72。形成弱N型区域71,是因为有残存的栅绝缘膜68。即透过栅绝缘膜68的P离子,被栅绝缘膜68遮蔽一部分。
用同样的原理和方法,自对准地形成强P型源区77和漏区74,同时形成低浓度的杂质区76,还同时形成沟道区75。当细密的阳极氧化膜66和67的膜厚为例如2000的情况,其膜厚在接近沟道形成区的位置,能够形成偏移栅区。
本实施例的情况,由于细密的阳极氧化膜66和67的膜厚薄到1000以下,可以忽略它的存在。这样,照射激光开者强光,使杂质离子注入区域退火,本例用红外线灯照射。接着,如图26(E)所示,形成氮化硅膜78和氧化硅膜79,作为层间绝缘膜,各膜厚度为1000。还有,这种情况,可以不形成氧化硅膜79。
其中,用氮化硅膜覆盖薄膜晶体管。由于氮化硅膜细密,界面特性好,这样的构成,能够提高薄膜晶体管的可靠性。利用旋涂方法由树脂材料形成层间绝缘膜80,其中,层间绝缘膜80厚度为1μm以上。接着形成接触孔,在左侧形成N沟道薄膜晶体管的源极18和漏极82。同时在右侧形成薄膜晶体管的源极83和漏极82。其中,漏电极82成为共同设置的电极。这样得到如图26(F)所示的状态。
如上所述,能够构成具有互补的CMOS结构的薄膜晶体管电路。对于本实施例的构成,由氮化硅膜覆盖薄膜晶体管,并且由树脂材料覆盖该构成。这种构成,使可动离子和水分难于侵入,能够提高耐久性。在形成多层布线的情况,能够防止在薄膜晶体管和布线之间形成电容。
《实施例14》本实施例14是关于由实施例4或实施例5得到的结晶硅膜,通过激光照射,形成看作单晶或实质上是单晶的区域。
首先,如前述实施列所示那样,利用镍元素的作用,得到结晶硅膜。接着,对该膜照射KrF准分子激光,促进其结晶性。这时,用450℃进行加热处理,激光照射条件最适合,则形成看作单晶或者实质上为单结晶的区域。
用这种方法大大促进结晶化的膜,用ESR计测电子自旋密度为3×1017cm-3以下,用SIMS计测最低值,该镍元素浓度为3×1017cm-3以下,具有能看作单晶的区域。该区域不存在实质上的结晶粒边界,能获得与单晶硅片相比的高电气特性。
此外,这个盾作单晶的区域,含有氢为原子5%以下~1×1015cm-3。该值通过SIMS(二次离子分析法)变得很明确。利用这样的看作是单晶或者实质上为单晶的区域来制造薄膜晶体管,能得到与利用单晶片制造MOS型晶体管相比的半导体器件。
《实施例15》本实施例15,涉及前述实施例4的工序,表示在底膜的表面直接掺入镍元素的实施例。这种情况,在非晶硅膜下面保持和镍元素接触。对于本实施例,在底膜形成后,掺入镍元素,首先在底膜的表面,保持和镍元素(该金属元素)接触。作为镍元素的掺入方法,除了使用溶液的方法以外,还能够利用溅射法,CVD方法,以及吸附法。
《实施例16》本实施例是利用镍元素在玻璃基片上得到结晶硅膜的实施例。本实施例,首先利用镍元素的作用形成高结晶性的结晶硅膜。接着,利用热氧化方法在该结晶硅膜上形成含卤素元素的氧化膜。这时,通过氧和卤素元素的作用,把得到结晶硅膜中残存的镍元素吸收到热氧化膜中。
接着,除掉由于上述吸收结果而含有高浓度镍元素的热氧化膜。由此,能够在玻璃基片上一边得到高结晶性,一边得到含镍元素浓度低的结晶硅膜。图27是表示本实施例制作工序图。
首先,在康宁1737基片(变形点为667℃)84上,形成3000厚的氧化氮化硅膜85作为底膜。利用硅烷,N2O气体和氧作为原材料通过等离子CVD方法,形成氧化氮化硅膜。还有,也可以用例如TEOS方法,形成氧化氮化硅膜。还有,也可以用例如TEOS气体,N2O气体,通过等离子CVD方法形成膜。
氧化氮化硅膜具有抑制后序工艺中来自玻璃基片中杂质(在通常半导体制造标情况下,玻璃基片中含有许多杂质)的扩散功能。为了最大限度的抑制杂质的扩散,利用氮化硅膜是最合适的,但是由于应力的关系,氮化硅膜从基片上剥落下来,对于本实施例不适用。此外,能够利用氧化硅膜作为底膜。
其中,对上述底膜85可能进行限制,重点是利用尽可能高的硬度。其结论是,通过对最终得到的薄膜晶体管进行耐久性试验得知,地膜的硬度越硬)(即腐蚀率低),其可靠性越高。其原因是要考虑在制作薄膜晶体管过程中,对来自玻璃基片杂质的遮蔽效果。
另外,在底膜85中,含有微量以氯为代表的卤素元素是有效的。因此,在后续工艺,通过卤元素能够吸收存在半导体层中的促进硅结晶化的金属元素。此外,在形成底膜后,要有效地进行氢处理。还可以有效地在氧和氢的混合气氛中,进行等离子处理。在除掉底膜表面吸收的碳成分后,这能有效地提高以后形成的半导体膜界面的特性。
接着,利用减压热CVD方法,形成500厚的以后成为结晶硅膜的非晶硅膜86。使用热减压CVD方法,在以后能得到优良的结晶硅膜,具体地说,膜质是细密的。除了减压热CVD方法以外,可用等离子CVD方法。
对于其中制造的非晶硅膜,希望膜中的氧浓度为5×1017cm-3~2×1019cm-3。其原因是,在以后吸收促进硅结晶化的金属元素,氧起重要作用。但是,在氧浓度高于上述浓度范围的情况,由于阻碍非晶硅膜的结晶化,必须注意。其它杂质浓度,例如,氮和碳的杂质浓度,要极低。具体地说,必需在2×1019cm-3以下。
在本实施例,把上述非晶硅膜86的厚度作成1600。该膜厚度,如后面所述,要比最终所需厚度还厚是必要的。在只通过加热非晶硅膜86得到结晶的情况,该起始膜(非晶硅膜)86的膜厚为800~5000μm,最理想的是1500~3000。比这膜厚范围厚的情况,由于成膜时间长,成本高。比这膜厚范围薄的情况,结晶不均匀,工艺重复性差。这样,得到如图27(A)所示的状态图。
接着,为使非晶硅膜86结晶化,而掺入镍元素。其中,在非晶硅膜86的表面,涂布含有10ppm(按重量换算)的含镍的醋酸镍水溶液,来掺入镍。作为掺入镍的方法,除利用上述的溶液方法以外,还可能使用溅射方法,CVD方法,等离子处理方法和吸附方法。其中,利用上述的溶液方法,简便,此外,调整金属元素的浓度简单。
通过涂布醋酸镍水溶液,形成如图27(B)所示的水膜87(液膜)。在这种状态,利用没有图示的旋涂方法,甩掉剩余的溶液。这样,在非晶硅膜86的表面,保持和镍元素接触。如果考虑到在后面工序有杂质残留,最好用硫酸镍来代替醋酸镍。其原因是,由于醋酸盐中含有碳,担心在以后加工过程中,在膜中残留碳。通过调整溶液中含镍盐的浓度,来调整掺入镍元素的量。
接着,如图27(C)所示状态中,在450℃~650℃的温度下进行加热处理,使其结晶化。在还原性气氛中进行加热处理,其中,在含氢容积3%的氮气氛中,在620℃,加热处理4小时。这样,使非晶硅膜86结晶化,得到结晶硅膜88。
在通过上述热处理进行结晶的工序中,选用还原气氛,是为了在热处理时,防止氮化物的形成。具地说,镍和氧反应,是为了抑制在膜表面及膜中形成NiOx。
氧在以后吸收工序中和镍结合,在吸收镍时,起重大作用。但是,已证明在结晶化阶段,氧和镍结合,损害结晶化。因为,通过使其加热而结晶的工序,极力控制氧化物的形成是很重要的。
其中,用于上述结晶热处理气氛中的氧浓度,需要ppm数量级,最好在1ppm以下。作为上述结晶在热处理气体中的大部分气体,不限于氮,能够使用氩等非活性气体,或者它们的混合气体。对于上述结晶化热处理温度的下限,从其效果和重复性考虑,最好选为450℃以上。其上限最好选为玻璃基片变形点以下,对于本实施例,在利用变形点为667℃康宁1737玻璃基片的情况,考虑留有一些富余度,其上限选为650℃左右。
对于这一点,可有更高耐热性的材料作为基片,例如,使用石英基片的情况,最高温度到1100℃(理想的是1050℃)。在这种情况,能得到更高结晶性的结晶硅膜,并且,能够得到更短时间的结晶性硅膜。这样,如图27(C)所示,形成结晶性硅膜88。
得到上述结晶硅膜88后,再进行加热处理。通过加热处理,形成含有卤素的热氧化膜。其中在包含有卤素元素的气氛中,进行加热处理。这个工序是用于除掉在结晶初期按要求掺入结晶性硅膜中的镍元素。
最好用比前述结晶加热温度高的温度进行该加热处理。这是有效地吸收镍的重要条件。这种热处理也可以用和进行结晶的热处理温度相同的温度,但是更高的温度得到更大的效果,得到更优良的结晶。
这种加热处理,满足上述条件的温度是550℃-1100℃,理想的是700℃-1050℃,更好的是800℃-980℃。其原因是,低于600℃,效果小,大于1050℃,用石英作的夹具变形,影响对装置的负担(这意味着980℃以下是理想的,利用更高的夹具的情况,能在1100℃进行实施)。此外,这种加热处理温度的上限,限制到使用基片的变形点。如果利用基片变形点以上的温度进行热处理,必须注意基片的变形。
其中,由于使用变形点为667℃的康宁1737玻璃基片,上述加热温度为650℃。把含有容积5%HCl的气氛作为第2次加热处理的气氛。理想的是采用HCl与氧的比例为0.5-10%(体积%)的混合气氛。如果大于该浓度进行混合,则必须注意膜的表面产生与膜厚同样等程度以上的凹凸不平的变化。
按这种条件进行加热处理,如图27(D)所示,形成含氯的热氧化膜89。本实施例,加热12小时,形成200厚的热氧化膜89。
形成热氧化膜89以后,结晶硅膜86的厚度变成约1500。该加热处理,加热温度为600℃-750℃,处理时间(加热时间)为10-48小时,典型的为24小时。加热温度为750℃-900℃时,处理时间为5-24小时。典型的为12小时。加热温度为900℃-1050℃时,处理时间为1-12小时,代表的为6小时。不用说,这些处理时间,能得到适合的氧化膜厚度。
该工序,通过氧和卤素的作用,特别是通过卤素的作用,把镍吸收到结晶硅膜以外。其中,特别是通过氯的作用把镍元素吸收到形成的自然氧化膜中。该吸收,存在于结晶硅膜中的氧起重要作用。即,通过氯和镍相结合,形成氧化镍,起到吸收作用,有效地吸收镍。
如上所述,如果氧浓度过大,如图27(C)所示的结晶化工序,其成为阻碍非晶硅膜86的重要因素。然而,如上所述,氧的存在,在吸收镍的过程中,起重要作用。因此,对于存在于初始膜的非晶硅膜的氧浓度的控制是很重要的。本实施例选择Cl作为卤元素,表示利用HCl作为其掺入方法的实施例。除HCl以外的气体,能够选自HF,HBr,Cl2,F2,Br2中的一种或多种的混合气体。除此以外,通常能够利用卤素的氢化物。
这些气体,最好是在气氛中的含有量(容量)为HF是0.25-5%,HBr是1-15%,Cl2是0.25-5%,F2为0.125-2.5%,Br2为0.5-10%。作为上述范围以下的浓度,不能得到有用的效果。超过上述范围上限的浓度,使结晶硅膜表面变成凹凸不平。
经过该工序,能使镍元素的浓度变到初始期的1/10以下。这意味着,和没有通过卤素元素进行吸收的情况比较,通过卤素元素吸收能使镍含量下降到1/10以下。这种效果,除镍元素以外,利用其它的促进硅结晶化的金属元素,同样得到这种效果。此外,在上述工序,由于在氧化膜中吸收镍、氧化膜中镍浓度,和其区域相比,当然变高。
此外,在结晶硅膜88和氧化膜89界面之间附近,观察到镍元素变高的倾向。主要进行吸收区域是处在结晶硅膜和氧化膜之间界面附近的氧化膜一例,要考虑这种因素。在两膜界面附近进行吸收,要考虑界面的应力和缺陷存在的主要因素。
接着,除去含有高浓度镍的氧化膜89。能够利用缓冲氢氟酸,其它氢氟酸的湿腐蚀方法,和用干腐蚀方法,除掉氧化膜89。本例用缓冲氢氟酸进行腐蚀。
这样,如图27(E)所示,得到降低含镍浓度的结晶硅膜90。这种情况,在得到结晶硅膜90的表面附近,由于含有比较高的镍元素,通过上述腐蚀,有效地略微过腐蚀结晶硅90的表面。
《实施例17》本实施例17,涉及实施例16的结构中,由图27(C)所示的热处理工序得到结晶硅膜后,利用KrF准分激光器(波长为24nm)照射激光,是关于促进其结晶性情况的例子。本实施例,在进行如图27(C)所示热处理工序后,通过照射激光进行退火,其它工序与实施例16相同,如图27(E)所示,得到减低含镍浓度的结晶硅膜90。
如图27(C)所示,在加热处理温度低处理时间短的情况即,由于制造工序的原因,限制加热温度,限制加热时间的情况,不能得到必要的结晶性。这样的情况,通过照射激光进行退火,能得到必要的结晶性。这种情况的照射激光,和由此使非晶硅直接结晶化的情况相比较,许可照射激光的条件范围宽,能使其重复性好。
上述激光照射,在如图27(C)所示的工序后进行。如图27(A)所示,作为初始膜的非晶硅膜86,制成200-2000厚是很重要的。其原因是,非晶硅膜厚度薄,则通过照射激光进行退火的效果好。使用激光不特别限制,理想的是使用紫外区域的准分子激光。具体地说,例如能利用KrF准分子激光(波长248nm)和Xecl准分子激光(波长为308nm)。此外,不用激光,也能利用例如紫外线灯照射强光,进行退火。
《实施例18》实施例18是利用红外线灯光代替实施例17中激光的实施例。本实施例,在如图27(C)的热处理后,用红外线灯照射进行退火,其它工序和实施例16相同,如图27(E)所示,得到降低含镍浓度的结晶硅膜90。利用红外线的情况,能不过度加热玻璃基片地选择地加热硅膜。因此,能有效地进行热处理,并且不因热损伤玻璃基片。
《实施例19》实施例19,涉及实施例16的构成,是利用Cu作为促进硅结晶化的金属元素的实施例。这种情况,可以用2醋酸铜[Cu(CH3COO)2]和2氯化铜(CuCl2·2H2O)等作为掺入铜的溶液,本实施例利用2醋酸铜[Cu(CH3COO)2。其它工序和实施例16相同,如图27(E)所示,得到降低含镍浓度的结晶硅膜90。
《实施例20》实施例20,涉及实施例16的构成是用石英基片作为基片的实施例。本实施例,作为初始膜的非晶硅膜86的膜厚为2000。如图27(C)所示,热氧化膜形成时的温度为950℃。这种情况,氧化膜形成的速度快,不能得到充分的吸收效果,气氛中的氧浓度低。具体地说,氮气氛中氧浓度为容积的10%,在氧中含有HCl浓度为容积的3%的气氛中进行热氧化。
处理时间为300分。在这样条件下,能得到500厚的热氧化膜。同时获得吸收的必要时间。在含有氧容体的97%含HCl为容积的3%的气氛中,加热温度为950℃的情况,经过30分热处理得到500厚的热氧化膜。
上述情况,因不能充分地吸收镍,所以在结晶硅膜内留下比较高浓度的镍元素。从而,调整本实施例的氧温度,获得充分吸收的时间,理想地形成热氧化膜。利用这种方法,在变化热氧化膜厚度和形成温度的情况,通过调整气氛中的氧浓度,能够设定吸收的必要时间。
《实施例21》实施例21是进行与实施例16不同形态结晶生长的实施例。本实施例,是有关利用促进硅结晶的金属元素,采用在与基片平行方向进行结晶生长的方法,进行横向生长的实施例。图28是表示实施例21的制作工序图。
首先,在康宁1737玻璃基片91,形成厚度为3000的氯化氮化硅膜92。可以用石英等基片作为基片。接着,用减压热CVD方法,形成厚度为2000的将变成结晶硅膜的初始膜的非晶硅膜93。该非晶硅膜的厚度,理想的是为2000以下,如前所述那样。可以用等离子CVD方法代替减压热CVD方法。
接着,形成1500厚的氧化硅膜,没有用图表示,通过对其构图,形成掩模94。在该掩模、形成用标记95表示的开口。在开口95区域,露出非晶硅膜93。开口95从图面的深度沿长度方向形成细长的长方形。开口95的宽为20μm以上是适合的,长度方向可以任意决定,但是本实施例,开口95的宽为30μm,长为200μm。
接着,如同前述实施例16一样,按重量换算涂布含有镍元素的醋酸镍溶液。利用没有图示的旋转器甩干、除掉多余的溶液。这样,醋酸镍溶液,如图28(A)的点线96所示,在露出的表面,保持和非晶硅膜93接触。
接着,在含有容积的3%氢和不含氧的氮气氛中,在640℃、加热4小时。这样,如图28(B)97所示,在与基片平行的方向,进行结晶生长。从掺入镍元素的开口95区域向周围进行结晶生长。在与基片平行的方向进行的结晶生长,在本说明书中,称为横向生长或者横向的生长。
本实施例,按照上述条件,能进行100μm以上的横向生长。这样一来,得到横向生长区域的硅膜98。在开口形成区域,从硅膜表面向底面沿垂直方向进行纵向生长。接着,除掉用于选择地掺入镍元素的由氯化膜形成的掩模94。这样一来,得到如图28(C)所示的状态。这种状态,在硅膜98中,存在有纵向区域,横向生长区域,结晶区域以及没有结晶区域(非晶区域)。
在上述状态,在含有容积的3%HCl的氧气氛中,在650℃加热处理12小时。在该工序,形成含有高浓度镍元素的氧化膜99。与此同时,硅膜98中的镍浓度能相对地减少。其中,形成200厚的热氧化膜99。该热氧化膜中,由于氧和氯的作用,特别是氯的作用,包含有高浓度的被吸收的镍元素。由于形成热氧化膜99,结晶性硅膜98,变成为1900厚。
接着,除掉含有高浓度的热氧化膜99。在这种状态的结晶硅膜,面向结晶硅膜的表面,存有高浓度分布的镍元素。因此,除掉该热氧化膜后,腐蚀结晶硅膜的表面,用来除掉存有高浓度镍的区域。即,由于腐蚀存有高浓度镍元素的结晶硅表面,能够得到更低镍浓度的结晶硅膜。
其次,通过构图,由横向生长区域形成图形100。其中,在图形区100不存在纵向生长区域,非晶硅区域,横向生长先头区域是重要的。其原因是,在纵向生长和横向生长区域的先头区域中,镍元素的浓度相对的高,非晶区域的电性能差。
这样得到的横向生长区域,残留在图形区100中的镍浓度,和实施例16情况相比,能够更低。其原因是在横向上生长区域所含金属浓度开始就低。具体地说,由横向生长区域形成的图形区100中的镍元素浓度能容易地作到1017cm-3以下的数量级。
此外,利用横向生长区域形成薄膜晶体管的情况,和利用如实施例16所示的纵向生长(在实施例16的情况,全面纵向生长)区域相比较,能得到有更高迁移率的半导体器件。在形成图28(E)所示的图形后,再进行腐蚀处理,用来除掉存在图形表面上的镍元素。
另一方面,把结晶性硅膜形成岛状后,在含有卤素的氧化气氛中进行热氧化,其后,除掉没用的热氧化膜。按这样构成,确实得到热氧化膜的吸收效果,由于,除掉热氧化膜时腐蚀底膜,该腐蚀腐蚀掉岛状结晶硅膜的下侧。
这种状态,成为以后造成半导体器件布线断线和元件不良的因素。接着,对以上形成的图形区100,形成热氧化膜101。热氧化膜101,在构成薄膜晶体管的情况,成为以后栅绝缘膜的一部分。
《实施例22》实施例22是利用本发明的结晶硅膜、制造设置有有源矩阵型液晶显示器件和有源矩阵型EL显示器件象素区域的薄膜晶体管。图29是本实施例制造工序图。
首先,根据实施例16及实施例21所示的工序,在各玻璃基片上形成结晶硅膜。然后在各基片上制造薄膜晶体管。下面,利用实施例16所示的结晶硅膜的情况和利用实施例21所示的结晶硅膜情况相同。根据结晶硅膜的构图,得到图27(A)所示的状态。如图29(A)所示的状态,由玻璃基片103,底膜104,结晶硅膜105构成有源层。
接着,在氧和氢混合减压气氛进行等离子处理。通过高频放电产生等离子区。通过等离子处理,除掉存在有源层105露出表面上的有机物。正确地说,由氧等离子,使有源层表面吸着的有机物氧化,通过氢等离子处理,使氧化的有机物还原,进而气化。这样,除掉存在有源层105露出表面上的有机物。除掉该有机物,则非常有效地抑制有源层105表面上存在的固定电荷。
因为存在上述有机物,引起固定电荷、阻碍器件的工作,成为特性不稳定的主要因素,存在的有机物少是非常有用的。接着,除掉有机物后,在640℃温度的氧气氛中进行热氧化,形成100的热氧化膜102。该热氧化膜与半导体(有源层)的界面特性高,在以后,成为栅绝缘膜的一部分。这样,得到图29(A)所示状态。
以后,形成1000厚的构成栅绝缘膜的氧化氮化硅膜106。作为成方法,例如,使用硅烷和N2O混合气体的等离子CVD方法或者使用TEOS和N2O混合气体的等离子CVD等方法,但是本实施例利用N2O和硅烷的混合气体。氧化氮化膜106和热氧化膜102合起来作为栅绝缘膜。
在氧化氮化硅膜中含有卤素元素是有效用的。即,由于卤素元素的作用,固定镍元素,则能防止存在有源层中镍元素(其它促进硅结晶化的金属元素)的影响,防止作为栅绝缘膜的绝缘膜的功能下降。
作为氧化氮化硅膜,由于其细密的膜质,进入栅绝缘膜的金属元素,没有多大意义。如果在栅绝缘膜中进入金属元素,则绝缘膜功能降低,成为薄膜晶体管特性不好和离散的原因。作为栅绝缘膜,采用通常使用的氧化硅膜。
产生栅绝缘膜功能的氧化氮化硅膜106形成后,用溅射法形成以后栅电极的铝膜,(没有用图表示,在以后构图后,成为图形107)。在铝膜中含有重量0.2%钪。在铝中含钪后,在后续工序中能抑制小丘和晶须的产生。其中,小丘和晶须,意味着通过加热,产生铝膜的异常情况,形成针状或刺状的突出部分。
在形成铝膜后,则形成没有图示的细密阳极氧化膜。该阳极氧化膜,在以重量3%酒石酸的乙二醇溶液作为电解液中形成。即,在该电解液中,以铝膜为阳极,白金为阴极,进行阳极氧化,在铝膜的表面形成细密的阳极氧化膜。没用图表示的细密的阳极氧化膜的厚度为100。该阳极氧化膜具有提高其后形成的抗蚀剂掩模附着性的作用。能通过调整阳极氧化时施加的电压,来控制阳极氧化膜的膜厚。
接着,形成抗蚀剂掩模108,构图铝膜,形成用标107表示的图形。这样得到图29(B)所示的状态。其中再次进行阳极氧化。其中,用重量3%的草酸水溶液作为电解溶液,在该电解溶液中,以铝膜图形107作为阳极的阳极氧化,形成用110表示的多孔状阳极氧化膜。
在上述工序,以在上部密着性高的抗蚀剂掩模108存在的关系,在铝图形的侧面,选择地形成阳极氧化膜110。该阳极氧化膜的膜厚为数μm。此处其膜厚为6000。能通过控制阳极氧化的时间来控制其生长距离。接着,除掉抗蚀剂掩模108。
接着,再次形成细密的阳极氧化膜。即用含有前述的重量3%的酒石酸的乙二醇溶液中作为电解溶液,进行阳极氧化。这样,在多孔状的阳极氧化膜110中(浸入)进入电解溶液,形成用111表示的有细密膜质的阳极氧化膜。该阳极氧化膜111的膜厚为1000。通过调整施加电压来控制该膜的厚度。
其中,腐蚀露出的氧化氮化硅膜106和热氧化膜102。对于该腐蚀利用干腐蚀。接着,利用醋酸、硝酸和磷酸的混合酸,除掉多孔状的阳极氧化膜110。这样得到图29(D)所示的状态。以后,进行杂质注入。其中,为了制造N沟道薄膜晶体管,利用等离掺杂法进行P(磷)离子注入。
在该工序,形成重掺杂的113区域和117区域,轻掺杂区域114和116区域。其原因是,残留的氧化硅膜112的一部分起半透明掩模的作用,因此遮蔽注入离子的一部分。接着,进行激光或强光的照射,使注入杂质区域活化,本例使用激光。这样,自对准地形成源区113,沟道区115,漏区117,低浓度杂质区114和116。
这里,用符号116表示的区域,称为LDD(轻掺杂漏区)。在细密的阳极氧化膜111的膜厚为2000以上的情况,根据该膜厚形成的区域115的外侧,能形成以上偏移区域。本实施例形成的偏移区,由于其尺寸小,其存在贡献小,由于图面复杂没有示出。
接着,作为层间绝缘膜,形成有氧化硅膜,氮化硅膜,以及其叠层膜,本实施例利用氮化硅膜。作为层间绝缘膜,最好由氧化硅膜或者氮化硅膜上的树脂层构成。接着形成接触孔,源电极119,漏电极120。这样,制成如图29(E)所示的薄膜晶体管。
《实施例23》本实施例23涉及实施例22的构成,是关于形成栅绝缘膜106的方法的实施例。在用石英基片和高耐热玻璃基片作为基片的情况,利用热氧化方法作为形成栅绝缘膜的方法。热氧化方法,由于膜质细密,对得到稳定的薄膜晶体管非常有用。即,用热氧化法形成的氧化膜,作为绝缘膜,由于细密、内部存在可动电荷少是作为栅绝缘膜的最适合一种氧化膜。
本实施例,形成热氧化膜的方法是,在950℃氧化气氛中进行加热处理。此时,在氧化气氛中混合HCl是有效的。这样一来,在形成氧化膜的同时,能使存在有源层中的金属元素固定。在氧化气氛中混合N2O,能有效地形成含有氮的热氧化膜。其中,如果混合N2O气体的比例最适合,可能得到由热氧化方法形成的氧化氮化硅膜。在本实施例形成热氧化膜102不是特别必需的。
《实施例24》实施例24是用与上述实施例22-23所述工序不同的工序,制造薄膜晶体管的实施例。图30表示制造本实施例的工序。首先,按照前述实施例16或实施例17所示的工序,在玻璃基片上形成结晶硅膜。然而通过对其构图,得到如图30(A)所示的状态。
接着,在混合氧和氢的减压气氛中进行等离子处理。
如图30(A)所示状态,由玻璃基片122,底膜123,结晶硅膜124构成有源层。标记121所示部分是在除掉用于吸收的热氧化膜后,再次形成的热氧化膜。
接着,形成1000厚的构成栅绝级膜的氧化氮化硅膜125。对于成膜方法,利用硅烷和N2O混合气体,或者,TEOS和N2O混合气体的等离子CVD方法等,本例使用前者。氧化氮化硅膜125和热氧化膜121一起形成栅绝缘膜。除了氧化氮化硅膜以外,还能利用氧化硅膜。
由于连续地形成起栅绝缘膜作用的氧化氮化硅膜125,以后用溅射方法形成作为栅电极的铝膜,其没有用图表示。在该铝膜中,含有重量0.2%的钪。形成铝膜后,形成没有用图表示的细密的阳极氧化膜。以含有重量3%酒石酸的乙二醇溶液作为电解液,形成该阳极氧化膜。即,在该电解液中,以铝作为阳极,白金作为阴极,进行阳极氧化,在铝膜的表面,形成细密膜质的阳极氧化膜。
上述没有图示的细密阳极氧化膜的厚度为100。该阳极氧化膜具有提高与以后形成的抗蚀剂掩模附着性的作用。能通过在阳极氧化时施加的电压来控制阳极氧化膜的厚度。接着形成抗蚀剂掩模126,这样,形成铝膜图形127。
其中,再进行阳极氧化。该阳极氧化、用含有重量3%的草酸溶液作为电解溶液。在该电解溶液中,用铝图形区127作为阳极进行阳极氧化,形成多孔状阳极氧化膜128。在该工序,上面存在附着性高的抗蚀剂掩模126,在铝图形的侧面,选择地形成阳极氧化膜128。
该阳极氧化膜能生长成数μm。本例的阳极氧化膜的厚度为6000。通过调整阳极氧化的时间来控制其生长距离。接着,除掉抗蚀剂掩模126以后,再次形成细密的阳极氧化膜。即,以前述的含有重量3%的酒石酸的乙二醇溶液作为电解液、进行阳极氧化。因此,由于在多孔的阳极氧化膜128中浸入电解溶液,形成用标记129表示的细密膜质的阳极氧化膜。
接着,进行初始的杂质离子注入。最好在除掉抗蚀剂掩模126后,再进行该工序。由于注入杂质离子,形成源区130和漏区132。在标记131所示的区域不注入杂质离子。接着,用醋酸和硝酸的混合酸,除掉多孔状的阳极氧化膜128。这样,得到如图30(D)所示的状态。
以后,再次进行杂质离子注入。该杂质离子注入按照比最初杂质离子注入条件轻的掺杂条件进行。在该工序,形成轻掺杂区133和134。这样,形成沟道形成区135。接着用红外线灯照射强光,使注玫杂质离子的区域活化。能用激光代替该强光。这样,自对准地形成源区130,沟道区135,漏区132、低浓度杂质区134和133。
其中,标号134表示的区域称为LDD(轻掺杂漏区)区域。接着,作为层间绝缘膜136,由氧化硅膜,或氮化硅膜,以及其叠层形成,本例形成氮化硅膜。作为层间绝缘膜,由在氧化硅膜或氮化硅膜上形成的树脂层构成。接着,形成接触孔,源电极137和漏电极138。这样,如图30(E)所示,制成薄膜晶体管。
《实施例25》实施例25是互补地构成N沟道型薄膜晶体管和P沟道型薄膜晶体管。图31表示实施例25的制作工序。本实施例的构成,能用作例如在绝缘表面上集成各种薄膜集成电路。例如能用作有源矩阵型液晶显示器件的驱动电路。
首先,在图31(A)所示的玻璃基片140上面,形成氧化硅膜或者氮化硅膜作为底膜141。理想的是利用氧化氮化硅膜,本例使用该膜。利用等离子CVD方法或者减压热CVD方法,形成没有图示的非晶硅膜,本例利用减压热CVD方法。利用实施例16所示的方法,使该非晶硅膜变成结晶硅膜。
接着,在氧和氢的混合气氛中进行等离子处理,把得到的结晶硅膜构图,得到有源层142和143。这样,得到图31(A)所示的状态。为了抑制移动到有源层侧面载流子的影响,在图31(A)所示的状态,在含有容积3%HCl的氮气氛中,在650℃加热处理10分钟。
如果在有源层侧面,因为存在金属元素而产生陷阱能级,引起OFF(截止)电流特性恶化,通过上述处理,用于使有源层侧面能级密度降低。形成构成栅绝缘膜的热氧化膜139和氧化氮化硅膜144。其中,用石英作为基片的情况,希望只通过前述热氧化的方法形成的热氧化膜,来构成栅绝缘膜。
接着,形成4000厚的以后构成电极的没有图示的铝膜。除了铝膜以外,可能利用可阳极氧化的金属(例如钽)。形成铝膜后,按照前述的方法,在其表面形成极薄的细密的阳极氧化膜。接着在铝膜上面设置没有图示的抗蚀剂掩模,对铝膜进行构图。这样,以得到的铝图形作为阳极进行阳极氧化,形成多孔的阳极氧化膜147和148。
上述多孔状阳极氧化膜的厚度作成5000。用形成细密阳极氧化膜的条件,再次进行阳极氧化,形成细的阳极氧化膜149和150。其中,细密的阳极氧化膜149和150的膜厚为800。这样,得到图31(B)所示的状态。利用干氧腐蚀除掉露出的氧化硅膜144和热氧化膜139。得到图31(C)所示的状态。
得到图31(C)所示的状态后,用醋酸,硝酸和磷酸混合酸,除掉多孔状的阳极氧化膜147和148。这样,得到图31(D)所示的状态。其中,交替地设置抗蚀剂掩模,左侧的薄膜晶体管注入P(磷)离子,右侧的薄膜晶体管注入B(硼)离子。通过注入杂质离子,自对准地形成高浓度的N型源区153和漏区156。
此外,同时形成低浓度P离子掺杂弱N型区154,并且同时形成沟道区155。形成具有弱N型区域154的原因是存在残留的栅绝缘膜151。即其原因是由栅绝缘膜151遮蔽透过栅绝缘膜151P离子的一部分造成的。
根据同样的原理和技巧,自对准地形成强P型的源区160和漏区157。同时形成低浓度杂质区159、沟道区158。在细密的阳极氧化149和150的膜厚为例如2000的情况,由其厚度能形成和沟道区域相接的偏移栅区。
在本实施例的情况,由于细密的阳极氧化膜149和150的膜厚薄到1000以下,能够忽略其存在。接着,照射激光,使注入杂质离子的区域退火。能够用强光代替激光照射。接着如图31(E)所示,形成氮化硅膜161和氧化硅膜162。各膜的厚度为1000。此外,可以不形成氧化膜162。
其中,由氮化硅膜覆盖薄膜晶体管。由于氮化硅膜细密,界面特性好,按照这样的构成,能够形成高可靠性的薄膜晶体管。用旋涂方法形成由树脂材料组成的层间绝缘膜1630。其中,层间绝缘膜163的厚度为1μm。
接着,形成接触孔,在左侧形成N沟道薄膜晶体管源电极164和漏电极165,同时在右侧形成薄膜晶体管的源电极166和漏电极165,如图31(F)所示。其中,漏电极165为公用。这样,能够形成互补的CMOS结构的薄膜晶体管电路。
对于本实施例的构成,用氮化膜覆盖薄膜晶体管,并且用树脂材料覆盖薄膜晶体管。根据该构成,能使抵抗可动离子和水分侵入的耐久性高。在形成多层布线的情况,能够防止薄膜晶体管轴布线之间的电容的形成。
《实施例26》实施例26涉及由实施例16或者实施例17得到的结晶硅膜,通过激光照射,形成看成单晶或者实质上为单晶的区域。
首先,如实施例16所示,利用镍元素的作用,得到结晶硅膜。接着,对该膜进行激光照射,促进其结晶生长。其中,利用KrF准分子激光作为激光。此是此用450℃以上的温度进行加热处理,由于激光照射条件最适合,形成看作单晶或者实质上为单晶的区域。
由上述方法大大促进结晶的膜,用ESR计测得到的电子自旋密度在3×1017cm-3以下,用SIMS计测得到的镍元素浓度为3×1017cm-3以下作为最低值,成为能看作单晶的区域。这个区域不存在实质上为结晶的晶粒边界,能得到与单晶硅片相比的高电气特性。
上述看成单晶区域,含有氢为5原子%以下~1×1015cm-3。用SIMS(2次离子分析方法)计测能明确得知其值。利用这样的单晶或者看成单晶的区域,制造薄膜晶体管,能得到与利用单晶片制造MOS型晶体管相比的半导体器件。
《实施例27》实施例27是涉及实施例16的工序,并且在底膜表面直接掺入镍元素的实施例。这种情况,在非晶硅膜的下面,保持和镍元素接触。本实施例,在底膜形成后,通过涂布醋酸镍水溶液掺入镍元素,首先在底膜表面,保持和镍元素(该金属元素)接触。其它工序和实施例16的情况一样,制成如图27(E)所示的薄膜晶体管。作为上述掺入镍元素的方法,除了用溶液的方法以外,还能用溅射方法,CVD方法以及吸附法。
《实施例28》实施例28是在玻璃基片上,首先用镍元素得到结晶硅膜的实施例。在本实施例,首先由于镍元素的作用,得到高结晶性硅膜后,照射激光,提高膜的结晶特性、同时使局部集中的镍元素扩散。即消除的聚集状态。
接着,利用热氧化方法,在上述结晶硅膜上形成含有卤素的氧化膜。此时,由于氧及卤素的作用,在热氧化膜中吸收上述结晶硅膜中残留的镍元素。同时,先照射激光分散镍元素,有效地进行吸收。接着,除去由于吸收产生的含有高浓度镍的热氧化膜。这样一来,即得到了基片上的高结晶性又得到了含低浓度镍元素的结晶硅膜。
图32是表示本实施例的制造工序图。首先,在康宁1737玻璃基片(变形点667℃)167上,形成3000厚的氧化氮化硅膜168作为底膜。用硅烷,N2O气体和氧的混合气体作为原料气体,利用等离CVD,形成氧化氮化硅膜。以TEOS和N2O气体的混合气体作为原料气体,也是可以的。
上述的氧化氮化硅膜,具有抑制后续工序中玻璃基片杂质(在常规半导体制作标准下,半导体基片中含有大量的杂质)的外扩散。为了最大限度地抑制杂质扩散,要利用合适的氮化硅膜,但是氮化硅膜,由于应力关系,从基片上翻落下来,因而不实用。也能够利用氧化硅膜作为底膜。
此外,该底膜168尽可能具有高硬度是重点要求。通过对最终得到的薄膜晶体管的耐久试验得出结论是,底膜的硬度越硬,(即腐蚀透率小),则可靠性高。考虑的理由是,在制造薄膜晶体管的工序中,能有效地遮蔽玻璃基片杂质的外扩散。
此外,在底膜168,微量地含有以氯为代表的卤素元素是有效的。这样一来,在后续工序,能通过卤素元素吸收存在半导体层中的促进硅结晶化的金属元素。形成底膜后,进行氢等离子处理是有效的。这能有效地除去吸附在底膜表面的碳,提高与以后形成半导体膜的界面特性。
接着,用减压热CVD方法,形成500厚的以后成为结晶硅膜的非晶硅膜169。用减压CVD方法得到的非晶硅膜,在以后得到的结晶硅膜优良,具体地说,膜质细密。作为减压CVD以外的方法,能用等离子CVD方法。其中制造的非晶硅膜,希望膜中的氧浓度为5×1017cm-3-2×1019cm-3。其原因是在以后吸收金属元素(促进硅结晶化的金属元素)的工序,氧起重要作用。但是要注意,在氧浓度比上述浓度范围高的情况,阻碍非晶硅膜的结晶。
此外,其他杂质浓度,例如,氮和碳杂质浓度可以极低。具体地说,要在2×1019cm-3以下。该非晶硅膜的厚度上限为2000。其原因是,太厚的膜对以后进行的激光照射的效果不利。厚膜不利的原因是照射硅膜的激光大部分,在膜的表面被吸收。非晶硅膜169的激光大部分,在膜的表面被吸收。非晶硅膜169的下限,根据采用什么成膜方法来确定、实用的厚度200。
接着,为使非晶膜169结晶,掺入镍元素。其中,通过在非晶硅膜169表面,涂布含有1ppm(重量换算)镍的醋酸镍水溶液,来掺入镍。作为掺镍元素的方法,除了上述的溶液方法以外,还能用溅射方法,CVD方法,等离子处理方法和吸附方法。
其中,使用上述溶液的方法简便,调整金属元素浓度简单。如图32(A)中标记170所示,通过涂布醋酸镍水溶液,形成醋酸镍盐溶液的水膜。得到这种状态后,利用没有图示的旋转器甩干多余的溶液。这样一来,在非晶硅膜169表面,保持和镍元素接触。
在以后的加热工序,如果考虑到杂质的残留,理想的是利用例如硫酸镍代用醋酸镍水溶液。其原因是,担心由于醋酸镍盐水溶液中含有碳,在以后的加热工序因碳化而残留在膜中。能够通过调整溶液中镍盐的浓度,来调整掺入镍元素的数量。
其次,在图32(B)所示的状态,在550℃-650℃进行加热处理,形成使非晶硅膜169结晶的晶硅膜171,但是该处理的温度,最好是玻璃基片形变点以下的温度进行。其中,使用的康宁1737玻璃基片形变点是667℃,所以为了留有富余度,其上限最好设为650℃。此外,该加热处理是在还原气氛中进行。对于本实施例,加热处理的气氛为含有3容量%氢的氮气氛,加热温度为620℃,加热时间为4小时。
在利用上述加热处理的结晶工序,以还原气氛进行热处理,这是为了防止形成氧化物。具体地说,为了抑制镍和氧反应,在膜的表面和膜中形成NiOx。氧在以后吸收工序中和镍相结合,对镍的吸收起巨大作用。
但是证明了在该结晶化阶段,氧和镍相结合,阻碍结晶。因而,努力控制形成氧化物是很重要的。为此,用于上述结晶加热处理气氛中的氧浓度,为ppm数量级,理想的是要在1ppm以下。
作为上述结晶化热处理气氛大部分的气体,除了氮以外,还可利用氩气等惰性气体,或者这些气体的混合气体。通过上述热处理结晶后,镍元素由于某种程度的集聚而残存下来。对于镍元素某种程度的残存情况,已由TEM(透射型电子显微镜)观察到。还不清楚镍元素因某种程度集聚而残存的原因。但是认为和某种的结晶机理有关。
接着,如图32(C)所示,照射激光。其中采用下述照射方法,利用KrF准分子激光(波长为248nm),以线状的激光束形状进行扫描。通过这样的激光照射,使通过前述热处理结晶化的在局部集中的镍元素,在膜171中有某种程度的分散。即通过照射激光消除了镍元素的集聚,使镍元素分散。
接着,如图32(D)所示,再次进行加热处理。为形成吸收镍元素的热氧化膜,进行该热处理。其中,在含有卤素的气氛中进行加热处理。具体地说,在含有容积5%HCl的氧气氛中进行加热处理。该工序是从结晶硅膜171中,除掉在结晶初期掺入的镍元素(其它的促进硅结晶化的金属元素的情况相同)。
用比前述结晶加热处理高的温度进行上述加热处理)。这是有效地进行吸收镍的重要条件。用为进行结晶而加热处理温度相同和以下的温度、效果不好。
用满足上述条件的600°-750℃进行该加热处理。这个工序如果在高于600℃温度的情况,能够得到显著的吸收镍的效果。在实施例在650℃温度下进行。该工序利用前述的激光照射分散镍元素,有效地在氧化硅膜中吸收镍元素。加热处理温度的上限,限制到使用玻璃基片的变形点。使用玻璃基片变形点以上的温度进行热处理,要注意基片的变形。
此外,HCl对氧的混合比例,最好为容积的0.5-10%要特别注意,如果在上述浓度以上混合HCl,在膜的表面出现与膜厚相同程度的凹凸不平状态。用上述条件进行加热处理,如图32(D)所示,形成含氯的热氧化膜172。本实施例,加热处理时间为12小时,热氧化膜厚度为100。
形成热氧化膜172,结晶硅膜169的膜厚变成约450。这种加热处理,加热温度为600°-750℃的情况,处理时间(加热时间)为10-48小时,典型的为4小时。不言而喻,可以根据要得到的氧化膜厚度适当的设定处理时间。在该工序,由于氧及卤素元素的作用,把镍吸收到硅膜外面。其中,特别是由于氯的作用,在形成的热氧化膜172中吸收镍元素。
上述吸收和氧有关。该吸收,在结晶硅膜中存在的氧起重要作用。即氧和镍结合,形成氧化镍,由于氯的作用,有效的吸收镍。对于前述的氧,如果其浓度过高,如图32(B)所示的结晶化工序,阻碍非晶硅膜169的结晶。但是,如上所述,氧的存在,在吸收镍的过程,起重要作用。因此,控制作为初始膜的非晶硅膜中存在的氧浓度是重要的因素。
本实施例,选择氯作为卤素元素,利用氯作为掺入方法的实施例。能够利用HF、HBr、Cl2、F2、Br2中的一种或者多种气体,作为HCl以外的气体。通常,能够利用卤素的氢化物。这些气体,在气氛中的理想含量(按体积)是,HF为0.25-5%,HBr是1-15%,Cl2含量是0.25-5%,F2是0.125-2.5%,Br2是0.5-10%。
如果在上述范围以下,不能得到有效的作用,相反,如果在上述范围以上,硅膜表面凸凹不平。按经过该工序,镍浓度能在初期的1/10以下。这意味着,和没有进行任何利用卤素元素吸收的情况相比较,可使镍元素在1/10以下。这种效果,如用其它金属元素也得到同样的效果。在上述工序,由于形成的氧化膜吸收镍元素,氧化膜中的镍浓度和其它区域比较,当然变高。
在结晶硅膜171和热氧化硅膜172的界面附近,观察到镍元素变高的倾向。其原因是,主要吸收镍的区域是在结晶硅膜和氧化硅膜界面附近的氧化膜一侧造成的。之所以在两者界面附近进行吸收主要是因为界面附近存在应力和缺陷。
接着,除去含有高浓度镍的氧化膜172。利用缓冲氢氟酸(其它氢氟酸系列的腐蚀剂)进行腐蚀和利用干腐蚀,除掉氧化膜172,但本实施例,利用缓冲氢氟酸进行腐蚀。
这样如图32(E)所示,得到降低浓度的结晶硅膜173。由于在得到的结晶硅膜173表面附近,含有较高浓度的镍元素,再进行上述氧化膜172的腐蚀,则有效地稍微过腐蚀结晶硅膜173。
除掉热氧化膜172后,再照射激光,有效地再次促进已得到结晶性的硅膜173的结晶性。即吸收镍元素以后,再次照射激光是有效的。本实施例表示利用KrF准分子激光(波长为248nm)作为激光的实施例。但是能够利用XeCl准分子激光(波长为308nm)和其它种类激光。不使用激光,使用例如紫外线和红外线照射也可以。
《实施例29》实施例29,涉及实施例28的构成,是利用Cu作为促进硅结晶化的金属元素的实施例。该实施例的情况,利用醋酸2铜[Cu(CH3COO)2]和2氯化铜[CuCl22H2O)等作为掺入铜的溶液,本实施例利用2氯化铜(CuCl22H2O),其它工序与实施例28相同,结果如图32(E)所示。
《实施例30》实施例30是与实施例28不同形态结晶生长的实施例。本实施例是关于利用促进硅结晶的金属元素,称为横向生长的在与基片平行方向进行结晶生长的方法。图33表示本实施例的制造工序图。
首先,在康宁1737玻璃工174上,形成3000厚的氧化氮化硅膜作为底膜175。也可以用石英基片代替玻璃基片。接着,利用减压CVD方法形成600厚的非晶硅膜176,作为结晶硅膜的初始膜。该非晶硅膜的厚度,最好如前述那样,为2000以下。此外,也可以用等离子CVD方法代替减压CVD方法。
接着,形成1500厚的氧化硅膜,通过对其构图,形成掩模177。把该掩模形成开口区域178。在形成开口178区域,露出非晶硅膜176。开口178从图面深度沿手前方向(长度方向),形成细长的长方形。开口178的宽度设置为20μm以上是合适的,其长度可以设置为需要的长度,本实施例,设置其宽度为30μm,长度为4cm。
接着,与实施例28所示的相同,按重量换算,涂布10ppm的含镍元素的醋酸水溶液,用没有图示的旋转器甩干,除掉多余的溶液。这样,如图33()的点线179所示,在非晶硅膜176露出的表面,保持和镍元素接触。
接着,在含有容积3%氢,尽可能不含氧的氮气氛中,在640℃加热处理4小时。这样,如图33(B)中180所示,在与基片174平行的方向进行结晶生长。该结晶生长,从掺入镍的开口178区域向周围区域进行生长。在与该基片平行方向的结晶生长,在本说明书中称为横向生长或者横向的生长。
按照本实施例30所示的条件,能使其横向生长在100μm以上。这样,得到横向生长的结晶硅膜181。在形成开口区178的区域,从硅膜表面向底层界面进行称为纵向生长的沿垂直方向的结晶生长。
接着,除掉用于选择掺入镍元素的由氧化膜形成的掩模177,得到图33(C)所示的状态。这种状态,在硅膜181中存在纵向生长区域,横向生长区域,结晶生长区域,非结晶生长区域(非晶状态),此外,在这种状态,在膜中不均匀地存在镍元素。特别是,在形成开口178的区域和用标记180表示的结晶生长方向的前端部分,存在比较高浓度的镍元素。
接着,照射激光。其中,与实施例128相同,照射KrF准分子激光。在该工序,扩散不均匀分布的镍元素,使以后吸收工序容易吸收镍。照射激光后,在含有容积3%HCl的氧气氛中,在650℃加热处理12小时。在该工序中,形成含有高浓度镍元素的氧化膜182,同时相对地减少硅膜181中的镍元素。
其中,形成100厚的热氧化膜182。在该氧化膜中,由于氧和氮的作用,特别是氯的作用,含有高浓度的被吸收的镍元素。由于形成热氧化膜182,结晶硅膜181变成500厚度。接着,除掉含有高浓度镍的热氧化膜182。关于这种状态的结晶硅膜,具有高浓度指向结晶硅膜表面的镍元素浓度分布。这种状态起因于在形成热氧化膜时,热氧化膜吸收镍。因而,在除掉热氧化膜182后,再进行腐蚀结晶硅膜的表面,用来除掉含有高浓度镍元素的区域。即,由于腐蚀含有高浓度镍元素的结晶硅膜表面,能得到更低浓度的结晶硅膜。但是,在这种情况,必须考虑最终得到的结晶硅膜的厚度。
接着,进行构图,由横向生长区域形成图形183。这样一来,由横向生长区域构图183中残存镍元素浓度,和实施例28所示情况相比较,能得到更低的浓度。这是因为在横向生长区域所含金属浓度最初就低造成的。具体地说,由横向生长区域变成图形区183的镍元素浓度可能容易地成为1017cm-3以下。
此外,利用横向生长区域形成薄膜晶体管的情况,和利用如实施例28所示的纵向生长区域(实施例28情况整个面进行纵向生长)相比较,能得到有更高迁移率的半导体器件。还有,形成如图32(E)所示的图形后,再次进行腐蚀处理,用于除掉存在图形表面存在的镍元素。
接着,在图形区183上形成热氧化膜184。在650℃氧气氛中,加热处理12小时,形成200厚的热氧化膜184。在形成薄膜晶体管的情况,该热氧化膜成为以后形成栅绝缘膜的一部分。此后,在制造薄膜晶体管时,再用等离子CVD方法等形成氧化膜,覆盖热氧化膜184,形成栅绝缘膜。
《实施例31》实施例31是关于设置有源矩阵型液晶显示器件和有源矩阵型EL显示器件象素区域,制造薄膜晶体管的实施例。图34表示本实施例的制造工序图。首先,本实施例按照实施例28及实施例30所示工序,在玻璃基片上,形成各自结晶硅膜。
下面,主要叙述实施例28所示的工序,但是与实施例30所示的工序相同。在得到实施例28所示结晶硅膜后,把其构图,得到图34(A)所示的状态。如图34(A)所示的状态,标记186表示玻璃基片,187表示底膜,188是由结晶硅膜构成的有源层。得到图34(A)所示状态后,在氧和氢的混合减压气氛中进行等离子处理。通过高频放电产生该等离子体。
通过上述等离子处理,除掉存在于露出有源层188表面上的有机物。正确地说,利用氧等离子体的作用,使吸附在有源层表面上的有机物氧化,通过氢等离子体的作用,使该氧化的有机物还源而气化。除掉该有机物,非常有效地抑制在有源层188表面上固定电荷的存在。起因于有机物存在的固定电荷,成为阻碍器件工作,造成其特性不稳定的因素,减少其存在非常有用。
除掉上述有机物以后,在640℃氧化气氛中进行热氧化,形成100热氧化膜185。该热氧化膜与半导体层的界面特性好,在以后构成栅绝缘膜的一部分。这样,得到如图34(A)所示的状态。此后,形成1000厚的构成栅绝缘膜的氧化氮化硅膜189。作为成膜方法,利用应用氧,硅烷,N2O混合气体的等离子CVD方法。此外,能够用采用TEOS,N2O混合气体的等离子CVD方法。
该氧化碳化硅膜189和热氧化膜185叠合作为栅绝缘膜。在氧化氮化硅膜中,含有卤素是有效的。即,由于卤素元素的作用,使镍元素固定,则能够防止由于存在于有源层中镍元素的影响(用其它的促进硅结晶的金属的情况起同样作用)降低作为栅绝缘膜的绝缘膜的功能。
作成上述那样的氧化氮化硅膜,由于其细密的膜质,难于使金属元素进入栅绝缘膜中,这是有意义的。如果金属元素进入栅绝缘膜中,则绝缘膜功能降低,成为薄膜晶体管特性不稳定和分散的原因。还有,通常能利用氧化硅膜作为栅绝缘膜。
形成作为栅绝缘膜的氧化氮化硅膜189,然后,利用溅射法,形成作为栅电极的没有图示的铝膜。在该铝膜中含有钪重量为0.2%。在铝膜中含有钪,在以后的工序,是为了抑制小丘和晶须的产生。其中,产生小丘和晶须意味着,通过加热产生铝膜的异常生长,形成针状或刺状的突起部。
形成上述铝膜后,形成没有图示的细密阳极氧化膜。以含有3重量%酒石酸的乙二醇溶液作为电解溶液。即,在该电解溶液中,以铝为阳极,白金为阴极进行阳极氧化,在铝膜表面形成有细密膜质的阳极氧化膜。没有图示的具有细密膜质的阳极氧化膜的膜厚为100。该阳极氧化膜具有提高和以后形成的抗蚀剂掩模密着性的作用。此外,通过控制阳极氧化时的施加电压束控制阳极氧化膜的膜厚。
接着,形成抗蚀剂掩模191。这样,对铝膜构图,形成铝图形190。这样一束,得到图34(B)所示的状态。其中再次进行阳极氧化,其中以3重量%的草酸水溶液作为电解溶液。在该电解溶液中,以铝图形190作为阳极进行阳极氧化,形成多孔状的阳极氧化膜193。
上述工序,以在上部设置有附着性高的抗蚀剂掩模191的关系,在铝图形区侧面选择地形成阳极氧化膜193。阳极氧化膜193能够生长成数μm的膜厚,但是本实施例,膜厚为6000。其生长厚度能通过控制阳极氧化的时间来进行控制。
接着,在除掉抗蚀剂掩模191后,再次形成细密的阳极氧化膜。即,用含有重量3%酒石酸的乙二醇溶液作为电解溶液进行阳极氧化。这样,由于多孔状的阳极氧化膜(浸入)进入电解液,形成细密的阳极氧化膜。该细密的阳极氧化膜194的厚度为1000。通过施加电压控制膜厚。
接着,腐蚀露出的氧化氮化硅膜189和185。采用于腐蚀进行该腐蚀。利用醋酸,硝酸和磷酸的混合酸,除掉多孔状的阳极氧化膜。这样,得到图34(D)所示的状态。此后注入杂质离子。
其中,为制造N沟道型薄膜晶体管,利用等离子掺杂方法注入P(磷)离子。在该工序,形成重掺杂区196和200区域,轻掺杂区域197和199。其原因是,残存的氧化硅膜195的一部分起半透过掩模的作用,因为遮蔽注入离子的一部分。
接着,照射激光或者强光,使注入杂质离子区域活化。本例利用紫外线灯照射强光。这样自对准地形成源区196,沟道区198,漏区200,低浓度杂质区域197和199。本例由标记199表示的区域,是称为LDD(轻掺杂漏区)区域的区域。
此外,在细密的阳极氧化膜194的膜厚度在2000以上的情况,因其膜厚能在沟道形成区198的外侧形成偏移栅区。本实施例形成偏移栅区,但是其尺寸小,其存在作用小,由于图面复杂,在图中没有表示。
接着,形成氧化硅膜,或氮化硅膜,或者其叠层膜作为层间绝缘膜201。本例利用氮化硅膜。也可以由在氧化硅膜或者氮化硅膜上的树脂层构成层间绝缘膜。再形成接触孔,源电极202,漏电极203。最后制成如图34(E)所示的薄膜晶体管。
《实施例32》实施例32涉及实施例31(图34)的构成,是关于栅绝缘膜89的形成方法的实施例。在以石英基片,耐热性高的玻璃基片作为基片的情况,作为栅绝缘膜的形成方法,能够采用热氧化方法。采用热氧化方法,能得到膜质细密,具有稳定性的薄膜晶体管。
即,用热氧化方法形成的氧化膜,由于作为绝缘膜细密,内部存在可动电荷少,是作为栅绝缘膜最合适的一种氧化膜。本实施例,在950℃的氧化气氛中进行加热处理。其他工序与实施例31同样,结果制成如图34(E)所示的薄膜晶体管。此时,在氧化气氛中混合HCl是有效的。
由此,在热氧化膜形成的同时,能使有源层中存在的金属元素固定下来。此外,在氧气氛中混合N2O气体,形成含氮的热氧化膜是有效的。其中,如果混合N2O气体比例最合适,则可能通过热氧化方法得到氧化氮化硅膜。本实施例,没有必要特别形成热氧化膜185。
《实施例33》实施例33是采用与实施例31(图34)不同的工序,制造薄膜晶体管的实施例。图35表示本实施例制工序图。首先,利用实施例28和实施例30所示的工序,在玻璃基片上形成各结晶硅膜。接着,接着把这些硅膜构图,得到如图35(A)所示的状态。下面主要叙述实施例30所示的工序,但是与实施例28所示的工序相同。
得到图35(A)所示的状态后,在氧和氢的混合减压气氛中进行等离子处理。如图35(A)所示,标记205表示玻璃基片,206表示底膜,207表示由结晶硅膜构成的有源层。标记204是除掉用于吸收的热氧化膜后,再次形成的热氧化膜。此后,形成构成栅绝缘膜的氧化氮化硅膜208。用硅烷,N2O混合气体通过等离子CVD方法形成薄膜。作为成膜方法,可以采用使用TEOS,N2O混合气体的等离CVD方法。
该氧化氮化硅膜208与热氧化膜204一起构成栅绝缘膜。也可能利用氧化硅膜代替氧化氮化硅膜。在形成作为栅绝缘膜的氧化氮化硅膜208后,以后形成没有图示的铝膜,采用测射方法,作为栅电极。在铝膜中含有重量0.2%的钪。
接着,形成没有图示的细密的阳极氧化膜。以重量3%酒石酸的乙二醇溶液作为电解溶液形成阳极氧化膜。即,在该电解液中,以铝膜为阳极,白金为阴极,进行阳极氧化,在铝膜表面,形成有细密膜质的阳极氧化膜。该没有图示的有细密膜质的阳极氧化膜的厚度为100。该阳极氧化膜,具有提高与以后形成的抗蚀剂掩模附着性的作用。此外,通过控制阳极氧化时施加的电压,来控制该阳极氧化膜的膜厚。
接着,形成抗蚀剂掩模209。这样,对铝膜构图形成铝图形210。其中,再次进行阳极氧化,本例以重量3%的草酸溶液作为电解溶液。在民解液中,以铝图形210作阳极进行阳极氧化,形成多孔状的阳极氧化膜211。
在该工序,在上部存在附着性高抗蚀剂掩模209,在铝图形的侧面,选择地形成阳极氧化膜211。该阳极氧化膜211,可能生长数μm的膜厚,但在本例,设置膜厚为6000。通过控制阳极氧化的时间,来控制其生长距离(厚度)。
接着,除掉抗蚀剂掩模209,再次形成细密的阳极氧化膜。即,以前述的含有重量3%酒石酸的乙二醇溶液作为电解溶液,进行阳极氧化。这样,由于在多孔状阳极氧化膜中进入(浸入)电解溶液,形成细密的膜质的阳极氧化膜212。其中进行最初的杂质离子注入,但是该工序在除掉抗蚀剂掩模209后再进行。通过注入该杂质,形成源区213,漏区215。此外,对于区域214不进行杂质粒子注入。
接着,利用硝酸,磷酸,醋酸的混合酸,除掉多孔状的阳极氧化膜211。这样,得到图35(D)所示的状态。此后,再次注入杂质离子。按照比最初杂质离子注入条件轻的掺杂条件,进行杂质注入。在该工序,形成轻掺杂区域216和217。这样,区域218变成沟道形成区。
接着,照射激光或者强光,使注入杂质离子的区域活化,但是本实施例利用激光。这样一来,自对准地形成源区213,沟道区218,漏区215,低浓度杂质区216和217。其中,标记217所示的区域,是称为LDD(轻掺杂漏区)区域的区域。
接着,形成氧化硅膜或者氮化硅膜或者其叠层膜作为层间绝缘膜219,但是本例形成氧化硅膜和氮化硅膜的叠层膜。此外,也可以在氧化硅膜或氮化硅膜上的树脂材料形成的层作为层间绝缘膜。而且,形成接触孔,形成源电极220,漏电极221。这样一来,制成如图35(E)所示的薄膜晶体管。
《实施例34》实施例34是互补地形成N沟道型薄膜晶体管和P沟道型薄膜晶体管的实施例。本实施例所示的构成能用于例如集在绝缘表面上的各种集成电路。此外,能用于例如有源矩阵型液晶显示器件的外围驱动电路。图36表示本实施例的制造工序。
首先如图36(A)所示,在玻璃基片223上面,形成氧化硅膜或者氧化氮化硅膜作为底膜224。其中最好使用氧化氮化硅膜,但本例使用该膜。接着,利用等离CVD方法,形成没有图示的非晶硅膜。还有,也可以利用减压CVD方法形成膜。并且,利用实施例28所示的方法,使该非晶硅膜变成结晶硅膜。
接着,在氧和氢的混合气氛中进行等离子处理,再把得到的结晶硅膜构图,得到有源层225和226。这样一来,得到如图36(A)所示的状态。其中,为了抑制有源层侧面移动载流子的影响,在图36(A)所示的状态,在含有容积3%HCl的氮气氛中,在650℃进行10小时的热处理。
一旦在有源层侧面,因存在金属元素有陷阱能级,则引起截止电流特性恶化,通过上述热处理,用于降低有源层侧面的能级密度。形成热氧化膜222和氧化氮化硅膜227,构成栅绝缘膜。其中,以石英作为基片的情况,希望只用前述的热氧化方法形成的热氧化膜构成栅绝缘膜。
接着,形成4000厚的铝膜,用于在以后构成栅电极,但没有用图表示。作为铝以外的金属,能够利用可阳极氧化的金属(例如钽)。形成铝膜后,利用前述的方法,在其表面形成极薄的细密的阳极氧化膜。接着在铝膜上设置没有图示的抗蚀剂掩模,然后对铝膜进行构图。
接着,用上述得到的铝图形区作为阳极进行阳极氧化,形成多孔状的阳极氧化膜230和231。该多孔状的阳极氧化膜的膜厚为5000。用形成细密的阳极氧化膜的条件进行阳极氧化,形成细密的阳极氧化膜232和233。其中,细密阳极氧化膜232和233的膜厚为800。这样,得到图36(B)所示的状态。
利用干腐蚀除掉露出的氧化硅膜227和热氧化膜222,得到图36(C)所示的状态。以后,利用醋酸,硝酸和磷酸的混合酸,除掉多孔状的阳极氧化膜230和231。这样,得到图36(D)所示的状态。其中交替地设置抗蚀剂掩模,在左侧的薄膜晶体管,注入P(磷)离子,在右侧薄膜晶体管注入B(硼)离子。
通过上述杂质离子注入,自对准地形成高浓度的N型源区236和漏区239。同时,形成低浓度掺P离子的弱N型区237和沟道区238。之所以形成弱N型区域237,是因为存在残存的栅绝缘膜234。即,透过栅绝缘膜234的P离子被栅绝缘膜234遮蔽一部分。
利用上述同样的原理和技法,自对准地形成强P型区的源区243和漏区240。同时形成低浓度的区域242和沟道区241。在细密的阳极氧化膜232和233的厚度为2000的情况,由于其厚度在靠近沟道区域,能够形成偏移栅区。
在本实施例的情况,因细密的阳极氧化膜232和233的膜厚在1000以下,能够忽略其存在。接着,通过照射激光,对注入杂质的区域进行退火。此外,能够通过照射强光代替激光。接着,如图36(E)所示,形成氮化硅膜244和氧化硅膜245作为层间绝缘膜。各膜的厚度为1000。此外,可以形成氧化硅膜245。
其中,利用上述氮化硅膜覆盖薄膜晶体管。由于氮化硅膜细密,界面特性好,按照这样构成,能够提高薄膜晶体管的可靠性。用旋涂法由树脂形成层间绝缘膜246,其中层间绝缘膜246的厚度为1μm。
然后,形成接触孔,形成左侧的N沟道薄膜晶体管的源电极247和漏电极248。同时,形成右侧薄膜晶体管的源电极249和漏电极248(此外,漏电极248为公共设置的电极),形成如图36(F)所示的薄膜晶体管。这样一来,能够构成互补结构的CMOS构造的薄膜晶体管电路。
按照实施例34的结构,用氮化膜覆盖薄膜晶体管,再由树脂材料进行覆盖。这样构成,可能提高可动离子和水分难进入的耐久性。在形成多层布线的情况,能够防止在薄膜晶体管布线之间形成电容。
《实施例35》本实施例涉及前述实施例28的工序,是在底膜表面直接掺入镍元素的实施例。这种情况,在非晶硅膜的下面保持和镍元素接触。在本实施例,在形成底膜后,掺入镍元素,首先,在底膜表面保持和镍元素接触。
在本实施例,在底膜表面,涂布含有10ppm(重量换算)镍的醋酸镍盐水溶液而掺入镍,结果在底膜表面形成非晶硅膜。其它工序与实施例28的情况相同,如图32(G)所示,得到降低含镍浓度的结晶性硅膜173。作为掺入促进硅结晶金属元素的方法,除了利用上述的溶液方法以外,还能够利用溅射方法,CVD方法,等离子处理和吸附方法。
《实施例36》实施例36在图33(E)状态、或者图34(A)状态或图35(A)状态,进行激光照射,是关于提高由得到结晶硅膜制成岛状图形区结晶性的实施例。本实施例利用,在图33(E),图34(A),图35(A)状态的照射激光,利用比较低的照射能量密度,可得到所定的退火效果。考虑这种效果,在小面积区域照射激光,利用退火的能量效果高。
《实施例37》实施例37是为了通过照射激光提高退火的效果,改善薄膜晶体管有源层构图的实施例。图37是表示本实施例制造薄膜晶体管工序的图。
首先,在康宁1737玻璃基片250上,形成氧化硅膜或氧化氮化硅膜251作为底膜。接着,形成500厚的非晶硅膜。利用减压CVD法成膜。经过下述结晶化工序使该非晶硅膜变成结晶性硅膜252。
接着,按照实施例28(参照图32)及实施例29(参照图33)所示的方法,使各非晶硅膜结晶化,得到结晶硅膜。这样,得到图37(A)所示的状态。其后,按照实施例28和实施例29所示的工序,在各玻璃基片上形成结晶硅膜252。即,利用镍元素加热处理,使非晶硅膜结晶,得到结晶硅膜252。在620℃加热处理4小时实行该热处理。以后的工序,涉及利用实施例28和实施例29的任何工序形成结晶硅膜的情况是相同的。
得到结晶硅膜后,形成构成薄膜晶体管有源层图形区253。这种情况,把其图形的剖面形状如图37(B)的标记254所示。之所以把图形253形成254那样的形状,是为了抑制其后通过照射激光处理,改变构图的形状。
一般,如图38(A)所示,对在基片257上形成的岛状膜258照射激光,结果如图38(B)所示,照射激光后,在图形259边缘形成凸部260。其原因是没有散出的热量集中在图形的边缘部分。
上述现象,成为以后构成薄膜晶体管布线不良和薄膜晶体管工作不良的因素。因此,按照本实施例的构成,把有源层图形253设置成图37(B)所示的断面形状。这样的构成,在照射激光的时候,能够抑制如图38(B)所示状态的硅膜图形。
其中标记254所示部分对于底膜251面的角度理想的是20°-50°。标记254所示部分的角度低于20°,则有源层占有面积增加,形成的困难度大,不令人满意。标记254所示部分的角度超过50°,对形成如图38(B)所示的形状抑制效果降低,同样不理想。
在构图的时候,利用各向同性的干腐蚀,通过控制该干腐蚀的条件,能实现图形253。接着,在得到图37(B)所示的图形253后(其在以后成为有源层),照射如图37(C)所示的激光。在该工序,能使在图形区253局部聚集的镍元素扩散。因此能够促进其结晶性的提高。
照射上述的激光后,在含有容积3%HCl的氧气氛中进行加热处理,形成热氧化膜255。其中,在含有容积3%HCl的,温度为650℃的氧化气氛中加热处理12小时,形成100的热氧化膜。该热氧化膜,由于氯的作用,吸收含在图形区253中的镍元素。此时,由于在前述工序照射激光,破坏镍元素的聚集,由于扩散,所以有效地吸收镍元素。
在采用本实施全构成的情况,从图形253的侧面,进行吸收。因此,提高了最终制成的薄膜晶体管截止电流特性和可靠性。其原因是,在有源层侧面存在的以镍元素为代表的促进硅结晶化的金属元素的存在,涉及截止电流的增加和特性的不稳定性。
如图37(D)所示,形成吸收用的热氧化膜255后,除掉该热氧化膜255这样得到图37(E)所示的状态。采用氯化硅膜作为底膜251的情况,担心除掉该热氧化膜255时,要腐蚀氧化硅膜251。但是,象本实施例热氧化膜255的膜厚,薄到100的情况,这不成大的问题。
得到图37(E)状态后,形成新的热氧化膜256。通过在100%氧气氛中加热处理,形成热氧化膜。其中在温度为650℃的该氧气氛中加热处理,形成100厚的热氧化膜。该热氧化膜256,在以后的激光照射的时候,能有效地抑制图形253表面的凸凹不平。此外,热氧化膜256构成以后栅绝缘膜的一部分。
上述热氧化膜256,和结晶硅膜253之间的界面特性极好,用作栅绝缘膜的一部分。形成热氧化膜256后,可以再次进行激光照射。这样一来,减少了镍元素的浓度,并且,得到了高结晶性的硅膜253。此后,通过图34或图35所示的工序,制造薄膜晶体管。
《实施例38》实施例38是在玻璃基片变形点以上温度加热处理情况,找出解决方法的实施例。本发明吸收促进硅结晶化金属元素的工序,最好在尽可能的高温下进行。
例如,利用康宁1737玻璃基片(变形点667℃)的情况,通过形成热氧化膜,吸收镍时的温度,采用高于650℃的700℃,能得到更好的吸收作用。但是,利用康宁1737玻璃基片的情况,如果形成热氧化膜的温度为700℃,则玻璃基片产生变形。
本实施例是解决该问题的实施例。即,本实施例所示的构成,把玻璃基片设置在由保证平坦性的石英构成的底板上,按这种状态进行热处理。这样,由于平板的平坦性,维持软化玻璃基片的平坦性。把玻璃基片设置在底板上进行冷却是重要的。采用这样的构成,即使在玻璃基片变形点以上的温度,也能进行加热处理。
《实施例39》实施例39是利用镍元素在玻璃基片上得到结晶硅膜的实施例。本实施例,首先通过镍元素的作用,得到高结晶性硅膜后,照射激光。通过照射激光,提高膜的结晶性,同时使在膜中局部集中存在的镍元素扩散。即消除的聚集现象。
然后,在结晶硅膜上面,利用热氧化法形成氧化膜。这时,残存在结晶硅膜中的镍元素,被吸收在热氧化膜中,但通过照射激光,分散镍元素,有效地施行吸收镍元素。接着除掉由于该吸收结果含有高浓度镍的热氧化膜。这样一来,既在基片上得到高结晶性,又获得了低镍浓度的结晶性硅膜。
图39表示本实施例的制造工序图。首先,在康宁1737玻璃基片(形变点为667℃)261上,形成3000厚的氧化氮化硅膜262作为底膜。利用N2O和氧作为原料气体,通过等离子CVD方法,形成氧化氮经硅膜。也可以利用TEOS气体和N2O气体,通过等离子CVD方法代替上述情况。
上述氧化氮化硅膜,能抑制在后续工序玻璃基片中杂质(在常规半导体制造过程中,玻璃基片中含有大量的杂质)的外扩散。为了最大限度的抑制杂质的外扩散,利用氮化硅膜是适合的。但是,由于应力问题,氮化硅膜从玻璃基片剥落下来,因而氮化硅膜不实用。也能利用氮化硅膜作为底膜。
此外,把底膜26作成尽可能的高硬度是重点要求。通过对最终得到的薄膜晶体管的耐久试验得到下述结论,底膜的硬度越硬(即其腐蚀速率小),可靠性越高。其理由是,在制造薄膜晶体管的过程中,能有效地遮蔽玻璃基片杂质的外扩散。
在底膜262中含有以氯为代表的卤素元素是有效的。如果这样,在后续工序中,能通过卤素元素的作用,吸收存在半导体层中的促进硅结晶化的金属元素。形成底膜后,利用氢等离子处理是有效的。此外,在氧和氢混合气氛中进行等离子处理是有效的。这样,除掉底膜表面上吸附的碳元素,能有效地提高以后形成的半导体膜的特性。
接着,利用减压热CVD方法,形成500厚的以后要成为结晶硅膜的非晶硅膜263。之所以利用减压热CVD方法,是要使以后得到的结晶硅膜膜质优良。具体地说,是使膜质细密。此外,使用减压热CVD方法以外的方法,还可利用等离子CVD方法。
其中,最好使制造的非晶硅膜含氧浓度为5×1017cm-3~2×1019cm-3。其原因是在以后吸收促进硅结晶化的金属元素的工序,氧起重要作用。但是,在氧浓度超过上述浓度范围的情况,必须注意其阻碍非晶硅膜的结晶化。其他杂质浓度,例如,氮和碳的杂质浓度要尽量的低。具体地说,应在2×1019cm-3以下。
非晶硅膜265的膜厚上限为2000。其原因是要得到以后照射激光的效果,如果膜过厚是不利的。之所以膜厚不利是因为照射硅膜的激光大部分被膜表面吸收。非晶硅膜的下限由采用什么成膜方法决定,实用的厚度是200。
接着,掺入使非晶硅膜263结晶化的镍元素。其中把含有10ppm(按重量换算)镍的醋酸镍水溶液,涂布在非晶硅膜263的表面、来掺入镍元素。作为掺入镍元素的方法,除了使用上述的溶液方法以外,还能用溅射方法,CVD方法,等离子处理方法和吸附法。其中,使用上述溶液方法是简便的,而且调整金属元素的度简单。通过涂布上述的醋酸盐水溶液,形成如图39(A)中264所示的醋酸镍水溶液。此后,用没有图示的旋转器甩掉多余的溶液。这样,使镍元素和非晶硅膜263的表面保持接触。如果考虑在以后的加热工序残留杂质,最好用例如硫酸镍代替醋酸镍。其原因是担心,由于醋酸镍溶液含有碳,其在以后工序中碳化而残留在膜中。通过调整溶液中含有的镍浓度,来调整掺入镍元素的数量。
然后,如图39(B)所示,用550℃-650℃加热处理,使非晶硅膜263结晶,得到结晶硅膜265。该加热处理是在还原气氛中进行。该加热处理的温度最好设为玻璃基片变形点以下。由于康宁1737玻璃基片的变形点是667℃,对于该情况下的加热温度的上限,考虑到富余度,最好设为650℃。
本实施例,把上述还原气氛设为含有容积3%氢的氮气氛,加热温度设为620°,加热时间设为4小时。
在通过加热处理进行结晶的工序,之所以选为还原气氛是为了防止在热处理工序中形成氧化物。具体地说,是为了抑制由于镍和氧反应,在膜的表面和膜中形成NiOx。氧在以后吸收工序和镍相结合,对于吸收镍起很大的作用。但是,已证明,在上述结晶阶段,氧和镍结合,阻碍结晶化。因此,在通过加热结晶化的工序,极力抑制氧化物的形成是重要的。
因此,用于上述结晶的热处理所用气氛中的氧浓度为ppm数量级,最好要在1ppm以下。用于上述结晶化的热处理的气氛,占大部分的气体,除了氮以外,还能用氩气等惰性气体,或者它们的混合气体。
通过上述加热处理结晶以后,镍元素由于某种程度聚集而残留下来。利用TEM(透射电子显微镜)进行观察确认这种情况。虽然不清楚镍由于某种程度的聚集而存在的原因,但是认为和某些结晶的机理有关。
接着,进行如图39(C)所示的激光照射。其中,利用KrF准分子激光(波长为248nm),以线状激光束形状进行扫描,以这样的照射方法照射激光。通过照射这样的激光,使由于前述热处理结晶的结果在膜256局部集中的镍元素有某种程度的分散。
接着,如图39(D)所示,再次进行热处理。该热处理用来形成吸收镍元素的热氧化膜。其中在100%氧气氛中在640℃加热处理12小时。该工序结果,形成100A℃厚的热氧化膜。
该工序是从结晶硅膜265中除去在结晶初期按要求掺入的镍元素(其它的促进硅结晶的金属元素也一样)。该热处理是在比前述结晶热处理高的温度条件下进行,这是有效地吸收镍的重要条件。还有,如果在与结晶加热处理的温度相同或以下的温度进行,则效果小。
该热处理在满足上述条件的600℃-750℃进行。在该工序吸收镍的效果在高于600℃的温度的情况变得显著。在该工序,通过照射前述的激光分散镍元素,能有效地在氧化膜中吸收镍。加热处理温度的上限,限制在使用玻璃基片的变形点。
如果用玻璃基片变形点以上的温度进行热处理,必须注意基片的变形。这一点已在“实施例38”中叙述过,为保证平坦性,把玻璃基片设置在例如由石英构成的底板上,在这种状态下加热处理,能利用使用玻璃基片变形点以上的温度进行加热处理。
由于形成热氧化膜266,结晶性硅膜263的厚度变成450。该加热处理,加热温度为600℃-750℃的情况,处理时间(加热时间)为10-48小时,具有代表性的为24小时。不言而喻,处理时间也可以根据要得到的膜厚适当设定。对于该吸收,在结晶硅膜中存在的氧起重要的作用。即,通过氧和镍相结合形成氧化镍,来吸收镍元素。
如上所述,如果氧的浓度过大,在如图39(B)所示的结晶工序,氧成为阻碍非晶硅膜263的重要因素。但是,如上所述,氧的存在,在吸收镍的过程中起重要作用。因此,控制起始膜非晶硅膜中的氧浓度成为重要事情。在上述工序,由于在形成氧化膜中吸收镍,所以氧化膜中的镍浓度在其它区域的镍浓度相互比较,当然要高。
此外,在硅膜265和热氧化膜266的热氧化膜266侧面附近,观察到镍元素变高的现象。认为这是由于主要吸收镍的区域,是在硅膜和氧化膜界面附近的氧化膜一侧造成的。之所以在界面附近吸收镍认为是由于界面附近应力和缺陷造成的。
接着,除去含有高浓度镍的氧化膜266。利用缓冲氢氟酸(其它氢氟酸腐蚀剂)进行湿腐蚀和利用干腐蚀除去氧化膜266,但本例利用缓冲氢氟酸进行湿腐蚀。这样,如图39(E)所示,能够得到降低含镍浓度的结晶硅膜267。
由于在得到的结晶硅膜267表面附近,含有比较高的镍元素,所以再腐蚀上述的氧化膜266,则有效地稍微过腐蚀结晶硅膜267的表面。除去热氯化膜266以后,再次照射激光,则有效地促进得到的结晶硅膜267的结晶性。
即,吸收镍元素以后,再次照射激光是效的。其中,本实施例采用KrF准分子激光(波长为248nm)作为激光。也可以用Xecl准分子激光(波长为308nm)和其它种类的准分子激光作为激光。也可以不用激光而照射例如紫外线和红外线。
《实施例40》实施例40是涉及实施例39的构成,利用Cu作为促进硅结晶的金属元素时之例。这种情况,可以用二醋酸铜[Cu(CH3COO)2]和二氯化铜(CuCl22H2O)等作为掺入Cu的溶液。本实施例利用二化鲷(CuCl22H2O),其它和实施例39一样,如图39(E)所示,能得到降低含铜浓度的结晶硅膜267。
《实施例41》实施例41是与实施例39不同形态的结晶生长的实施例。本实施例是有关利用促进硅结晶的金属元素,在与基片平行的方向进行称为横向结晶生长的方法。图40表示本实施例的制造工序。
首先,在康宁1737玻璃基片268上,形成3000厚的氧化氮化硅膜作为底膜269。也可以用石英基片代替玻璃基片。接着,利用减压CVD方法,形成600厚的作为结晶硅膜初始膜的非晶硅膜270。该非晶硅膜,最好如前述那样,为2000以下。也可以用等离子CVD方法代替减压热CVD方法。
接着,形成没有图示的1500厚的氧化硅膜,把其构图,形成掩模271。把该掩模形成开口区域272。在形成开口区域272,露出非晶硅膜270。开口272从图面深度方向沿手前方向,形成细长的长方形。开口272的宽度设为20μm以上是合适的,按要求形成长度,但本实施例其宽度为35μm,长度为2cm。
接着,和实施例40所示一样,涂布重量换算含10ppm含镍醋酸水溶液。这样,用没有图示的旋转器进行甩干,除掉多余的溶液。这样一来,如图40(A)的点线273所示那样,使镍元素和露出非晶硅膜270的表面保持接触。
接着,在含有溶积3%氢,尽量不含有氧的氮气氛中,在640℃加热处理4小时。这样,如图40(B)中274所示,在与基片268平行的方向进行结晶生长。从掺入镍的开口272区域向周围进行该结晶生长。在与基片平行方向的结晶生长,在本说明书中称为横向生长或者横向的生长。
按照本实施例所示的条件,能进行100μm以上的横向生长。这样得到具有横向生长区域的硅膜275。在形成开口272的区域,进行从硅膜表面向底膜称为纵向生长的垂直方向的生长。
接着,除掉用于选择掺入镍元素的由氧化膜构成的掩模271,如图40(C)所示。这种状态,在硅膜275中存在有纵向生长区域,横向生长区域,结晶生长或非结晶生长区域(非晶状态)。这种状态,膜中的镍不均匀地分布。特别是在开口272的区域,在结晶生长区274的开始部分存在较高浓度的镍元素。
接着,照射激光。本例与实施例39的情况一样,照射KrF准分子激光,扩散不均匀分布的镍元素,在以后吸收工序,成为容易吸收的状态。照射激光完了后,在100%氧的气氛中,在650℃温度加热处理12小时。
在该工序,形成在膜中含有高浓度镍的氧化膜276,同时能相对地减少结晶硅膜275中的镍浓度。在本实施例,形成100厚的热氧化膜276。在该热氧化膜中,通过其成膜含有高浓度的被吸收的镍元素。
此外,由于形成热氧化膜276,结晶硅膜275变成500厚。接着,除掉含高浓度镍元素的热氧化膜276。在这种状态的结晶硅膜,镍元素具有向结晶硅表面具有高浓度的浓度分布。这种状态的原因是,在形成热氧化膜276时,在热氧化膜中,进行吸收镍。
因而,除去热氧化膜276以后,再腐蚀结晶硅膜的表面,用于除去含有高浓度镍的区域。即通过腐蚀含有高浓度镍的结晶硅膜表面,得到减低浓度镍的结晶硅膜。但是,必须考虑最终得到结晶硅膜的厚度。
接着,进行构图,形成由横向生长区域构成的图形277。这样,残留在由横向生长区域构成的图形区277的镍浓度,和实施例39中的情况相比较,能够降低其浓度。这是因为在横向生长区域含有金属的浓度起初就低造成的。具体地说,由横向生长区域构成的图形区277中的镍浓度,可能容易地作到1017cm-3以下。
此外,利用横向生长区域,形成的薄膜晶体管的情况,和实施例39所示的利用纵向生长(实施例39的情况,全面进行纵向生长)区域的情况相比较,能够得到具有更高迁移率的半导体器件。形成如图40(E)所示的图形后,再进行腐蚀处理,用于除去图形表面上存在的镍元素。
形成上述那样的图形277后,形成热氧化膜278。在650°氧气氛中加热处理12小时,形成100厚的热氧化膜278。该热氧化膜如果构成薄膜晶体管,以后成为栅绝缘膜的一部分。以后如果制造薄膜晶体管,再用等离子CVD方法等形成氧化硅膜,覆盖热氧化膜,和氧化膜278一起作为栅绝缘膜。
《实施例42》实施例42是关于制造设置在有源矩阵型液晶显示器件和有源矩阵型EL显示器件象素区域的薄膜晶体管的实施例。图41表示本实施例的制造工序。
首先,利用实施例39及实施例41所示的工序,在玻璃基片上形成结晶硅膜。其后的工序,两者是共同的,下面记载着按实施例39所示的构成得到结晶硅膜的情况。通过对结晶硅膜构图,形成图41(A)所示的状态。对于这种状态,标记281为地膜,281为玻璃基片,282为用结晶硅膜形成的有源层。得到图41(A)所示的状态后,利用氧和氢混合的减压气氛,进行等离子处理。通过高频放电产生该等离子体。
通过该等离子处理,除掉存露出有源层282表面上的有机物。正确地说,通过氧等离子使吸附在有源层表面的有机物氧化,再利用氢等离子使氧化的有机物还原,然后气化。这样,除掉存在露出有源层282表面上的有机物。除掉该有机物,则非常有效地抑制存在于有源层表面282表面上的固定电荷。因存在有机物引起的固定电荷,是造成阻碍器件动作,和造成器件特性不稳定的重要因素,减少其存在是非常有用的。
除去上述的有机物之后,在640℃的氧气氛中进行热氧化,形成100厚的热氧化膜279。该热氧化膜和半导体层的界面特性好,以后构成栅绝缘膜的一部分。这样得到如图41(A)所示的状态。以后形成构成栅绝缘膜的氧化氮化硅膜,厚度为1000。作为成膜方法,采取利用氧,硅烷,N2O混合气体的等离子CVD方法,利用TEOS和N2O混合气体的等离子CVD方法等,本实施例利用氧,硅烷和N2O的混合气体。
该氧化碳化硅膜283和热氧化膜279含起来作为栅绝缘膜。在氧化氮化硅膜中含有卤素元素是有效的。即通过卤素的作用使镍元素固定,防止由于存在有源层中的镍元素(其它的促进硅结晶化的金属元素也一样)的影响,降低作为栅绝缘膜的绝缘膜性能下降。
如把上述膜作为氧化氮化硅膜,由膜质细密,则金属元素难于进入栅绝缘膜中,这是有意义的。如果金属元素进入(侵入)栅绝缘膜中,则降低绝缘膜性能,成为薄膜晶体管不稳定性和分散的原因。作为栅绝缘膜,可能利用通常使用的氧化硅膜。
形成作为栅绝缘膜的氧化氮化硅膜238后,用溅射法形成作为栅电极的铝膜。该铝膜(没有图示,在构图后,形成图形区284)含有重量0.2%的钪。由于在铝膜中含有钪,在以后的工序中,是用于抑制小丘和晶须的发生。其中所谓的小丘和晶须意味着,由于进行加热,使铝发生异常生长,形成针状的或刺状的突起部。
形成上述的铝膜后,再形成没有图示的细密的阳极氧化膜。此含有重量3%的乙二醇溶液作为电解溶液形成该阳极氧化膜。即,在该电解液中,以铝膜作为阳极,白金作为阴极,进行阳极氧化,在铝膜表面,形成细密膜质的阳极氧化膜。没有图示的阳极氧化膜的膜厚为100。该阳极氧化膜具有提高与以后形成的抗蚀剂掩模附着性的作用。利用阳极氧化时施加电压来控制该阳极氧化膜的厚度。
接着,形成抗蚀剂掩模285后,把铝膜形成图形284。这样,得到如图41(B)所示的状态。其中再次进行阳极氧化。本实施例,以重量3%的草酸水溶液作为电解溶液。在该电解液中,以铝图形区284作为阳极,进行阳极氧化,形成多孔状的阳极氧化膜287。
在该工序,涉及在上部设置有附着性高抗蚀剂掩模285,在铝图形284侧面选择地形成阳极氧化膜287。该阳极氧化膜,能使其厚度生长为数μm厚。本例使其膜厚生长为6000。利用氧化时间控制其生长距离。
接着,在除掉抗蚀剂掩模285后,再次形成阳极氧化膜。即,用前述的含有重量3%酒石酸的乙二醇溶液作为电解液,进行阳极氧化。这样,由于电解溶液进入到多孔状的阳极氧化膜287中,则形成具有细密膜质的阳极氧化膜288。该细密的阳极氧化膜288的厚度为1000。通过调整施加的电压来控制其膜厚。
其中,腐蚀露出的氧化氮化硅膜283和热氧化膜279。该腐蚀采用干腐蚀。接着,利用醋酸,硝酸和磷酸的混合酸,除掉多孔的阳极氧化膜287。这样一来,得到图41(D)所示的状态后,注入杂离子。其中,为了制造N沟道型薄膜晶体管,利用等离掺杂法,注入P(磷)离子。该工序形成重掺杂区290和294区域,轻掺杂区域291和293区域。之所以这样形成是因为残存氧化硅膜289的一部分具有半透过的功能,遮蔽注入离子的一部分。
接着,通过照射激光或强光,使注入杂质离子的区域活化,但本实施例利用红外灯照射。这样自对准地形成源区290,沟道形成区292,漏区294,低浓度杂质区291和293。其中标记293所示的是称为LDD(轻掺杂漏区)区域的区域。
细密的阳极氧化膜288的膜厚为2000以上的情况,由于以其膜厚在沟道形成区292外侧,能形成偏移栅区域。本实施例形成偏移栅区,但是由于其尺寸小,其存在作用小,并且由于图面复杂,所以图中没有记载。
接着,形成氧化硅膜,或氮化硅膜,或者它们的叠层,作为层间绝缘层295。本例采用氮化硅膜。也可以氧化硅膜或氮化硅膜上,形成树脂材料层,构成层间绝缘膜295。形成接触孔,源电极296,漏电极297。这样,制成图39(E)所示的薄膜晶体管。
《实施例43》实施例43涉及在实施例42的构成中,有关于形成栅绝缘膜283方法。在以石英基片和耐热性高的玻璃基片作为基片的情况,能够用热氧化方法作为形成栅绝缘膜的形成方法。本实施例用热氧化方法形成栅绝缘膜283,其他工序和实施例42相同,得到图41(E)所示的薄膜晶体管。
热氧化法能使形成的膜质细密,得到稳定特性的薄膜晶体管。即,用氧化方法形成的氧化膜,由于能使绝缘膜细密,内部存在可动电荷少,是适合作为栅绝缘膜的一种氧化膜。
《实施例44》实施例44是用与图41所示的不同工序,制造薄膜晶体管的实施例。图42是表示本实施例的制造工序图。首先,利用实施例39(图38)和实施例41(图40)所示的工序,分别在玻璃基片上形成结晶硅膜。下面的工序两者相同。接着对其构图,得到图42(A)所示的状态。
得到图42(A)所示的状态后,在氧和氢的混合减压气氛中进行等离子处理。如图42(A)所示的状态,标记299为玻璃基片,300为底膜,301为由结晶硅膜构成的有源层。标记298是除掉用于吸收的氧化膜后,再次形成的热氧化膜。得到图42(A)所示的状态后,形成1000厚的构成栅绝缘膜的氧化氮化硅膜。用等离子CVD方法,采用氧,硅烷,N2O混合气体,或者用等离子CVD方法,采用TEOS,N2O混合气体形成膜,本实施例利用氧,硅烷和N2O的混合气体。
上述的氧化氮化硅膜302和热氧化膜298一起构成栅绝缘膜。除了氧化氮化硅膜以外,还能够用氧化硅膜。形成作为栅绝缘膜的氧化氮化硅膜以后,用溅射方法形成作为栅电极的铝膜(没有图示,在构图后,成为图形区304)。在该铝膜中,含有重量0.2%的钪。
形成铝膜后,形成没有图示的细密阳极氧化膜。以含有重量3%的酒石酸的乙二醇溶液作为电解溶液,进行该阳极氧化。即在该电解溶液中,以铝膜作为阳极白金作为阴极进行阳极氧化,在铝膜的表面形成具有细密膜质的阳极氧化膜。该没有图示的具有细密膜质的阳极氧化膜的厚度为100。该阳极氧化膜,具有提高与后面形成的抗蚀剂掩模附着性的作用。能通过调整阳极氧化时施加的电压来控制阳极氧化膜的厚度。
接着,形成抗蚀剂掩模303。形成铝图形304后再次进行阳极氧化。其中,以重量3%的草酸溶液作为电解溶液。在该电解液中,以铝膜图形304作为阳极进行阳极氧化,形成多孔状的阳极氧化膜305。该工序由于上部存在附着性高的抗蚀剂掩模303,则在铝图形侧面选择地形成阳极氧化膜305。该阳极氧化膜能生长数μm的膜厚。本例中其膜厚为6000。利用氧化的时间能控制其生长的距离。
接着,除掉抗蚀剂掩模303后,再次形成细密的阳极氧化膜。即以前述的含有重量3%的乙二醇溶液作为电解溶液再次进行阳极氧化。这样由于电解溶液进入多孔状的阳极氧化膜305中,则形成具有细密膜质的阳极氧化膜306。其中注入最初的杂质离子。也可以在除掉抗蚀剂掩模303后再进行该工序。通过注入该杂质离子,形成源区307,漏区309。此时308区域没有注入杂质离子。
接着,用醋酸,硝酸和磷酸的混合酸除掉多孔状的阳极氧化膜305。这样,得到如图42(D)所示的状态。此后,再次注入杂质离子,但按照比最初杂质注入条件轻的掺杂条件注入该杂质离子。该工序形成轻掺杂区域310和311,这样,形成沟道形成区312。
接着通过照射激光线强光,使注入杂质离子的区域活化,但本实施例采用激光照射。这样,自对准地形成源区307,沟道区312、漏区309,低浓度的杂质区域310和311。其中标记311表示的区域,称为LDD(轻掺杂的漏区)区域。
接着,形成氧化碳膜,或氮化硅膜或者它们的叠层,作为层间绝缘膜(313)。本例形成两者的叠层膜。也可以在氧化硅膜或氮化硅膜上面,形成树脂材料层作为层间绝缘膜。然后形成接触孔,再形成源电极314,漏电极315。这样一来,制成如图42(E)所示的薄膜晶体管。
《实施例45》实施例45是互补型地形成N沟道型薄膜晶体管和P沟道型薄膜晶体管的实施例。图43是表示本实施例工序的图。本实施例所示的构成,能用于例如在绝缘表面上集成的各种薄膜集成电路。首先,能用于例如有源矩阵型液晶显示器件的周围驱动电路。
首先,如图43(A)所示,在玻璃基片317上,形成作为底膜318的氧化硅膜或氧化氮化硅膜。其中最好利用氧化氮化硅膜,本实施例利用该膜。接着用等离子CVD方法或者减压热CVD方法形成没有图示的非晶硅膜,本例采用减压热CVD方法。并且,利用前述实施例39所示的方法,把非晶硅膜变成结晶硅膜。
接着,在氧和氢的混合气氛中,进行等离子处理,并且把得到的结晶硅膜构图,形成有源层319和320。这样得到图43(A)所示的状态。其中,为了抑制沿有源层侧面移动载流子的影响,如图43(A)所示,在含有容积3HCl的氮气氛中,在650℃热处理10小时。
如果在有源层的侧面,由于金属元素的存在而存在陷阱能级,则引起OFF(截止)电流恶化,所以进行其中所示的处理,用来降低有源层侧面的能级密度。接着,形成构成栅绝缘膜的热氧化膜316和氧化氮化硅膜321。此外,其中,用石英作为基片的情况,希望只用利用前述的热氧化方法形成的热氧化膜构成栅绝缘膜。
接着形成4000厚的用于以后构成栅电极的没有图示的铝膜(没有图示,以后形成后述图形)。除了铝膜以外,能够利用可阳极化的金属(例如钽)。铝膜形成后,按照前述的方法,在其表面形成极薄的阳极氧化膜。
接着,在该铝膜上设置抗蚀剂掩模(没有图示),然后把铝膜构图。再把得到的铝图形区作为阳极进行阳极氧化,形成多孔状的阳极氧化膜324和325。多孔状的阳极氧化膜的膜厚为5000。
其中,按照形成细密阳极氧化膜的条件再次进行阳极氧化,形成细密的阳极氧化膜326和327。其中细密的阳极氧化膜326和327的膜厚为800。这样,得到图43(B)所示的状态。接着,腐蚀露出的氧化硅膜321和热氧化膜316,得到图43(C)所示的状态。
以后,利用醋酸,硝酸和磷酸的混合酸,除掉多孔状的阳极氧化膜324和325。这样得到图43(D)所示的状态。接着,交替地设置抗蚀剂掩模,在左侧薄膜晶体管注入P(磷)离子在,在右侧薄膜晶体管注入B(硼)离子。通过注入这种杂质离子,自对准地形成高浓度N型源区330和漏区333。
同时,通过掺杂低浓度的P离子形成弱N型的区域331,并且同时形成沟道形成区332。之所以形成弱N型区域331,是因为存在残留的栅绝缘膜328。即,透过栅绝缘膜328的P离子被栅绝缘膜328遮蔽一部分。
按照上述同样的原理和技法,自对准地形成强P型源区337和漏区334,同时形成低浓度杂质区域336沟道形成区域335。在细密的阳极氧化膜326和327的膜厚为2000的情况,由于其膜厚,在接近沟道形成区的位置,形成偏移区。
本实施例的情况,细密的阳极氧化膜326和327膜厚薄到1000以下,所以能够忽略其存在。接着照射激光,使注入杂质离子的区域退火。也可以照射强光代替激光。然后如图43(E)所示,形成氮化硅膜338和氧化硅膜339作为层间绝缘膜,各膜的厚度为1000。这种情况也可以不形成氧化硅膜339。
其中,利用氧化氮化硅膜,覆盖薄膜晶体管。由于氮化硅膜细密,界面特性好,按照这样的构成,能提高薄膜晶体管的可靠性。利用旋涂方法,形成树脂材料的层间绝缘膜340。其中层间绝缘膜340厚为1μm。
然后,形成接触孔,形成左侧的N沟道型薄膜晶体管的源电极341和漏电极342,同时形成右侧的薄膜晶体管的源电极343和漏电极342。其中,漏电极342为两者 用。这样一来,构成具有互补型CMOS结构的薄膜晶体管电路。
在本实施例构成,得到覆盖氮化硅和覆盖树脂材料的薄膜晶体管。这样构成,能够得到使可动离子和水分难于侵入的高耐久性的结构。在形成多层布线的情况,可能防止在薄膜晶体管和布线之间形成电容。
《实施例46》实施例46在前述实施例39的工序,是在底膜表面直接掺入镍元素的实施例。这种情况,使镍元素和非晶硅膜下面保持接触。本实施例在形成底膜后,利用醋酸溶液掺入镍元素,首先在底膜表面保持和镍元素接触。
其他工序和实施例39的情况相同,如图39(E)所示,得到降低浓度的结晶硅膜267。除了使用象本实施例那样使用溶液方法以外,还能利用溅射方法、CVD方法和吸附方法作为掺入镍元素的方法。此外,在利用镍以外的促进硅结晶化的金属元素的情况,同样,能得到降低该金属浓度的结晶硅膜。
《实施例47》实施例47在图40(E)的状态,或41(A)的状态,或42(A)的状态,照射激光,得到结晶硅膜,然后把其形成岛状图形,本例是关于提高该岛状图形结晶性的实施例。在如图40(E),图41(A)或者图42(A)的状态,照射激光的情况,利用比较低的照射能量密度,能够得到预定的效果。认为这是由于在小面积区域照射激光、利用退火能量效率高产生的结果。
《实施例48》实施例48是为了通过照射激光提高退火效果,在薄膜晶体管有源层构图中凝聚技艺的实施例。图44是表示本实施例制造薄膜晶体管工序的简图。首先,在康宁1737玻璃基片344上面形成氧化硅膜345作为底膜。也能够利用氧化氮化硅膜作为底膜。
接着,形成500厚的没有图示的非晶硅膜。用减压热CVD方法成膜。该非晶硅膜,以后经过结晶工序,成为结晶硅膜346。接着,利用实施例39(参照图39)和实施例41(参照图40)所示的方法,得到没有图示的,各自由非晶硅膜结晶化而成为的结晶硅膜。
这样,得到图44(A)所示的状态。下面,主要叙述实施例39的情况,对于实施例41的情也一样。按照实施例39(图39)的制造工序,在玻璃基片上形成结晶硅膜346。即利用镍元素进行加热处理,使非晶硅膜结晶化,得到结晶硅膜346。其中的加热处理条件是温度为620℃加热时间为4小时。
得到上述的结晶硅膜后,形成构成薄膜晶体管的图形。这种情况如图44(B)中标记347所示的形状。之所以形成图44(B)所示的图形347是为了在以后光照处理工序抑制图形的变形。
如前所述,如图38(A)所示,在基片257上形成通常岛状的硅膜图形258,在对该岛状图形258照射激光时,如图38(B)所示,照射激光后,在图形259边缘部分,形成凸部260。这是因为照射激光的能量集中在不散热的图形边缘部分造成的。
由这种现象形成的凸部260,成为以后构成薄膜晶体管布线不良和薄膜晶体管动作不良的主要因素。因此,按照本实施例所示的构成,有源层347如图44(B)所示的剖面形状。按照这样的构成,在照射激光时,能够抑制硅膜图形变成图38(B)所示的形状。在构图时,利用各向同性的腐蚀,通过控制该腐蚀条件,能够形成标记347所示的图形。
其中,对于地膜345的面,用标记348表示的部分的角度最好为20°-50°。348所示部分的角度低于20°时,有源层面积增大和形成有源层的困难变大,因此不要使其小于20°。如果348所示部分角度超过50°,则如图38(B)所示,则抑制形成凸部260的效果降低,同样不要使角度超过50°。
在得到图44(B)中347所示形状的图形(以后成为有源层)后,照射激光,如图44(C)所示。在该工序,能使图形区347中局部聚集存在的镍元素扩散,并且能提高基结晶性能。接着,照射激光完了后,在氧气氛中加热处理,形成热氧化膜349。其中在100%的氧气中,在650℃加热处理12小时,形成100厚的热氧化膜349。
该热氧化膜349,由于氧的作用,吸收图形347中所含的镍元素。这时,通过在前述工序中照射激光,破坏了镍元素的集聚现象,有效地吸收镍。如果热处理气氛中含有卤,则能有效地吸收镍。
在利用本实施例构成的情况,由图形区347的侧面吸收镍。这样,提高了最终制成的薄膜晶体管的截止(OFF)电流特性和可靠性。由于有源层侧面存在镍元素(其它促进硅结晶化的金属元素也一样),使OFF(截止)电流增加和不稳定性增大。
如图44(D)所示,形成吸收用的热氧化膜后,再除掉热氧化膜349。这样得到图44(E)所示的状态。本实施例在采用氧化硅膜作为底膜345的情况,担心除去热氧化膜349的工序中,会腐蚀氧化硅膜345。但是,对于本实施例,在热氧化膜349的厚度,薄到100的情况,这不成问题。
在得到图44(E)所示的状态后,形成新的热氧化膜。在100%的氧气氛中加热处理,形成该热氧化膜。其中,在650℃氧气氛中加热处理4小时,形成100厚的热氧化膜350。该热氧化膜350,在以后的照射激光时,有效地抑制图形347表面产生凸凹不平的变化,并且在以后构成栅绝缘膜的一部分。
上述热氧化膜350,由于与结晶硅膜之间界面特性极好,所以用来作为栅绝缘膜的一部分。形成热氧化膜350后,可以再次照射激光。这样,能减少镍元素的浓度,得到高结晶性的结晶硅膜347。以后,经过如图41~图43所示的工序,制作薄膜晶体管。
《实施例49》实施例49是想办法在玻璃基片变形点以上温度加热处理情况的实施例。本发明在利用促进硅结晶化的金属元素使非晶硅膜结晶后,吸收该金属,但是最好用高温进行该吸收工序。
例如,在利用康宁1737玻璃(形变点为667℃)的情况,作为通过形成热氧化膜吸收镍的温度例如使用高于650℃的700℃,能得到更高的吸收作用。但是这种情况,用来形成热氧化膜的加热温度为700℃时,该基片发生变形。
本实施例是关于解决该问题的实施例。即关于本实施例的构成,把玻璃基片设置在由保证平坦性的石英构成的底板上,按这种状态加热处理。这样,利用底板的平坦性,维持软化玻璃基片的平坦性。这种情况,冷却时,由于把玻璃基片设置在底板上,这起重要作用。采用这样的构成,能够在玻璃变形点以上的温度进行加热处理。
《实施例50》实施例50是利用镍元素在石英基片上得到结晶硅的实施例。本实施例是首先利用镍元素把在玻璃基片上形成的非晶硅膜变成更高结晶性硅的实施例。
接着,在添加HCl的氧化气氛中进行热处理,形成热氧化膜。这时,在得到结晶硅膜中,通过氯(Cl)的作用吸收残存在结晶硅膜中的镍元素。这样,吸收镍后,除掉含有高浓度镍的热氧化膜。这样,即在石英基片上得到高结晶性,又得到低镍浓度的结晶硅膜。
图45是表示本实施例的制作工序图。首先,在石英玻璃基片351上面,形成5000厚的氧化氮化硅膜352作为底膜。该底膜352,为了对石英玻璃基片351和以后形成的硅膜的膨胀率差别起缓冲作用,所以最好形成5000以上的厚度。
利用硅烷,N2O和氧作为原料气体,利用等离子CVD方法,形成氧化氮化硅膜352。也可以利用TEOS气体和N2O气体,使用等离子CVD方法代替上述方法。在底膜352中含有以氯为代表的微量卤素是有效的。这样,在以后工序中,利用卤素元素能吸收存在于半导体层中的促进硅结晶化的金属元素。
此外,在形成底膜后,利用氢等离子处理是有效的。在氧和氢的混合气氛中,进行等离子处理是有效的。除去底膜表面吸附的碳元素,则有效地提高与以后形成的半导体膜的界面特性。利用减压CVD方法,形成1500厚的以后成为结晶硅膜的非晶硅膜353。之所以利用减压CVD方法,其能使以后得到的结晶硅膜膜质优良,具体地说,使其膜质细密。作为减压热CVD方法以外的方法,能利用等离子CVD方法。
其中制造的非晶硅膜中氧的浓度最好为5×1017cm-3~2×1019cm-3。这是由于在以后吸收金属元素(促进硅结晶的金属元素)的工序,氧起重要作用。但是,在氧浓度高于上述浓度范围时,必须注意氧阻碍非晶硅膜结晶。其它的杂质浓度,例如氮和碳的杂质浓度也要极低。具体地说,要在2×1019cm-3以下。
该非晶硅膜的膜厚,能够选择在1000-5000的范围。接着掺入使非晶硅膜353结晶化的镍元素。其中,在非晶硅膜353的表面,涂布含有10ppm(重量换算)含镍的醋酸镍水溶液。作为掺入镍的方法,除了使用上述溶液的方法以外,还可能使用溅射方法,CVD方法,等离子处理方法和吸附方法。其中,使用上述溶液方法是简便的,并且,调整金属元素的浓度简单。
通过涂布醋酸镍溶液,如图45(A)的354所示,形成醋酸镍水溶液的水膜。得到该状态后,用没有图示的旋转器甩掉多余的溶液。这样,在非晶硅膜353的表面,保持和镍元素接触。
此外,如果考虑以后加热工序残留杂质,最好用例如硫酸镍代用醋酸镍溶液。这是因为担心醋酸镍溶液含有碳,其在以后加热工序碳化,残留在膜中。通过调整溶液中的镍浓度,来调整掺入镍的数量。
接着,如图45(B)所示,在750℃-1100℃进行加热处理,使非晶硅膜353结晶,得到结晶硅膜355。其中,在含有容积2%氢的氮气氛中(还原气氛),在900℃加热处理4小时。在通过加热处理结晶化的工序,之所以选为还原气氛,是为了防止在加热处理过程形成氧化物。具体地说,是为了抑制在膜的表面和膜中形成由镍和氧反应生成的NiOx。
氧在以后的吸收工序,和镍相结合,为吸收镍起巨大作用。但是已判明在结晶阶段,氧和镍结合,阻碍结晶。因而,在通过加热而结晶化的工序,抑制氧化物的形成是很重要的。
用于上述结晶的加热处理气氛中的氧浓度为ppm数量级,最好为1ppm以下。用作上述结晶的热处理的气氛大部分气体。除了氮以外,还能使用氩等惰性气体,或者含有氮的上述混合气体。得到结晶硅膜355后,对其进行构图,以后形成由薄膜晶体管有源层构成的岛状区域356。
接着,在图45(D)所示的工序,再次进行加热处理。该加热处理,形成用来吸收镍元素的热氧化膜。其中,在含有容积5%氧,相对于该氧含有3容量%HCl的氮气氛中,在950℃热处理1小时30分。进行该工序的结果,形成200厚的热氧化膜357。
该工序是从岛状图形上形成的结晶硅膜356中,除掉如前所述的为硅膜结晶在初期阶段按要求掺入的镍元素的工序。该加热处理是在比用于前述结晶加热处理高的温度进行。这是有效的进行吸收镍的重要条件。此外,采用与用于结晶加热处理温度相同或以下的温度,效果差。而且这些方面,对于使用其它的促进硅结晶的金属元素的情况也是相同的。
由于形成热氧化膜357,岛状图形的结晶硅膜356的厚度变为约100。在该吸收中,存在于结晶硅膜中的氧起重要作用。即,通过氧和镍相结合,形成氧化镍,以氯的作用形式,进行吸收镍元素。
如前所述,如果氧浓度过大,如图45(B)所示的结晶工序,则氧成为阻碍非晶硅膜353结晶的重要因素。但是,如上所述,氧的存在,在吸镍过程中起重要作用。因此,控制作为初始膜的非晶硅膜中存在的氧浓度是重要的。由于在上述工序中,形成的氧化膜吸收镍元素,该氧化膜中的镍浓度和其他区域相比当然变高。
观察到结晶硅膜356和热氧化膜357界面,在热氧化膜357一侧,镍元素变高倾向。认为这是由于主要吸收镍的区域,是在结晶硅膜和氧化膜的界面的氧化膜一侧。之所以在两者界面附近进行吸收镍,是因为界面附近存在应力和结晶缺陷造成的。
本实施例是表示以氯(Cl)作为卤素元素,以及使用HCl的掺入方法的实施例。但是,作为HCl以外的气体,能用HF,HBr,Cl2,F2,Br2中的一种或多种的混合气体。一般选用卤素的氢化物。其中的气体,最好是在气氛中的含有量(体积含量)HF为0.25-5%,HBr为1-15%,Cl2为0.25-5%,F2为0.125-2.5%,Br2为0.5-10%。
低于上述范围的浓度,不能得到有意义的效果,超过上述范围的浓度,硅膜表面出现凸回不平现象。接着在含有上述卤素元素的氧化气氛中进行加热处理,形成热氧化膜后,除掉含有高浓度镍的热氧化膜357。利用缓冲氢氟酸(其他氢氟酸系列的腐蚀剂)进行湿腐蚀和利用干腐蚀进行腐蚀,除去热氧化膜357,本实施例,利用缓冲氢氟酸进行湿腐蚀。
这样,如图45(E)所示,能得到由含有低浓度镍的结晶硅膜形成岛状图形区356。其中,由于在得到结晶硅膜356的表面附近含有较高浓度镍元素,因此进一步腐蚀上述的氧化膜357,则有效地过腐蚀结晶硅膜356的表面。
除掉热氧化膜357以后,照射激光或强光,则有效地提高结晶硅膜356的结晶性。即,吸收镍元素以后,照射激光或强光是有效的。能够利用KrF准分子激光(波长为248nm),XeCl准分子激光(波长为308nm)或者其他种类的准分子激光作为使用的激光。作为强光也能照射紫外线和红外线。
得到图45(E)后,再次进行加热处理,有效地形成没有图示的热氧化膜。该热氧化膜,在以后构成薄膜晶体管时,作为栅绝缘膜的一部分或者作为栅绝缘膜。热氧化膜,由于和由结晶硅膜构成的有源层的界面特性良好,最适合构成栅绝缘膜。
《实施例51》实施例51涉及实施例50的构成,是使用Cu作为促进硅结晶的金属元素的实施例。这种情况,作为掺入Cu的溶液,可以利用二醋酸铜[Cu(CH3COO)2]和二氯化铜(CuCl22H2O)等溶液。本实施例,使用二醋酸(Cu[Cu(CH3COO)2]、其它工序和实施例50相同。
《实施例52》实施例52是以与实施例50不同的形态进行结晶生长的实施例。
本实施例是利用促进硅结晶的金属元素,有关称为横向生长的与基片平行方向进行结晶生长方法的实施例。
图46表示本实施例的制造工序图。首先,在石英基片358上生长3000的氧化氮化硅膜作为底膜359。接着,利用减压热CVD方法形成作为结晶硅膜初始膜的非晶硅膜360。也可以用等离子CVD方法代替减压热CVD方法。
接着,形成1500厚的没有图示的氧化硅膜,把其构图形成掩模361。在掩模的区域362形成开口。在形成的开口区域362露出非晶硅膜360。在开口362处,从图面的里面向读者的长度方向形成细长的长方形。该开口362的宽度为20μm以上是适合的,其长度可为需要的长度。本例宽为20μm,长为1cm。
接着,在掩模361及开口362,按重量换算,涂布含有10ppm镍元素的醋酸镍水溶液后,利用没有图示的旋转器进行甩干,除掉多余的溶液。这样,如图46(A)中点线363所示,在非晶硅膜360露出的表面,保持和镍元素接触。
接着,在含有容积2%氢和尽量不含有氧的氮气氛中,在800℃加热处理4小时。这样,如图46(B)的364所示,在与基片358平行的方向进行结晶生长。该结晶生长,从掺入镍元素的开口362区域向周围进行结晶生长。在与这样基片平行的方向进行结晶生长,在本说明书中称为横向生长或横向的生长。
按照本实施例所示的条件,能够生长100μm以上的横向生长。这样,得到横向生长的硅膜。在形成开口362的区域,进行从硅膜表面向底面的称为纵向生长的向垂直方向的结晶生长。
接着,除掉掩模361以后,对其构图,如图46(C)所示,形成由与基片平行方向结晶生长(即横向结晶生长)的硅膜构成的岛状图形366。以后,在含有容积10%氧,再相对于氧含有容积3%HCl的氮气氛中,在950℃加热处理1小时30分。
结果形成200厚的热氧化膜367。如图46(D)所示的状态。在该工序,形成含有高浓度镍的氧化膜367(即通过吸收镍),由此硅膜366中的镍浓度相对地减少。
因此,在该热氧化膜367中,根据成膜含有高浓度的吸收镍。通过形成热氧化膜367,结晶硅膜366变成500厚。接着,除掉含有高浓度镍的热氧化膜367。这样,得到图46(E)所示的状态。
这种状态,在有源层(形成岛状的结晶硅膜)366中,在朝向结晶硅膜表面,具有使镍浓度增高的浓度分布。但这种状态,在形成热氧化膜367时,成为在热氧化膜367中吸收镍元素的原因。因而,在除掉该热氧化膜367以后,再腐蚀结晶硅膜的表面,用来除掉镍浓度高的区域。
这样,由横向生长区域形成的图形区366中残留的镍元素浓度,和实施例50的情况相比较,能变得较低。其原因是横向生长区域含有的金属浓度最初就低造成的。这样,能使横向生长区域形成的图形区366中的镍浓度容易地作到1017cm-3以下的数量级。
此外,利用本实施例的横向生长区域形成的薄膜晶体管的情况,和用实施例50所示的纵向生长(实施例50的情况,全面进行纵向生长)区域情况相比较,能得到更高迁移率的半导体器件。得到图46(E)所示的状态后,在有源层366表面,形成热氧化膜(没有图示)。在950℃的氧气氛中,加热处理30分,能得到500厚的热氧化膜。
不用说,通过控制加热时间,加热温度,和气氛中的氧浓度,能使上述的氧化膜厚度得到所希望的所设定的数值。以后,例如以后在制造薄膜晶体管的时候,再利用等离子CVD方法等形成氧化硅膜,覆盖该热氧化膜,和上述热氧化膜一起,形成栅绝缘膜。并且,热氧化膜可以按照所希望的预定厚度,照原样地形成栅绝缘膜。
《实施例53》实施例53是利用本发明的结晶硅膜,制造设置在有源矩阵型液晶显示器件和有源矩阵型EL显示器件中象素区域的薄膜晶体管的实施例。图47是表示本实施例制造工序的图。
首先,根据在实施例50及实施例52所示的工序,把各自玻璃基片上的有源层,形成岛状的半导体层(由结晶性硅膜形成的层)。下面的工序,两者是相同的。在图47(A)所示的状态,369为玻璃基片,370为底膜,371为由结晶硅膜构成的有源层。
接着,形成热氧化膜368,在氧和氢的混合减压气氛中进行等离子处理。通过高频放电形成该等离子。通过该等离子处理,除掉在有源层371露出表面上存在的有机物。正确的说,利用氧等离子,使有源层表面吸附的有机物化,再利用氢等离子使氧化的有机物还原和气化。
这样,除掉存在于有源层371露出表面上的有机物。除掉该有机物,能非常有效地抑制有源层371表面上固定电荷的存在。因有机物存在引起固定电荷,是阻碍器件工作和特性不稳定的主要原因,使其存在少非常有用。接着,用热氧化方法,在其表面形成200的热氧化膜368,得到图47(A)所示的状态。
以后,形成1000厚的氧化氮化硅膜372构成栅绝缘膜。能用氧、硅烷、N2O的混合气体的等离子CVD方法,和用TEOS,N2O混合气体的等离子CVD方法等作为成膜方法,但本例使用TEOS和N2O的混合气体。氧化氮化硅膜372和热氧化膜368合在一起,作为栅绝缘膜。
如果在栅绝缘膜中进入(侵入)金属元素,则造成绝缘膜性能下降,薄膜晶体管特性不稳定和分散,要防止这些现象,在氧化氮化硅膜中含有卤素元素是有效的。即通过卤素元素的作用使镍固定,能够防止有源层中镍元素的影响,和栅绝缘膜性能的降低。作为氧化氮化硅膜,由于其有细密的膜质,对于金属元素难于进入栅绝缘膜中起作用。还有,能够利用通用的氧化硅膜。
形成氧化氮化硅膜372作为栅绝缘膜,以后用溅射法形成作栅电极的没有图示铝膜。在该铝膜中含有0.2%重量的钪。由于铝膜中含有钪是在以后的工序中抑制小丘和晶须的产生。其中,小丘和晶须意味着,由于加热,使铝异常生长,形成针状的或刺状的突起部。
形成上述铝膜后,形成没有图示的细密的阳极氧化膜。以含3%重量的酒石酸的乙二醇溶液作为电解液,形成该阳极氧化膜。即在电解液中,以铝膜为阳极,白金为阴阳,进行阳极氧化,在铝膜表面形成有细密膜质的阳极氧化膜。该没有图示的有细密膜质的阳极氧化膜的厚度为100。该阳极氧化膜,提高了与以后形成的抗蚀剂掩模的附着性。通过在阳极氧化时调整施加的电压,能够控制阳极氧化膜的厚度。
接着,形成抗蚀剂掩模374,然后把铝膜形成图形373。这样得到图47(B)所示的状态。接着,再进行阳极氧化。其中,使用3%重量的草酸溶液作为电解溶液。在该电解液中,以铝图形区373作为阳极,进行阳极氧化,形成多孔状的阳极氧化膜376。
在该工序,以上部存在附着性高抗蚀剂掩模374的关系,在铝图形侧面选择地形成阳极氧化膜376。该阳极氧化膜的膜厚能生长成数μm的厚度。其中其膜厚为6000。通过控制阳极氧化的时间来控制其生距离。
接着,在除掉抗蚀剂掩模306后,再次形成细密的阳极氧化膜。即,以前述的含有3%重量酒石酸的乙二醇溶液作为电解溶液,进行阳极氧化。这样,由于电解溶液进入多孔状的阳极氧化膜376中,形成具有细密阳极氧化膜377。
该细密的阳极氧化膜377的膜厚为1000。通过控制施加电压来控制膜厚。其中腐蚀露出的氧化氮化硅膜372和热氧化膜368。利用干腐蚀进行腐蚀。接着,利用醋酸、硝酸和磷酸的混合酸,除掉多孔状的阳极氧化膜376。这样得到图47(D)。
以后,注入杂离子,但其中,为制造N沟道型薄膜晶体管,利用等离子掺杂法注入P(磷)离子。在该工序形成重掺杂的379和383重掺杂区域,轻掺杂的380和382区域。这是因为残存的氧化硅膜378的一部分起半透过掩模的作用,遮蔽注入离子的一部分。
接着,照射紫外线,使注入杂质的区域活化。也能用红外线或激光代替紫外线。这样自对准地形成源区379,沟道形成区381,漏区383,低浓度杂质区380和382。其中,标记382表示的区域是称为LDD(轻掺杂漏区)区域的区域。
在细密的阳极氧化膜377的厚度为2000以上的情况,根据其膜厚,在沟道形成区381的外侧能够形成偏移栅区。本实施例形成偏移栅区,但是由于其尺寸小,其存在作用小,再加上图面繁杂,所以图中没有记载。
接着,形成氧化硅膜,或者氮化硅膜,或者形成它们的叠层,作为层间绝缘膜384,本例形成氧化硅膜。也可以在氧化硅膜或者氮化硅膜上形成树脂层作为层间绝缘膜。然后形成接触孔,再形成源电极385,漏电极386。这样,如图47(E)所示,形成薄膜晶体管。
《实施例54》本实施例54是利用与实施例53(图47)不同的工序,制造薄膜晶体管的实施例。图48是表示本实施例的制造工序图。首先,利用实施例50或实施例52所示的工序,在玻璃基片上形成各自的结晶硅膜。接着,把这些硅膜构图,再在氧和氢的混合减压气氛中进行等离子处理,以下的工序,两者是相同的。
接着,形成200厚的热氧化膜387,得到图48(A)所示的状态。在950℃的氧气氛中,加热30分,形成热氧化膜387。如图48(A)所示,部分388为玻璃基片,389为底膜,390为由结晶硅膜形成的有源层。此外,在除掉用于吸收的热氧化膜后再次形成热氧化膜387。
得到如图48(A)所示状态后,形成1000厚的构成栅绝缘膜的氧化氮化硅膜391。利用氧、硅烷、N2O的混合气体和等离子CVD方法形成该膜。也能够利用TEOS和N2O的混合气体和等离子CVD方法代替上述方法。氧化氮化硅391和热氧化膜387一起构成栅绝缘膜。除了氧化氮化硅外,还能利用氧化硅膜。
接着,利用溅射方法,形成以后作为栅电极的没有图示的铝膜。该铅膜中含有0.2%重量的钪。以后形成没有图示的细密阳极氧化膜。以含有3%重量的酒石酸的乙二醇作为电解溶液形成该阳极氧化膜。即在电解液中以铝作为阳极,白金作为阴极,进行阳极氧化,在铝的表面形成具有细密膜质的阳极氧化膜。
上述没有图示的细密阳极氧化膜的厚度为100。该阳极氧化膜为提高以后形成的抗蚀剂掩模的附着性起重要作用。通过调整阳极氧化时施加的电压来控制阳极氧化膜的厚度。接着形成抗蚀剂掩模392,然后,把铝膜形成图形393。
接着再进行阳极氧化,但其中,以含有3%重量的草酸作为电解溶液。在该电解液中,以铝图形区393作为阳极进行阳极氧化,形成多孔状的阳极氧化膜。在该工序,上部存在有附着性高的抗蚀剂掩模392,在铝图形393侧面,选择地形成阳极氧化膜394。
能够生长数μm厚的上述阳极氧化膜。其中该膜为6000厚。通过控制阳极氧化时的时间来控制其生长距离。接着在除掉抗蚀剂掩模392后,再次形成细密的阳极氧化膜。即,以前述的含有3%重量的酒石酸的乙二醇溶液作为电解溶液,进行阳极氧化。这样,因电解溶液进入多孔状阳极氧化膜中,则形成具有细密膜质的阳极氧化膜395。
接着注入初始的杂质离子。通过注入杂质离子形成源区396和漏区398。杂质离子不注入到区域397。接着利用醋酸,硝酸和磷酸的混合酸除掉多孔状的阳极氧化膜394。这样得到如图48(D)所示的状态。以后再次注入杂质离子。按照比注入初始杂质离子条件轻的掺杂条件注入该杂质离子。
利用上述工序,形成轻掺杂区399和400。然后形成沟道形成区401。接着,照射激光或强光,使注入杂质的区域活化,本例照射激光。这样自对准地形成源区396,沟道形成区401、漏区398、低浓度的杂质区399和400。其中标记400表示的区域是称为LDD(轻掺杂漏区)区域的区域。
接着,形成氧化硅膜,或氮化硅膜,或者其叠层作为层间绝缘层402,本例形成氮化硅膜。也可以在氧化硅膜或者氮化硅膜上形成树脂材料层作为层间绝缘膜。接着,形成接触孔,源电极403,漏电极404。这样,得到如图48(E)所示的薄膜晶体管。
《实施例55》实施例55是互补地形成N沟道型薄膜晶体管和P沟道型薄膜晶体管的实施例。本实施例所述的构成,能用于在表面上集成化的各种薄膜集成电路。或者用于例如有源矩阵型液晶显示器件的周围驱动电路。图49是本实施例的制造工序图。
首先,如图49(A)所示,在玻璃基片406上面形成氧化硅膜或氧化氮化硅膜作为底膜407。最好利用氧化氮化硅膜,本例就是利用氧化氮化硅膜。接着利用等离子CVD方法,形成没有图示的非晶硅膜。也可以用减压热CVD方法代替它。利用实施例50所示的方法,把非晶硅膜变成结晶硅膜。
接着,在氧和氢的混合气氛中进行等离子处理后,把得到的结晶硅膜形成图形,得到有源层408和409。这样得到图49(A)所示的状态。其中,为了抑制有源层侧面移动载流子的影响。如图49(A)所示的状态,在含有3%容积HCl的氮气氛中,在650℃加热处理10小时。
如果在有源层侧面,由于存在金属元素,而存在陷阱能级,引起截止电流恶化,通过上述处理,使有源层侧面的能级密度降低。接着形成构成栅绝缘膜的热氧化膜405和氧化氮化硅膜410。其中,以石英作为基片的情况,希望只用前述热氧化方法形成热氧化膜构成栅绝缘膜。
接着,形成4000厚的以后构成电极的没有图示的铝膜。作为铝膜以外金属,能够利用可阳极化的金属(例如钽)。铝膜形成后,利用前述的方法,在表面形成极薄的细密阳极氧化膜。接着,在铝膜上形成没有图示的抗蚀剂掩模,然后把铝膜构图。再把得到的铝图形作为阳极进行阳极氧化,形成多孔状的阳极氧化膜413和414。该多孔的阳极氧化膜的膜厚为5000。
用形成细密阳极氧化膜的条件再次进行阳极氧化,形成细密的阳极氧化膜415和416。其中,细密的阳极氧化膜415和416的膜厚为800这样得到图49(B)所示的状态。再利用干腐蚀除掉露出的氧化硅膜410和405,得到图49(C)所示的状态。以后,利用醋酸,硝酸和磷酸混合酸除掉多孔状的阳极氧化膜413的414。得到如图49(D)所示的状态。
其中,交替地设置抗蚀剂掩模,在左侧薄膜晶体管注入P(磷),右侧薄膜晶体管注入B(硼)。通过注入杂质离子(P离子),自对准地形成具有高浓度N型源区419和漏区422。同时形成掺低浓度P离子的弱N型区420和沟道形成区421。
之所以形成弱N型区域420,是因为有残存的栅绝缘膜417。即,透过栅绝缘膜417的磷离子被栅绝缘膜417遮蔽一部分。利用同样的原理和技巧,自对准地形成强P型源区426和漏区423。并且,同时形成低浓度杂质区425和沟道形成区424。
在细密的阳极氧化膜415和416的膜厚为2000的情况,根据其膜厚,在接近沟道区域形成偏移栅区。在本实施例的情况,由于细密的阳极氧化膜415和416的膜厚为1000,能够忽略其存在。接着,通过照射激光,使注入杂质离子的区域进行退火。也能够利用强光代替激光。
接着,如图49(E)所示形成氮化硅膜427和氧化硅膜428作为层间绝缘膜。膜的厚度分别是1000。也可以不形成氧化硅膜428。这样利用氮化硅膜覆盖薄膜晶体管。由于氮化硅膜细密,界面特性好,用这样的构成,能提高薄膜晶体管的可靠性。
还有,用旋涂法形成由树脂材料构成的层间绝缘膜429。本例其为1μm。这样,形成接触孔,同时在左侧N型薄膜晶体管形成源电极430和431,在右侧薄膜晶体管形成源电极432和431。其中漏电极431为公用电极。这样,如图49(F)所示,由N沟道型薄膜晶体管和P沟道型薄膜晶体管互补地构成薄膜晶体管。
如上所述,能形成具有互补构成CMOS结构的薄膜晶体管。按照本实施例的构成,能形成用氮化硅覆盖以及再用树脂材料覆盖的薄膜晶体管。利用这种构成,能提高抗侵入可动离子和水分的耐久性。在形成多层布线的情况,能防止在薄膜晶体管和布线之间形成电容。
《实施例56》实施例56是涉及实施例50的工序,在底膜表面直接掺入镍元素的实施例。这种情况,在非晶硅膜的下面保持和镍元素接触。这种情况,在底膜形成后,掺入镍元素,首先在底膜表面和镍元素(该金属元素)保持接触。
本实施例在底膜表面通过涂布醋酸镍水溶液直接掺入镍元素,其它工序和实施例50相同,如图45(E)所示,得到由降低含镍浓度的结晶硅膜形成的岛状区356。作为掺镍元素的方法,除了使用溶液的方法以外,还能使用溅射方法,CVD方法或吸附方法等。
《实施例57》实施例57,在前述各实施例图45(E)的状态,图46(E)状态,图47(A)状态以及图48(A)状态,通过照射激光使由得到的结晶硅膜形成岛状图形结晶性能,提高的实施例。
本实施例,以其各种状态照射激光使由结晶硅膜得到的岛状图形提高结晶性。
对于上述各图45(E),图46(E),图47(A),图48(A)的状态照射激光的情况,和构图前对整个膜掺镍的情况相比,能用比较低照射能量密度,得到预定的退火效果。这是因为,由于在小面积区域照射激光,利用退火的能量效率高造成的。
《实施例58》实施例58是利用镍元素在玻璃基片上得到结晶硅膜的实施例。本实施例,首先利用镍元素得到高结晶性的硅膜。然后照射激光。通过照射激光、提高膜的结晶性,同时使局部集中存在的镍元素扩散。即减小了或消除了镍的聚集现象。
接着,利用热氧化方法在结晶硅膜上形成含F(氟元素)的热氧化膜。此时,在得到的结晶硅膜中残存的镍元素,通过氟(F)元素的作用,被吸收到热氧化膜中。这种情况,通过预先照射激光分散镍元素,则有效地吸收镍元素。然后除掉通过上述吸收具有高浓度镍元素的热氧化膜。这样一来,一边在玻璃基片上得到高结晶性能,一边得到降低镍元素浓度的结晶硅膜。
图50是表示本实施例的制作工序简图。首先,在康宁1737玻璃基片(变形点为667℃)433上面,形成3000厚的氧化硅膜434作为底膜。利用溅射法形成该膜。氧化硅膜434具有防止在后续工序玻璃基片杂质的外扩散。并且具有缓和玻璃基片和以后形成的硅膜之间的作用应力。
在底膜434中含有微量卤素是有效的。这样,在以后工序中,在半导体层中存在的促进硅结晶化的金属元素,由于卤素的作用,被吸收到底膜中。在形成底膜后,利用氢等离子处理是有效的。这是因为,除掉存在于底膜表面的碳化物,能够有效地抑制在与以后形成硅膜的界面存在的固定电荷能级。作为代替氢等离子处理的方法,在氯和氢的混合气氛,进行等离子处理是有效的。
接着,利用减压热CVD方法,形成500厚的以后成为结晶硅膜的非晶硅膜435。之所以用减压热CVD方法,是因为这使以后得到的结晶硅膜膜质优良。具体地说,是由于膜质细密。作为减压热CVD方法以外的方法,能采用等离子CVD方法。其中,希望制造的非晶硅膜,膜中的氧浓度为5×1017cm-3~2×1019cm-3。
这是因为在以后吸收金属元素(促进硅结晶化的金属元素)的工序,氯起重要作用。但是要注意,氯浓度超过上述浓度范围,阻碍非晶硅膜结晶。氧浓度小于上述浓度范围,吸收金属的作用小。其它的杂质浓度,例如氯和碳的杂质浓度也要极低。具体地说,其最好为2×1019cm-3以下的浓度。
非晶硅膜厚度上限为2000A°。这是因为对于以后照射激光所得到的效果过厚的膜是不利的。之所以厚膜不利是因为照射膜的激光大部分被膜表面吸收造成的。非晶硅膜435膜厚的下限,取决于采用什么成膜方法,实用的膜厚为200。其以下膜厚的情况,出现膜厚均匀性问题。
接着,掺入使非晶硅膜435结晶的金属元素。其中,利用镍元素作为促进硅结晶的金属元素,利用溶液方法作为掺入镍元素的方法。其中通过把含有10ppm(按重量)镍的醋酸镍水溶液涂布在非晶硅膜435的表面来掺入镍元素。作为掺入镍元素的方法,除了使用上述的溶液方法以外,还能利用溅射方法,CVD方法,等离子处理方法和吸附方法。其中使用溶液方法,简单调整金属元素的浓度是简单的。
通过涂布醋酸镍水溶液形成如图50(A)中436所示的醋酸镍溶液水膜。得到这种状态后,利用没有图示的旋转器甩掉多余的溶液。这样在非晶硅膜435表面保持和镍元素接触。即使通过控制水膜436保持的时间和利用旋转器的除掉条件,也能够调整掺入非晶硅膜435的镍元素数量。
此外,如果考虑加热工序杂质的残留,最好利用例如硫酸镍等代替醋酸镍水溶液。这是担心由于醋酸镍溶液中含有碳,在以后的加热工序中碳化,或者在膜的表面残留碳素成分。
接着,在图50(B)所示状态,进行加热处理,使非晶硅膜435结晶,得到结晶硅膜437。其中,在含有容积3%氢的640℃氮气氛中,进行加热处理,加热时间为4小时。加热处理温度为500-700℃、但是最好在玻璃基片变形点以下的温度进行热处理。由于本实施例利用的康宁1737玻璃形变点为667℃,所以为了留有裕度,其上限最好选为650℃。
在利用上述热处理进行结晶的工序中,之所以选择还原气氛进行热处理,是为了防止形成氧化物。具体地说,为了抑止由于镍和氧反应在膜的表面和膜中形成NiOx。氧在以后吸收工序,和镍结合,为吸收镍起重要作用。但是已判明在其结晶阶段,氧和镍结合,阻碍结晶。因而,在利用加热进行结晶的工序,尽量抑制形成氧化物是重要的。
用于上述结晶热处理气氛中的氧浓度是需要的ppm数量级,最好为1ppm以下。作为占上述结晶热处理气氛中大部分气体,除氮以外还能用氩等惰性气体,或者其混合气体。利用上述热处理的结晶化工序以后,镍元素由于某种程度的聚集而残存下来。这样,利用TEM(透射电子显微镜)证明了上述现象。镍以某种聚集状态存在的事实的原因还不清楚,但是认为这和什么样的结晶机理有关。
接着,如图50(c)那样,照射激光。其中,用KrF准分子激光(波长为248nm),采用以线状激光束形状扫描的照射方法。由于照射激光,使得通过前述热处理结晶化在局部集中的镍元素在膜437中有某种程度的分散。即消除或减少了镍元素的聚集现象,使镍元素得到分散。作为上述的激光,也能利用XeCl准分子激光(波长为308nm)和其它种类的准分子激光。也可以不利用激光而照射例如紫外线和红外线。
接着,如图50(D)所示的工序,再次进行热处理。该热处理是为了形成吸收镍元素的热氯化膜,其中在含有容积3%氢的和含有100ppm(容量)CLF3的氧气氛,在640℃进行该加热处理。在该工序,形成200厚的热氧化膜。
该工序是从结晶硅膜437中除掉在结晶初期按要求掺入的镍元素。在以普通玻璃基片为基片的情况,在500~700℃温度范围进行加热处理。其加热处理温度的上限,使用的玻璃基片的变形点的温度所限,如在使用的玻璃基片变形点以上温度进行加热处理,要注意基片的变形。
在该工序,通过前述的照射激光把镍元素分散,在形成的氧化膜438中吸收镍元素。因此,在氧化膜438存在镍的浓度比其他区域当然要高。观察到结晶硅膜437和热氧化膜438的界面附近,镍元素含量高。这是认为主要吸收镍的区域在硅膜与氧化硅膜界面附的氧化膜一侧。
之所以在界面附近吸收镍,是因为在界面附近应力和缺陷造成的。观察到硅膜437和热氯化膜438界面附近、氟和氯的浓度高的倾向。这样得到的结晶硅膜,含有促进硅结晶的金属元素浓度为1×1016cm-3~5×1018cm-3,含有氟原子为1×1015cm-3~1×1020cm-3,氢原子为1×1017cm-3~1×1021cm-3浓度。
如图50(D)所示,形成热氧化膜438以后,除掉含镍浓度氧化膜438。利用缓冲氢氟酸(其他的氢氟酸系列)进行湿腐蚀,或进行干腐蚀,除掉该氧化膜438,本例利用缓冲氢氟酸进行湿腐蚀。这样,如图50(E)所示,得到含有降低镍浓度的结晶硅膜439。
在得到的结晶硅膜439表面附近,由于含有比较高浓度的镍元素,所以再次腐蚀上述的氧化膜438,能有效地稍微过腐蚀结晶硅膜439的表面。除去热氧化膜438以后,再照射激光,能有效地提高得到的结晶硅膜439的结晶性。
《实施例59》实施例59涉及实施例50的构成,是用Cu作为促进硅结晶化金属元素的实施例。这种情况用2醋酸铜[Cu(CH3COO)2]和2氯化铜(CuCl22H2O)等作掺入Cu的溶液,但本例利用2氯化铜水溶液。其他工序与实施例58所示的相同,这样得到图50(E)所示的状态。
《实施例60》实施例60是与实施例58不同的结晶生长的实施例。本实施例利用促进硅结晶化生长的金属元素,是有关向称为横向生长与基片平行方向进行结晶生长方法的实施例。图51是表示本实施例制造工序的简图。
首先,在康宁1737玻璃基片440上面,形成3000厚的氧化硅膜作为底膜441。接着,用减压热CVD方法形成600厚的作为结晶硅膜初始膜的非晶硅膜442。该非晶硅膜厚度最好作成2000以下。也可以用石英等其他基片作为上述基片。
接着,形成1500厚的没有图示的氧化硅膜,然后构图,形成掩模443。把该掩模形成开口区域444。在形成开口区域,露出非晶硅膜442。开口区444,从图面深度向读者方向,在长度方向形成细长的长方形。开口444的宽优选为20μm以上,长度可以为需要的长度。本实施例,其宽度为50μm,长度为8cm。
然后,与实施58所示相同,按重量计算涂布含有10ppm含镍的醋酸镍水溶液后,利用旋转器甩干,除掉多余的溶液。这样,如图51(A)点线所示,保持镍元素和非晶硅膜442露出的表面接触。
接着,在含有容积3%氢,尽可能不含有氯的氮气氛中,在640℃加热处理4小时。这样如图51(B)的446所示,在与基片440平行的方向进行结晶生长。该结晶生长,从掺入镍元素的开口444区域向周围区域进行结晶生长。这样,在与基片平行方向的结晶生长,在本说明书中,称为横向生长或者横向的结晶生长。
按照本实施例的条件,能进行100μm以上的横向生长。这样得到横向生长区域的硅膜447。在形成开口区域444的区域中,从硅膜表面向底膜界面,在垂直方向进行称为纵向生长的结晶生长。接着除掉用来选择掺入镍元素的由氧化硅膜构成的掩模443。这样得到图51(C)所示的状态。这种状态,在结晶硅膜447中,存在有纵向生长区域,横向生长区域,结晶生长及非结晶生长(非晶状态)区域。
在这种状态中,镍元素在膜中不均匀的分布。特别是在开口444区域和结晶生长区域446的开始部分,存在较高的镍浓度。接着照射激光采用与实施例58相同的KrF准分子激光。利用该工序,由于扩散不均匀分布的镍元素,使得以后的吸收工序,容易吸收镍。
照射激光完了后,在含有容积3%氢、100ppm(容量)NF3的气氛中,在650℃进行加热处理。在该工序,形成含有高浓度镍氧化膜448,其厚度为200,同时相对地减少了硅膜447中的镍浓度。通过上述热处理形成热氧化膜完了后,去除含有高浓度镍的热氧化膜448。
除去上述热氧化膜448后,再腐蚀结晶硅表面是有效的。接着,进行构图,由横向生长区域形成图形449。这样,在由得到的横向生长区域形成的图形449中残留的镍元素浓度,和实施例58所示的情况相比较,能得到更低的浓度。
这是因为在横向生长区域中含有的金属元素浓度起始就特别低造成的。具体地说,可能容易地使由横向生长区域形成图形区448中的镍浓度作到1017cm-3以下的数量级。在图51(E)所示的图形形成后,再进行腐蚀处理,用来除掉图形表面上存在的镍元素。
接着在形成的图形449上,形成热氯化膜450。在650℃的氧化气氛中加压处理12小时,形成200厚的该热氧化膜。形成热氧化膜450时,在气氛中含有氟元素是有效的。在热氧化膜形成时,如在气氛中含有氟元素,通过氟的作用能使镍元素固定化,和使硅膜表面不成对结合的进行结合。即提高有源层和栅绝缘膜的界面特性。
此外,也可以用氯素代替氟素。该热氧化膜,如果构成薄膜晶体管,则以后成为栅绝缘膜的一部分。以后在制造薄膜晶体管的情况,再用等离子CVD方法形成热氧化硅膜,覆盖热氧化膜450,形成栅绝缘膜。
《实施例61》实施例61是利用本发明得到的结晶硅膜,在有源矩阵型液晶显示器件和有源矩阵型E1显示器件的象素区域制造薄膜晶体管的实施例。
图52表示本实施例的制造工序。首先,利用实施例58及实施例60所示的工序,在玻璃基片上形成各自的结晶硅膜。其余的工序,两者相同。按照实施例58所示的结构形成结晶硅膜的情况,通过构图,经过图50(A)~图50(E)所示的工序后,得到图52(A)所示的状态。
如图52(A)所示状态,标记452为玻璃基片453为底膜,454为由结晶硅膜构成的有源层。在得到如图52(A)所示的状态后,在氢和氧的混合减压气氛,进行等离子处理。通过高频放电形成该等离子。通过该等离子处理,除掉有源层454露出的表面上存在的有机物。正确地说,利用氧等离子,使有源层表面上吸附的有机物氧化,再利用氢等离子使氧化的有机物还原和气化。这样,除掉在有源层454露出的表面上存在的有机物。
除去上述有机物,对于减少有源层454表面上固定电荷是非常有效的。由于存在有机物引起固定电荷是阻碍器件动作、造成特性不稳定的主要原因,减少其存在非常有用。除掉这样的有机物后,在640℃的氧气氛中进行氧化,形成100厚的热氧化膜451。该热氧化膜与半导体的界面特性好,在以后构成栅绝缘膜的一部分。这样得到图52(A)所示的状态。
以后,形成1000厚的构成栅绝缘膜的氧化硅膜455。利用等离子CVD方法、形成氧化硅膜455。氧化硅膜455和热氧化膜451一起作为栅绝缘膜。在氧化硅膜455中含有卤素是有效的。这种情况,通过卤元素的作用能使镍元素固定化。并且,能抑制有源层中镍元素(其它促进硅结晶化的金属元素也一样)的影响和降低栅绝缘膜中的性能。
接着,形成以后作为栅电极的没有图示的铝膜。在该铝膜中含有0.2%重量的钪。在铝膜中含有钪,在以后工序中是为了抑制小丘和晶须的产生。其中小丘和晶须意味着加热时造成铝膜异常生长针状和刺状的突起部。
上述那样的铝膜形成后,形成没有图示的细密阳极氧化膜。以含有3%重量酒石酸的乙二醇溶液作为电解溶液,以铝膜为阳极,白金为阴极,形成阳极氧化膜。该工序在铝膜上面形成100厚的具有细密膜质的阳极氧化膜。该阳极氧化膜,具有提高与以后形成的抗蚀剂掩模附着性的作用。通过调整阳极氧化时所加的电压来抑制阳极氧化膜的厚度。
接着形成抗蚀剂掩模457,然后把铝膜形成图形456。这样得到图52(B)所示状态。其中再进行阳极氧化。其中以含有3%重量草酸溶液作为电解溶液。在该电解溶液中,以铝图形456作为阳极进行阳极氧化,形成多孔状的阳极氧化膜459。
该工序涉及上部存在高附着性的抗蚀剂掩模457,在铝图形456侧面选择地形成阳极氧化膜459。阳极氧化膜459的膜厚能生长到数μm厚。其中,该膜厚为6000厚。通过控制阳极氧化的时间来控制其生长距离。
接着,在除掉抗蚀剂掩模457后,再次形成细密的阳极氧化膜。即以前述的含有3%重量酒石酸的乙二醇溶液作为电解溶液,进行阳极氧化。在该工序,由于电解溶液进入(侵入)多孔状阳极氧化膜459中,则形成具有细密膜质的阳极氧化膜460。
细密的阳极氧化膜460的厚度为1000,通过控制施加电压来控制其膜厚。接着腐蚀氧化硅膜455,同时也腐蚀热氧化膜451。该腐蚀利用干腐蚀。然后,利用醋酸,硝酸,磷酸的混合酸除掉多孔状的阳极氧化膜459。这样得到图52(D)所示的状态。
其后虽然注入杂质离子,但其中为了制作N沟道型薄膜晶体管用等离子掺杂法注入P(磷)离子。在该工序形成重掺杂区462和466,轻掺杂区463和465。其原因是残存的氧化硅膜461作为半透过的掩模,因此。遮蔽一部分注入的离子。
接着照射激光,使注入杂质离子的区域活化。能够选用强光代替该激光。这样自对准地形成源区462沟道区464,漏区466,低浓度杂质区463和465。其中,标记465所示的区域是称为LDD(轻掺杂的漏区)区域的区域。
还有,在细密的阳极氧化膜460的膜厚为2000以上的情况,根据其膜厚在沟道形成区464的外侧,能够形成偏移栅区。在本实施例形成偏移栅区,但因其尺寸小而作用小,再加上图面烦杂,所以在图中没有记载。需要注意,之所以形成2000厚的细密膜质的阳极氧化膜,是因为要加200V以上的电压。
接着,虽然形成氧化硅膜,或氮化硅膜,或其叠层膜作为层间绝缘膜467。但本例形成叠层膜。也可以在氧化硅膜或者氮化硅膜上形成树脂层作为层间绝缘膜。这样一来,形成接触孔,源电极468和漏电极469,这样得到图52(E)所示的薄膜晶体管。
《实施例62》实施例62是制造与实施例61(图52)所示工序不同薄膜晶体管的实施例。图53表示本实施例的制造工序。首先,利用实施例58和实施例60所示的工序,在玻璃基片上制造各自的结晶硅膜。这样通过构图,形成图53(A)所示的状态,其余工序,两者相同。
在得到图53(A)所示的状态后,在氧和氢的混合减压气氛中进行等离子处理。在图53(A)所示的状态,标记471为玻璃基片,472为由氧化膜构成的底膜,473为由结晶硅膜构成的有源层。标记470是除掉用来吸收的热氧化膜后,再次形成的热氧化膜。接着,如图53(B)所示,用等离子CVD方法,形成1000厚的构成栅绝缘膜的氧化硅膜474。
氧化硅膜474和热氧化膜470一起形成栅绝缘膜。接着,形成以后作为栅电极的没有图示的铝膜,采用的方法是溅射方法。该铝膜中含有0.2%重量的钪。形成铝膜后,在其表面形成没有图示的细密阳极氧化膜。以含有3%重量酒石酸的乙二醇溶液作为电解溶液,形成该阳极氧化膜。
上述没有图示的细密膜质的阳极氧化膜厚度为100厚。该阳极氧化膜为提高与以后形成的抗蚀剂掩模的附着性起作用。能利用阳极氧化时旋加的电压来控制阳极氧化膜的厚度。接着形成抗蚀剂掩模475。把铝膜形成图形476。
接着,再次进行阳极氧化。其中,以含有3%重量的草酸作为电解溶液。在电解液中,以铝图形区476作为阳极进行阳极氧化,形成多孔状阳极氧化膜477。该工序涉及上部存在附着性高的抗蚀剂掩模475,在铝图形476的侧面选择地形成阳极氧化膜477。
上述阳极氧化膜的厚度能生长数μm厚。本例其膜厚为6000。利用阳极氧化时间、来控制其生长距离。接着,除掉抗蚀剂掩模475,再次形成细密的阳极氧化膜。即,利用前述的含有3%重量酒石酸的乙二醇溶液作为电解溶液,再次进行阳极氧化。这样,由于电解溶液进入(侵入)多孔状阳极氧化膜477中,结果形成细密膜质的阳极氧化膜478。
接着,注入初始杂质离子。其中为制造N沟道型薄膜晶体管,注入P(磷)离子。如果制造P沟道型薄膜晶体管,要注入B(硼)离子。通过注入杂质离子,形成源区479和漏区481。区域480不注入杂质离子。接着利用醋酸、硝酸和磷酸,除掉多孔的阳极氧化膜477。这样,得到图53(D)所示的状态。
以后,再次注入杂质离子(磷离子)。按照比最初杂质离子注入条件轻的掺杂条件(低剂量),进行该杂质注入。在该工序,形成轻掺杂区482和483,这样,形成沟道形成区484。
接着,通过照射激光,使注入杂质离子的区域活化。也可以照射红外线和紫外线等强光代替激光。这样,自对准地形成源区479,沟道形成区484,漏区481,低杂质掺杂区482和483。其中标记483表示的区域,成为称为LDD(轻掺杂漏区)区域的区域。
接着,虽然形成氧化硅膜,或氮化硅膜,或其叠层膜作为层间绝缘膜485,但其中利用氮化硅膜作为层间绝缘膜。也可以在氧化硅膜或氮化硅膜上形成树脂层作为层间绝缘膜。这样,形成接触孔,源电极486,漏电极487,再在350℃氢气氛中,加热处理1小时(氢化热处理)。该工序中和有源层中的缺陷和不良结合。这样,得到图53(E)所示的薄膜晶体管。
《实施例63》实施例63是互补地形成N沟道型薄膜晶体管和P沟道型薄膜晶体管的实施例。本实施例的构成能用于例如在绝缘表面上集成化各种薄膜集成电路。也能用于例如有源矩阵型液晶显示器件的周围驱动电路。图54是表示本实施例工序简图。
首先,如图54(A)所示,在玻璃基片489上形成氧化硅膜作为底膜490。也可以用氮化硅膜代替氯化硅膜。接着,利用等离子CVD方法或减压热CVD方法,形成没有图示的非晶硅膜,本例使用前者。按照实施例58所示的方法,把非晶硅膜转变成结晶硅膜。这样,在氧和氢的混合气氛中,进行等离子处理后,构图该结晶硅膜,得到有源层491和492。以后形成热氧化膜488。热氧化膜的厚度为100。这样,得到图54(A)所示的状态。
接着,形成氧化硅膜作为栅绝缘膜493。然后用溅射法形成4000厚的,以后作为栅电极的没有图示的铝膜。除了铝膜以外的金属,能够利用可能阳极化的金属(例如钽)。形成铝膜后,利用前述的方法,在其表面形成没有图示的极薄细密的阳极氧化膜。
接着,在铝膜上设置没有图示的抗蚀剂掩模,把铝膜构图。然后,以得到的铝图形区作为阳极进行阳极氧化,形成多孔状的阳极氧化膜496和497。该多孔状阳极氧化膜的厚度为5000。接着除掉没有图示的抗蚀剂掩模、用形成细密阳极氧化膜的条件,再次进行阳极氧化。在该工序形成细密的阳极化膜498和499。
其中,细密的阳极氧化膜498和499的膜厚作为800。这样,得到图54(B)所示的状态。利用干腐蚀除掉露出的氧化硅膜493和热氧化膜488,得到图54(C)所示的状态。然后,利用醋酸,硝酸和磷酸的混合酸,除掉多孔状的阳极氧化膜496和497。这样得到图54(D)所示的状态。
其中,交替地设置抗蚀剂掩模,利用等离子掩杂法,在左侧薄膜晶体管注入P(磷)离子,在右侧薄膜晶体管注入B(硼)离子。通过注入其杂质离子,自对准地形成高浓度的N型源区502和漏区505。同时形成掺低浓度P磷离子的弱N型区503,并且同时形成沟道形成区504。
其中,之所以形成弱N型区域503,是因为存在残留的栅绝缘膜500。即利用栅绝缘膜500,部分地遮蔽透过栅绝缘膜500的磷离子。利用同样的原理和技巧,自对准地形成强P型区域509和漏区506。同时形成低浓度杂负区域508,以及沟道形成区507。
此外,在细密的阳极氧化膜498和499的膜厚为2000的情况,根据其厚度在靠近沟道形成区能形成偏移栅区。本实施例,由于细密的阳极氧化膜498和499的膜厚为1000以下,其存在可能被忽略。
接着,通过照射激光,使注入杂质离子的区域退火。也可以照射紫外线等强光代替激光。然后,如图54(E)所示,形成厚度分别为1000的氮化硅膜510和氧化硅膜511作为层间绝缘膜。但不必形成氧化硅膜511。其中利用氮化硅膜覆盖薄膜晶体管。由于化硅膜细密,界面特性好,利用这样的构成,能够提高薄膜晶体管的可靠性。
还有,利用旋涂方法形成由树脂材料构成的层间绝缘膜512。其中层间绝缘膜512厚度为1μm。然后,形成接触孔,形成左侧N沟道型薄膜晶体管的源电极513和漏电极514。同时形成右侧薄膜晶体管源电极515和漏电极514。其中,漏电极514两者共用。
这样,如图54(F)所示,构成具有互补型构成CMOS结构的薄膜晶体管电路。如本实施例所示的构成,得到用氮化硅覆盖以及用树脂材料覆盖薄膜晶体管的结构。利用这种构成,能使抗可动离子和水分侵入的耐久性提高。并且在形成多层布线的情况,能防止在薄膜晶体管和布线之间形成电容。
《实施例64》实施例64涉及实施例58的工序,是在底膜表面直接掺入镍的实施例。这种情况,使镍元素和非晶硅膜下面保持接触。利用这种方法的情况形成底膜后,掺入镍元素,首先在底膜表面保持和镍元素(该金属元素)接触。
本实施例,在底膜表面涂布醋酸镍水溶液,其它工序和实施例58的情况相同,得到图50(E)所示的状态。作为掺入镍的方法,除了上述的溶液方法以外,还能利用溅射方法,CVD方法及吸附方法。
《实施例65》实施例65是在图51(E)的状态,或者52(A)的状态,或者图53(A)的状态,照射激光、用其以前的工序得到结晶硅膜,并且形成岛状图形,提高其结晶性的实施例。在图51(E),图52(A),图53(A)的状态照射激光的情况,能利用较低的照射密度,得到预定的效果。认为这是由于在小面积处照射激光用于退火的能量效率高造成的。
《实施例66》本实施例66是关于制造底栅型(ボトムゲイト)薄膜晶体管的实施例。图55表示制造本实施例薄膜晶体管工序。首先在玻璃基片516上形成氧化硅膜517作为底膜。
接着,用适当的金属材料或者金属硅化物材料等形成栅电极、本例利用铝。形成栅电极518后,再形成氧化硅519、作为栅绝缘膜、再用等离子CVD方法、形成非晶硅膜520。接着,如图55(B)所示,涂布醋酸镍水溶液,用标记521表示醋酸镍水溶液的液膜,使镍和非晶硅膜520的表面接触。
接着,在含有体积3%氢的氮气氛中,在650℃进行加热处理,使非晶硅膜520结晶化。这样得到结晶硅膜522。对该结晶硅膜,在含有体积5%的HCl,100ppm(容量)的NF3的氧气氛中,在650℃进行加热处理。通过该加热处理,形成热氧化膜523,如图55(C)所示,然后除掉该热氧化膜523。
接着,把结晶硅膜522和氧化硅膜519进行构图,形成栅绝缘膜525和薄膜晶体管的有源层526。如图55(D)所示,设置抗蚀剂掩模524。按照图55(D)所示状态进行杂质离子注入,形成源区及漏区。其中,为了制造N沟道型薄膜晶体管,注入P(磷)离子。在该工序,形成源区527,漏区528。
然后进行各向同性压缩(アツシンゲ),使抗蚀剂掩模524整个地缩小。即如图55(E)中529所示,抗蚀剂掩模524整个地变小。这样,得到缩小的抗蚀剂掩模529。接着,如图55(E)所示,再次进行P离子注入。
如图55(D)所示,用比P离子剂量小的剂量进行该工序。这样,形成低浓度杂质区域530和531。接着形成金属电极532和533。其中电极532为源电极,电极533为漏电极。这样制成底栅栅型薄膜晶体管。
《成为实施例67前提状态》图56和图57是薄膜晶体管(TFT)制造工序的说明图,是关于后述实施例67的TFT制造工序的说明图。首先,根据图56~图57,说明属于实施例67前提的具体的状态实施例。
如图56(A)所示,在玻璃基片534上面,顺次叠层地膜535,非晶硅膜536,再在非晶硅膜536表面形成含镍层(Ni)537。在这种状态,通过加热处理,使如图56(B)所示的非晶硅膜536结晶形成结晶硅膜538。
在该状态,形成镍层537的工序不是必要的工序,但是由于镍在结晶时作为降低热能的催化剂、可能降低结晶化处理的加压温度和缩短处理时间。
作为这样的催化元素、除了镍(Ni)以外,还能使用选自Fe、Co、Ru、Rh、Pd、Os,Ir、Pt、Cu,Au中的至少一种元素,但是镍的催化效果最显著,不使用镍元素,而使用公知技术等也可能形成结晶硅膜。作为结晶化工序,也可以利用照射激光,代替加热处理。在形成结晶硅膜后,也可以利用激光和红外光等进行退火,和进行热处理。
图56(c)表示热氧化工序。按照在结晶硅膜538表面生长热氧化膜539,即按照形成的Si-O结合,生成未结合的Si。其剩余的硅,从热氧化膜539和结晶硅膜538的界面,扩散到结晶硅膜538内部,在结晶粒边界存在的Si和悬挂键结合,使结晶硅膜538结晶粒边界的缺陷钝化。由此,能提高由结晶硅膜538构成的TFT迁移率。
伴随以后加热的工序,为了使钝化缺陷的Si不象H那样容易从结晶硅膜538中脱离,则不必进行氢等离子处理。例如,按照本发明制造半导体器件的方法,进行制造N沟道TFT,氢等离子处理后的迁移率比氢等离子处理前迁移率只增加10~20%。这意味着通过热氧化工序,结晶硅膜538的缺陷完全钝化、在制造期间,作为钝化缺陷的硅没有脱离。
本发明热氧化的目的是为了提供钝化结晶硅膜晶粒边界的缺陷,如果考虑由结晶硅膜538构成有源层,而热氧化膜539不考虑耐压性等膜质,最好生长200-500的厚度。必须在许可由于加热使基片翘曲和变形的条件下进行热氧化。例如,加热温度的上限为使玻璃基片变形的温度。
在本状态,在加有氟化合物的氧化气氛中,进行热氧化工序。具体地说,在加入NF3气体等的氧气氛中进行热氧化。通过适当调节NF3气体的浓度、在玻璃基片变形点以下的温度,加热几十小时,可能形成几百厚的热氧化膜。
除了提供氟基的NF3气体以外,在氧化气氛中还添加提供Cl基的HCl气体,促进热氧化膜的生长,但是在玻璃基片变形点以下的温度、例如500-600℃加热,形成几百厚的热氧化膜,因为需要时间,所以是不适合的。在氧气中添加450ppm的氧化气氛中,在600℃加热4小时,可能形成200厚的热氧化膜。
在热氧化工序,因为氟基集中供给结晶硅膜538表面的凸部。该凸部当然进行热氧化,抑制凹部的热氧化。热氧化膜539含有高浓度的氟元素,由于缓和应力,在结晶硅膜538的表面,因为弄圆凸部,则形成均匀的热氧化膜539。
为使热氧化工序在基片翘曲和变形许可范围,需要确定加热温度和加热时间,结果热氧化气氛中氟元素浓度增大。该结果结晶硅膜538中含氟量多,需要考虑Si-F结合的情况。但是为提供钝化结晶硅膜晶粒边界缺陷的硅,生长热氧化膜539,因为形成的膜以后要除掉不要求其特性涉及提高栅绝缘膜的特性和提高可靠性,不考虑有关热氧化膜539的Si-F结合等不稳定性和耐压性。
如图56(D)所示,在除去热氧化膜539后,通过对结晶硅膜538构图,形成有源层540和栅绝缘膜541。可能采用热氧化方法,形成栅绝缘膜541,但是在玻璃基片上,在许可其变形的低温下进行热氧化得到热氧化膜的膜质不好。为此,在本状态,为得到所定特性的稳定的栅绝缘膜,利用等离子CVD方法和溅射等淀积方法、形成栅绝缘膜。
在本状态因为经过热氧化使有源层540(结晶硅膜538)的表面平坦,所以即使用淀积方法形成栅绝缘膜,也能得到覆盖性良好的栅绝缘膜。因此,可能降低栅绝缘膜和有源层之间界面的能级。
虽然利用照射激光得到的结晶硅膜,结晶性优良,但是在其表面形成陡峻的凸起,例如,通过加热使700厚的非晶硅膜硅化后,如果照射激光,则在其表面形成100~300厚的凸起物。
例如,在氧中添加450ppm NF3的气氛中,氧化12小时形成500厚的热氧化膜,可能在结晶硅膜表面产生10的高低差别。在利用激光照射得到的结晶硅膜表面,能够利用CVD方法淀积成覆盖性能良好的绝缘膜。
图57是表示掺杂杂质离子的工序简图。以栅电极542作为掩模,自对准地形成源区544,漏区545,沟道形成区546。如图57(B)所示,形成层间绝缘膜547,电极548,549,最后制成TFT。
《实施例67》实施例67是利用借助于促进硅结晶化金属元素的催化作形成结晶硅膜制造TFT的实施例。图56和图57是关于本实施例制造TFT工序的说明图,是各工序的剖面图。本实施例利用镍元素作为该金属元素。
如图56A所示,利用等离子CVD方法或减压热CVD方法在玻璃基片534(康宁1737玻璃,形变点为667℃)上,形成3000厚的氧化硅膜作为底膜535。接着用等离子CVD方法或减压热CVD方法,形成700~1000厚的基本上为本征(I型)的非晶硅膜536。本例在上述两种成膜方法采用减压热CVD方法,形成700厚的非晶硅膜536。
在氧化气氛中,在非晶硅膜536的表面照射UV(紫外线)光,在其表面形成没有图示的数20厚的氧化膜后,在该氧化膜表面上涂布含有镍的溶液。为了改善非晶硅膜538表面的沾润性,该氧化膜是用来控制不沾溶液的性能。本实施例,作为含镍溶液,使用含镍量(重量)为55ppm的醋酸镍溶液。
本实施例利用旋涂器,涂布醋酸镍溶液,然后干燥,形成镍层537。不限制把镍层537形成为整个膜,但这种状态,通过上述的没有图示的氧化膜,使镍元素和非晶硅膜536的表面保持接触。作为该溶液可以使用镍的稀溶液,但最好使用含镍量为1-100ppm浓度的溶液。
其中若结晶硅膜中含镍浓度为1×1016/cm3以下,则得到促进结晶的效果是困难的。另一方面若镍浓度在5×1019原子/cm3以上,则由得到的硅膜作为半导体的特性受到损害,呈现出金属的特性。为此要在最终得到的硅膜中具有平均镍浓度为1×1016~5×1019原子/cm3应予先设定醋酸镍溶液中的镍浓度,涂布次数,涂布量等工艺条件。还有,可用SIMS(2次离子质量分析方法)计测镍的浓度。
在图56(A)所示的非晶硅膜536的表面,保持有镍元素,如图56(B)所示,在氮气氛中加热处理,使非晶硅膜536结晶,形成结晶硅膜538。要使硅结晶,必须在450℃以上的温度进行加热,由于在450℃~500℃的温度要使非晶硅膜结晶需要几10小时以上,所以希望在550℃以上的温度进行加热。还有,不限于图56(B)所示的结晶化工序,但加热温度必须在因加热使基片变形和收缩在许可的范围内。
加热温度上限标准,例如可以设为基片的形变点的温度。本实施例为了使用形变点为667℃的玻璃基片534,以620℃为加热温度,加热4小时。通过加热,镍元素从非晶硅膜536的表面向与底膜535的界面,在与玻璃基片534表面大致垂直的方向进行扩散,进行硅的结晶生长,形成结晶膜538。在与玻璃基片534垂直的方向进行该结晶生长。这样的结晶过程称为纵向生长。
还有,如果需要,在结晶化工序后,利用激光和红外光,或者利用紫外光进行退火,和进行热退火,则可能更高地提高结晶硅膜538的结晶性。并且也可并用光退火和热退火。但是,在利用激光进行退火的情况,为了利用激光有效地为结晶硅膜538提供热能,作为结晶硅膜538初始膜的非晶硅膜536的厚度在1000以下,最好为700~800。
接着,在含氟的氧化气氛中加热处理,在结晶硅膜538表面上,形成200-500厚的热氧化膜539。在氧气中添加400ppm(容量)NF3的气氛中,在600℃加热4小时,形成200厚的热氧化膜539。
结果,结晶硅膜538的膜厚,由形成热氧化膜539前的700变成为600厚。因为结晶硅膜538最终构成TFT的有源层,要得到必要厚度的有源层,考虑到氧化膜539的厚度,必需要确定非晶硅膜536的厚度。
根据在结晶硅膜538表面上形成热氧化膜539,产生未结合状态的Si。该剩余的Si从热氧化膜539和结晶硅膜538的界面,向结晶硅膜538内扩散,在结晶粒边界存在的硅和悬挂键结合,减少结晶硅膜538结晶粒边界的缺陷密度。并且伴随以后加热的制造工序,钝化缺陷的Si,不象H那样容易地脱离结晶硅膜538,所以结晶硅膜538适用于TFT等半导体器件的材料。
并且,由于凸部和凹部的氧化速度不同,而把凸部弄圆,使结晶硅膜538表面平坦。还有,如前所述,在用激光照射结晶硅膜538的情况,由于在表面形成凸起物,可能限制平坦化,为除掉这些凸起物,应考虑到热氧化后结晶硅膜538的厚度,设定热氧化膜539的膜厚度和NF3气体浓度等热氧化工序的条件。
接着,如图56(D)所示,通过腐蚀,除掉热氧化膜539。腐蚀时,使用对氧化硅膜和硅腐蚀速率高的腐蚀液或者腐蚀气体。作为腐蚀剂最好使用氢氟酸以及其它氢氟酸系列的腐蚀剂,但是本实施例使用缓冲的氢氟酸进行湿腐蚀除掉热氧化膜539。
接着,把结晶硅膜538构成岛状图形,形成TFT的有源层540后,利用等离子CVD方法形成1000厚的栅绝缘膜541。有源层540的表面,通过热氧化而平坦化,则能够淀积覆盖性良好的栅构缘膜541。以后,在栅绝缘膜541的表面上,利用电子束蒸发方法,形成6000厚的含微量钪的铝膜,然后如图56(E)所示,把其构图形成栅电极542。
然后,在电解液中,以栅电极542作为阳极进行阳极氧化,形成氧化物543。这种情况,在含有3%重量酒石酸的乙二醇溶液中,以栅电极542作为阳极,白金作为阴极,通过施加电压,形成2000厚的细密构造的阳极氧化层543。还有,通过控制加电压的时间,来控制阳极氧化膜543的厚度,本实施例利用此方法来控制氧化膜的厚度。
接着,如图57(A)所示,为了形成源区544、漏区545,利用离子注入法或等离子注入法,在有源层540中注入一种导电类型的杂质离子。在形成N沟道型TFT的情况,利用在H2气体中稀释1-10%(容量)磷化氢、把P(磷)离子注入到有源层540中。另外,在制造P沟道型TFT的情况,使用相同的稀释为1-10%(容量)的乙硼烷、注入B(硼)离子。本实施例通过注入离子方法,分别注入P(磷)离子和B(硼)离子,分别制造N沟道型及P沟道型TFT。
以栅电极542及其周围的阳极氧化物543区域作为掩模,一旦把杂质离子注入到有源层540,则注入杂质离子的区域成为源区544及漏区545,没注入杂质离子的区域中为沟道区546。控制剂量,加速电压等掺杂条件,使源区544,漏区545的杂质浓度为3×1019~1×1021原子/cm3。并且、在掺杂后照射激光、使注入到源区544、漏区545的杂质离子活化。
接着,如图57(B)所示,利用等离子CVD方法,形成7000厚的氧化硅膜作为层间绝缘膜547。接着,在形成接触孔后,分别形成连接源区544和漏区545的电极548和549。最后,在300℃进行氢等离子处理,制成如图57(B)所示的薄膜晶体管。还有,该氢等离子处理,不能钝化有源层540的缺陷,主要目的是钝化有源层540和由铝膜形成电极548、549的界面状态。
按照本实施例制造工序制造的P沟道型TFT的电场效应迁移率,对于进行氢等离子处理前和氢等离子处理后,没有大的差别。这是因为,如图56(C)所示的氧化工序,有钝化效果,如上所述,只通过氢等离子处理进行钝化,象预想那样没有显著的改善P沟道TFT的电场效应迁移率,对于P沟道型TFT,钝化有源层450的结晶粒边界的缺陷,不是改善电场效迁移率的最好方法。
另一方面,按照本实施例制造的N沟道型TFT在氢等离子处理前电场效应迁移率为200cm2、V-1、S-1,氢等离子处理后,电场效应迁移率只增加10-20%。以前对于N沟道型TFT不进行和不利用氢等离子处理,但上述事实意味着,象本实施例那样,通过添加NF3,只进行热氧化处理,可能制造可能实用的N沟道型TFT。
即,通过氢等离子处理,利用氢钝化的有源层540的结晶粒边界的缺陷不过多、晶粒边界的许多缺陷,如图56(C)所示,在氧化工序被钝化。因而,利用本实施例的氢等离子处理,钝化的缺陷大部分,是在热氧化工序以后产生的缺陷,主要是在形成电极548、549时产生的缺陷。并且,对于本实施例,有源层540结晶粒边界的缺陷用Si来钝化。由于Si不象H那样,受热的影响容易从有源层脱离,所以利用本发明能够形成耐热性优良的和高可靠性的TFT。
《实施例68》实施例68是使用借助于促进硅结晶化金属元素的催化作用形成的结晶硅膜,制造TFT的实施例。图58和图59是本实施例TFT制造工序的说明图,表示每个工序的剖面图。本实施例使用镍作为金属元素。
如图58(A)所示,在玻璃基片550(康宁1737,形变点为667℃)上,用等离子CVD方法或者减压热CVD方法,形成3000厚的氧化硅膜作为底膜551。本例使用等离子CVD方法。接着,利用等离子CVD方法和减压热CVD方法,形成700~1000厚的基本上本征非晶硅膜。本例利用等离子CVD方法、形成1000厚的非晶硅膜552。
在氧化气氛中,在非晶硅膜552表面照射UV(紫外线)光,在其表面形成没有图示的20厚的氧化膜。该氧化膜用来改善非晶硅膜552表面的沾润性,控制不沾溶液的性能。接着在上述没有图示的氧化膜表面上,形成掩模553,掩模553是由1500厚的具有开孔部(开口部)554的氧化膜形成的。
上述开口部554、在与纸面垂直的方向(从读者向里方向)具有纵向槽状的形状。开口部554的宽为20μm以上是适合的,另一方面,纵向尺寸与基片尺寸等重合是合适的。本例其宽度为50μm,纵向长度为3cm。
接着,利用旋涂器涂布含55ppm(重量)镍元素的醋酸镍溶液,经过干燥,形成镍层555。镍层555不限制全部成膜,在这种状态,在掩模553的开口部554,通过没有图示的氧化膜,使镍元素和非晶硅膜552保持接触。还有,可以利用镍的稀释溶液作为该溶液,最好用含镍量为1-100ppm(重量)浓度的溶液。
接着,在620℃加热4小时,使非晶硅膜552结晶,形成结晶硅膜556。通过加热,非晶硅膜552从掩模553的开口554露出区域557的表面向底膜551,进行纵向结晶生长,使区域557成为纵向生长区域。
另一方面,区域558作为纵向生长区域557的起点,如图58(B)中箭头所示,在与基片550表面平行的方向进行结晶生长,在这样方向进行结晶生长的结晶过程,称为横向生长。因此,结晶硅膜556中的区域558是横向生长区域。
其后,除掉由氧化硅膜形成的掩模553。接着,如图58(C)所示,在含有氟原子的氧化气氛中进行加热,在结晶硅膜的表面,形成200-500厚的热氧化膜。还有,如果需要,热氧化之前,利用激光或红外光退火和进行热退火,可以更高地提高结晶硅膜556的结晶性。而且,可以并用光退火和热退火。
对于本实施例的上述热氧化工序,在氧气中添加450ppm(容量)NF3的气氛中,在600℃加热12小时,形成500厚的热氧化膜559。结果,结晶硅膜556膜厚,由热氧化前的1000变成为750。
随着在结晶硅膜556表面上,形成热氧化膜559,生成未结合状态的硅。该硅(Si)原子在结晶硅膜556的结晶粒边界和Si的悬挂键相结合,钝化结晶硅膜556的缺陷。对于1000厚的结晶硅膜556,形成500厚的氧化膜559,则能够完全减少结晶硅膜556的结晶粒边界的缺陷密度。
接着,如图58(D)所示,通过腐蚀,除掉热氧化膜559。该腐蚀工序,使用对氧化硅和硅腐蚀速率高的腐蚀液或者腐蚀气体。本实施例,利用缓冲氢氟酸进行湿腐蚀来除掉热氧化膜559。
接着,如图58(E)所示,把结晶硅膜556腐蚀成岛状区形成TFT的有源层560,这种情况,有源层560只由横向生长区域558构成是良好的。接着,利用紧离子CVD方法或减压CVD方法在有源层表面上,形成构成栅绝缘膜的氧化硅膜561,本例利用减压CVD方法。
然后,在氧化硅膜561的表面上,用溅射方法淀积5000厚的构成栅电极562的铝膜。铝膜如先含有少量的钪,则在以后能够抑制在后续工序中产生小丘和晶须,本例在铝中含有0.2%重量的钪。
接着,在铝膜的表面进行阳极氧化,在形成没有图示的极薄阳极氧化膜后,在铝膜表面上形成由抗蚀剂构成的掩模563。这种情况,因为在铝膜表面,形成没有图示的细密的阳极氧化膜,所以能够形成附着性好的掩模563。接着利用抗蚀剂构成的掩模563,腐蚀铝膜,如图58(E)所示,形成栅电极562。
此外,如图59(A)所示,利用照原样残留下来的抗蚀剂构成的掩模,形成4000厚的多孔状的阳极化物564。该情况由于在栅电极562表面附着抗蚀剂掩模563,在栅电极562的侧面形成多孔状的阳极氧化膜564。
接着,如图59(B)所示,在剥离抗蚀剂掩模563后,在电解液中再阳极氧化栅电极562,形成1000厚的细密阳极氧化膜565°利用变化了的电解溶液,分别制造上述的阳极氧化膜564和565。其中,在形成多孔的阳极氧化物564的情况,可以使用含有例如3-20%重量的柠檬酸,草酸,铬酸的酸性溶液,本例使用含5%重量草酸的酸性水溶液。
另一方面,在形成细密阳极氧化物565的情况,可以使用含有例如3-10%重量的酒石酸,硼酸或硝酸的乙二醇溶液,调整PH值为7,作为电解溶液。本例使用含有5%重量酒石酸的乙二醇溶液、调整PH值为PH=7。
接着,如图59(C)所示,以栅电极562及其周围的多孔阳极氧化物564,细密的阳极氧化物565作为掩模,腐蚀氧化硅膜561,形成栅绝缘膜566。接着,如图59(D)所示,除掉多孔的阳极氧化物564后,利用离子掺杂方法,以栅电极562,细密的阳极氧化物565及栅绝缘膜566作为掩模,把导电型的杂质注入到有源层560。
本实施例为了形成N沟道型TFT,使用磷化氢掺杂气体夹掺杂P(磷)离子。还有,掺杂时,以栅绝缘膜564作为半透过的掩模,控制剂量和加速电压等条件。上述掺杂结果,在不覆盖栅绝缘膜564的区域,注入高浓度的磷(P)离子,形成源区567,漏区568。
另一方面,在只覆盖栅绝缘膜566的区域,注入低浓度P离子,形成低浓度杂质区域569、570。此外,在栅电极562正下面的区域,不注入杂质,形成沟道区域571。掺杂工序后,进行热退火,激光退火、使掺杂的P离子活化,本例选用热退火。
因为低浓度杂质区域569、570起高阻作用、所以减低止电流。特别是在漏区568侧的低浓度杂质区域570,称为LDD。由于细密阳极氧化物564非常厚,偏离栅电极562端面的杂质区域,作为偏移结构,能够降低截止电流。
接着,如图59(E)所示,利用等离子CVD方法,形成5000厚的氧化硅膜作为层间绝缘层572。还有,作为层间绝缘膜572,可以形成氮化硅的单层膜,或者氧化硅膜和氮化硅膜的叠层膜代替氧化硅膜的单层膜。
接着,利用腐蚀方法,腐蚀掉由氧化硅膜形成的层间绝缘层572、在形成源区567和漏区568各自的接触孔后,利用溅射方法,形成4000厚的铝膜。把它构图在源区567和漏区568的接触孔形成电极573和574。
最后,在氢气氛中在300℃进行加热处理。该氢等离子处理不是用来钝化有源层560的缺陷,主要目的是用来钝化有源层560和由铝构成的电极573,574之间的界面状态。经过上述工序,如图59(E)所示,制造有一代LDD构造的TFT。
按照本实施例制造工序制造的N沟道型TFT,氢等离子处理后的电场效应迁移率,比氢等离子处理前,只增加10-20%。这意味着,过去,如果没有进行氢等离子处理,不利用N沟道型TFT。如前述图58(C)工序所示,只进行添加NF3的热处理,能有效地钝化有源层560结晶粒边界的缺陷。
《实施例69》实施例69是制造由N沟道型TFT和P沟道型TFT互补组成的CMOS型TFT的实施例。图60和图61是本实施例的TFT的制造工序说明图。
首先,如图60(A)所示在玻璃基片(康宁1737)575上面,形成2000厚的由氧化膜构成的底膜576。接着,利用等离子CVD方法和减压CVD方法,形成700厚的本征的(I型)非晶硅膜。然后,按照实施例67所示的方法,形成结晶硅膜577。然后,利用实施例68的方法和加热处理,激光照射等适合的结晶方法,可以使非晶硅膜结晶化,对于这些情况,后面的工序是相同的。
如图60(B)所示,在含有400ppm NF3浓度氧气氛中,在600℃加热2小时,形成200厚的热氧化膜578,利用Si来钝化结晶硅膜577结晶粒边界的缺陷。结果,结晶硅膜577适合作为TFT的半导体材料。
接着,利用缓冲氢氟酸腐蚀剂,在除掉热氧化膜578后,把结晶硅膜577形成岛状形状,形成各自有源层579和580。再利用等离子CVD方法,淀积1500氯化硅膜581形成栅绝缘膜。还有,用有源层579构成N沟道型TFT,用有源层580构成P沟道型TFT。
接着,利用溅射方法,淀积4000厚的构成栅电极582、583的铝膜。在铝膜中,预先含有0.2%重量钪、能抑制产生小丘和晶须。接着在电解液中,把铝膜阳极氧化,在其表面形成100厚的细密的阳极氧化膜584。接着在阳极氧化膜表面,形成抗蚀剂掩模585,把铝膜构图,分别形成栅电极582和583。
然后,照原样涂上光致抗蚀剂掩模585,再次阳极氧化栅电极582、583,形成阳极氧化物586和587。在电解液中可以使用例如含有3-20%重量的柠檬酸、草酸、铬酸的酸性溶液。本实施例使用4%重量草酸溶液。
在栅电极582、583的表面上,在具有光致抗蚀剂掩模585和阳极氧化膜584的状态,只在栅电极582、583的侧面,形成多孔的阳极氧化物586、587。利用阳极氧化的处理时间、能够控制该多孔状阳极氧化物586和587的生长厚度,该生长厚度决定低浓度杂质区域(LDD区域)的长度。本实施例生长7000厚的多孔状阳极氧化物586,587。
接着,在除掉光致抗蚀剂掩模585以后,再次阳极氧化栅电极582、583,如图61(A)所示,形成细密的牢固的阳极氧化膜588、589。本实施例,使用含有3%重量酒石酸的乙二醇溶液,并且用氨水中和成PH为6.9。作为电解溶液。
接着,以栅电极582、583及多孔状阳极氧化物586,587作为掩模,利用离子注入方法,把P(磷)离子注入到岛状有源层579和580中。使用由氢稀释成1-10%的磷化氢作为掺杂气体。
以加速电压为60到90KV,掺杂剂量为1×1014~8×1015原子/cm2进行掺杂,本实施例利用80KV加速电压,1×1015原子/cm2的剂量进行掺杂。
这时,磷(P)离子不透过栅电极582,583多孔的阳极氧化物586,587,而透过栅绝缘膜581,而注入到岛状的硅579,580中去。
接着,如图61(A)~61(B)所示,用缓冲氢氟酸除掉细密的阳极氧化膜584以后,利用醋酸和硝酸的混合酸,除掉多孔的阳极氧化物586和587。为了容易地除掉多孔的阳极氧化物586和587,不腐蚀细密的牢固的阳极氧化物588和589。
接着,再进行掺杂磷离子。加速电压为60-90KV,剂量为1×1012~1×1014原子/cm2,本实施例,加速电压为80KV,剂量为1×1014原子/cm2。这种情况,磷离子虽然不透过栅电极582、583,但透过栅绝缘膜581,注入到有源层579和580。因此,2次注入磷离子的区域,成为高浓度杂质区域594~597,一次注入磷离子的区域,成为N浓度杂质区域598~601。
如图61(C)所示,用聚酰胺或耐热性抗蚀剂602、涂覆N沟道TFT的区域,本例采用聚酰胺。为使有源层580的导电类型从N型转变成P型,注入硼离子。使用由氢稀释成1-10容量%的乙硼烷掺杂气体,80KV加速电压,2×1015原子/cm2的硼剂量进行掺杂。
由聚酰胺602覆盖的区域,不注入硼离子,使N型区照原样的保存下来。因此,在有源区579,高浓度杂质区594,595,相当于各N沟道型TFT的源区域、漏区域,并且,在栅电极582正下方区域,不注入磷离子和硼离子,是本征的区域,相当于TFT的沟道区。
通过注入硼离子,使硼注入量增多,不形成低浓度区域(LDD区域),而形成P型高浓度杂质区604、605。高浓度杂质区域604,605,分别相当于P沟道型TFT的源区、漏区域。而且,栅电极583正下方区域606,为了不注入磷离子和硼离子,照原样保持本征特性,成为TFT的沟道区。
接着,除去抗蚀剂602,如图61(D)所示,利用等离子CVD方法形成厚度为1μm的氧化硅膜,作为层间绝缘膜607,把其形成接触孔。在该接触孔,利用钛和铝的多层膜,形成源区及漏区的电极、布线608~610。最后,在350℃的氢气氛中,加热处理2小时。经过上述工序,制成CMOS薄膜晶体管。
本实施例,为形成由N型TFT和P型晶体管互补组成的CMOS结构,在驱动TFT时,使其降低功耗。并且,为了在N沟道型TFT的沟道603和漏区域595之间形成低杂质浓度的区域599,能够防止沟道603和漏在595之间产生电场。
还有,按照添加NF3的热氧化工序,不限定在上述实施例67~69,为在许可的因热氧化工序产生的形成TFT基片翘曲和变形等范围内,在玻璃基片翘曲点以下的温度、加热数小时,生长数100的热氧化膜,应设定氧气氛中的NF3浓度。
此外,对于实施例67~69的基片,为使用形变点为667℃的康宁玻璃1737,热氧化时采用600℃,例如,在使用形变点为593℃玻璃的情况,进行热氧化的加热温度,最好设定500-550℃。
《应用例》本发明的半导体器件,应用于各种各样电气设备的显示装置和各种集成电路,或者代替过去IC电路的应用电路等。图62~图63是表示其中的几个例子。图62(A)是便携式信息终端机,图62(B)是用来从内视镜看图象的汽车和起重机模拟训练等用的HMD(头盔上的显示器),图62(C)是汽车引导仪。此外,图63(A)是携带式电话机,图63(B)是电视摄象机,图63(C)是投影仪(プロゼクミヨン)。本发明的半导体器件,不限于上述应用,还可以应用于各种各样电气设备的显示装置,代替过去IC电路的电路应用装置,各种集成电路应用装置。
如上所述,按照本发明,利用促进硅结晶的金属元素,得到结晶硅膜,然后除掉该金属元素,能够减少其浓度,在含氧等氧化气氛中,在特别添加氯的氧化气氛中,通过吸收该金属,得到优良结晶性的硅膜。此外,利用这些结晶硅膜,制成具有更高可靠性和优良性能的半导体器件。
记载化学式(分子式)的书面[说明书][表1]N沟道型TFT第2加热温度=950℃
记载化学式(分子式)的书面[说明书][表2]p沟道型TFT- 第2加热温度=950℃
记载化学式(分子式)的书面[说明书][表3]N沟道型TFTFT 第2加热温度=700℃
记载化学式(分子式)的书面[说明书][表4]P沟道型TFT 第2加热温度=700℃
权利要求
1.半导体器件的制造方法,其特征是具有下列工序,在非晶硅中按要求掺入促进硅结晶的金属元素,通过第1加热处理,使该非晶硅膜结晶,得到结晶硅膜,在含有卤素的氧化气氛中进行第2加热处理,除掉或者减少存在该结晶硅膜中的该金属元素,除掉在该工序中形成的热氧化膜,在除掉该热氧化膜区域的表面上再次进行热氧化,形成热氧化膜。
2.半导体器件的制造方法,其特征是具有下列工序,在非晶硅中按要求掺入促进硅结晶的金属元素,通过第1加热处理,使该非晶硅膜结晶,得到结晶硅膜,在含有卤素元素的氧化气氛中进行第2加热处理,在该结晶硅膜的表面形成热氧化膜,通过把该金属元素吸收在该热氧化膜中,除去或减少存在该结晶硅膜中的该金属元素,除掉在该工序中形成的热氧化膜,在除掉该热氧化膜区域的表面上再次进行热氧化,形成热氧化膜。
3.半导体器件的制造方法,其特征是具有下列工序,在非晶硅膜中按要求掺入促进硅结晶的金属元素,通过第1加热处理,使该非晶硅膜结晶,得到结晶硅膜,在含有卤素元素的氧化气氛中进行第2加热处理,除去或者减少该结晶硅膜中存在的该金属元素,除掉在该工序中形成的热氧化膜,进行构图,形成薄膜晶体管的有源层,通过热氧化,在有源层的表面上形成构成栅绝缘膜至少一部分的热氧化膜。
4.半导体器件的制造方法,其特征是,具有下列工序,在非晶硅膜中选择地掺入促进硅结晶的金属元素,通过第1加热处理,从选择地掺入该金属元素的区域,在与膜平行的方向进行结晶生长,在含有卤素元素的氧化气氛中进行第2加热处理,在进行该结晶生长区域的表面形成热氧化膜,除掉该热氧化膜,利用除掉该热氧化膜的区域,形成半导体器件的有源层。
5.按照权利要求1至4中任何一项权利要求的半导体器件的制造方法,其特征是,使该非晶硅膜结晶的结晶硅膜中的结晶,是连续连接结晶格子的结晶。
6.按照权利要求1-4中任何一项权利要求的半导体器件,其特征是,使该非晶硅结晶的结晶硅膜中的结晶是细的棒状结晶和细扁状的结晶。
7.按照权利要求1-4中任何一项权利要求的半导体器件,其特征是,使该非晶硅结晶的结晶硅膜中的结晶,是细棒状结晶和细扁平状结晶,并且,那些结晶是间隔地平行或大致平行地生长的结晶。
8.按照权利要求1~4中任何一项权利要求的半导体器件的制造方法,其特征是,选用Fe、Co、Ni、Ru、Rh、Pd、Os、Ir、Pt、Cu、Au中一种或多种元素,作为促进硅结晶的金属元素。
9.按照权利要求1~4中的任何一项权利要求的半导体器件的制造方法,其特征是,含有卤素元素的氯化气氛,是在氧气氛中添加有选自Hcl、HF、HBr、Cl2、F2、Br2中的一种或多种气体的气氛。
10.按照权利要求1~4中任何一个权利要求的半导体器件制造方法,其特征是,含卤素的氧化气氛是在含O2气氛中,添加选自Hcl、HF、HBr、Cl2、F2、Br2中一种或多种气体的气氛。
11.按照权利要求1~4中的任何一项权利要求的半导体器件的制造方法,其特征是、在含有卤素元素的氧化气氛中,添加有氧和卤素元素的氢化物气体。
12.按照权利要求1-4中任何一项权利要求的半导体器件的制造方法,其特征是,第2加热处理比第1加热处理的温度高。
13.按照权利要求1~4中任何一项权利要求的半导体器件的制造方法,其特征是,第2加热处理的温度为700°~1100℃。
14.按照权利要求1~4中任何一项权利要求的半导体器件制造方法,其特征是,除掉热氧化膜后,在含有氧和氢的等离子气氛中,进行退火。
15.按照权利要求1~4中任何一项权利要求的半导体器件的制造方法,其特征是,在非晶硅膜中含氧浓度为5×1017cm-3~2×1019cm-3。
16.按照权利要求1~4中任何一个权利要求的半导体器件的制造方法,其特征是,在通过第1加热处理使该结晶硅膜结晶,得到结晶硅膜后,对该结晶硅膜照射激光或者强光。
17.半导体器件,其特征是,具有夹在第1和第2氧化膜之间的结晶硅膜,该结晶硅膜中含有氢和卤素元素以及含有促进硅结晶的金属元素,在结晶硅膜中,在第1氧化膜和/或第2氧化膜界面附近,具有高浓度的镍元素分布。
18.按照权利要求17的半导体器件,其特征是,该结晶硅膜中的结晶,是连续连接结晶格子的结晶。
19.按照权利要求17的半导体器件,其特征是,使该非晶硅膜结晶的结晶硅膜中的结晶,是细棒状的结晶或者是细扁平棒状的结晶。
20.按照权利要求17的半导体器件,其特征是,使该非晶硅膜结晶的结晶硅膜的结晶,是许多细的棒状结晶或者细的扁平状的结晶,并且,那些结晶是间隔地平行或大致平行生长的结晶。
21.按照权利要求17的半导体器件,其特征是,在第1氧化膜中及/或第1氧化膜和结晶硅膜交界附近,含有高浓度分布的卤素元素。
22.按照权利要求17的半导体器件,其特征是,在结晶硅膜中第2氧化膜界面附近,含有高浓度分布的卤素元素。
23.按照权利要求17的半导体器件,其特征是,第1氧化膜是在玻璃基片或石英基片上形成的氧化硅膜或氧化氮化硅膜,由结晶硅膜构成薄膜晶体管的有源层,第2氧化膜是构成栅绝缘膜的氧化硅膜或者氮化硅膜。
24.半导体器件,其特征是,具有由氧化膜形成底膜,在该底膜上形成结晶硅膜,在该结晶硅膜上形成热氧化膜,在该结晶硅膜中含有促进硅结晶化的金属元素,氢和卤素元素,促进硅结晶的金属元素,在底膜及/或与热氧化膜的界面附近,具有高浓度分布,该卤素元素在底膜和/或与热氧化膜的界面附近,有高浓度分布,该热氧化膜构成薄膜晶体管栅绝缘膜的至少一部分。
25.按照权利要求24的半导体器件,其特征是,该结晶硅膜中的结晶,是连续连接结晶格子的结晶。
26.按照权利要求24的半导体器件,其特征是,使非晶硅膜结晶的结晶硅膜的结晶是,细棒状结晶或细扁平棒状的结晶。
27.按照权利要求24的半导体器件、其特征是,使非晶硅膜结晶的结晶硅膜中的结晶,是许多细棒状的结晶或者是细扁平的棒状的结晶,并且那些结晶是间隔地平行或大致平行生长的结晶。
28.按照权利要求24的半导体器件,其特征是,采用选自Fe、Co、Ni、Ru、Rh、Pd、Os、Ir、Pt、Cu、Au中一种或多种元素,作为促进硅结晶的金属元素。
29.半导体器件的制造方法,其特征是具有下列工序,在具有绝缘表面的基片上形成非晶硅膜,按要求在该非晶硅膜中掺入促进硅结晶的金属元素,通过750℃~1100℃的第1加热处理,使该非晶硅膜结晶得到结晶硅膜,把该结晶硅膜构图形成半导体器件的有源层,在含有卤素元素的氧化气氛中进行第2加热处理,除掉或减少存在有源层中的该金属元素,除掉在该工序中形成的热氧化膜,除掉该热氧化膜后再次进行热氧化,形成热氧化膜,第2加热处理的温度比第1加热处理的温度高。
30.半导体器件的制造方法,其特征是具有下列工序,在具有绝缘表面的基片上,形成非晶硅膜,在该非晶硅膜中按要求掺入促进硅结晶的金属元素,通过在温度750℃~1100℃第1加热处理使该非晶硅膜结晶,得到结晶硅膜,把该结晶硅膜构图形成半导体器件的有源层,在含有卤素元素的氧化气氛中进行第2加热处理,把该有源层中存在的该金属元素吸收在形成的热氧化膜中,除掉在该工序中形成的热氧化膜,第2加热处理的温度比第1加热处理的温度高。
31.半导体器件的制造方法,其特征是具有下列工序,在具有绝缘表面的基片上,形成非晶硅膜,在该非晶硅膜中,按要求选择地掺入促进硅结晶的金属元素,通过在750℃~1100℃的第1加热处理,从按要求和选择地掺入该非晶硅膜的该金属元素的区域,在与膜平行的方向进行结晶生长,通过构图利用在与该膜平行方向进行结晶生长的区域,形成半导体器件的有源层,在含有卤素元素的氧化气氛中进行第2加热处理,把存在该有源层中的该金属元素吸收到形成的热氧化膜中,除掉在该工序中形成的热氧化膜,除掉热氧化膜后,再次热氧化形成热氧化膜,第2加热处理的温度比第1加热处理的温度高。
32.按照权利要求29至31的任何一项权利要求的半导体器件的制造方法,其特征是,使非晶硅膜结晶的结晶硅膜的结晶是,连续连接结晶格子的结晶。
33.按照权利要求29至31中的任何一项权利要求的半导体器件的制造方法,其特征是,使该非晶硅膜结晶的结晶硅膜中的结晶是,细榛状的结晶或者是细扁平棒状的结晶。
34.按照权利要求29至31中任何一项权利要求的半导体器件的制造方法,其特征是,使该非晶硅膜结晶的结晶硅膜中的结晶是许多细棒状结晶或者是细扁平棒状的结晶,并且是间隔地平行或大致平行生长的结晶。
35.按照权利要求29至31中任何一项权利要求的半导体器件的制造方法,其特征是,用石英基片作为形成非晶硅膜的基片。
36.按照权利要求29至31的任何一项权利要求的半导体器件的制造方法,其特征是,利用再次生长的热氧化膜,形成栅绝缘膜。
37.按照权利要求29至31的任何一项权利要求的半导体器件的制造方法,其特征是,选用Fe、Co、Ni、Ru、Rh、Pd、Os、Ir、Pt、Cu、Au中的一个或多个元素作为促进硅结晶的金属元素。
38.按照权利要求29至31中任何一个权利要求的半导体器件的制造方法、其特征是、除掉热氧化膜后、在含有氧和氢的等离子气氛中进行退火。
39.按照权利要求29至31中任何一项权利要求的半导体器件的制造方法,其特征是,在非晶硅膜中的含氧浓度为5×1017cm-3~2×1019cm-3。
40.按照权利要求29至31中任何一个权利要求的半导体器件的制造方法,其特征是,在通过第1加热处理、使该非晶硅膜结晶得到结晶硅膜后,对该结晶硅膜照射激光或者强光。
41.半导体器件的制造方法,其特征是具有下列工序,形成非晶硅膜,在非晶硅膜表面保持和促进硅结晶的金属元素接触,通过第1加热处理得到使该非晶硅膜结晶的结晶硅膜,在含有氧和氢的等离子气氛中,在500℃~700℃进行第2加热处理,在该结晶硅膜表面形成热氧化膜,除掉该热氧化膜。
42.半导体器件的制造方法,其特征是具有下列工序,形成非晶硅膜,在该非晶硅膜表面保持和促进硅结晶的金属元素接触,通过第1加热处理得到使该非晶硅膜结晶的结晶硅膜,在含有氧和氢的气氛中、在500℃至700℃进行加热处理,在结晶硅膜表面形成热氧化膜,除掉热氧化膜。
43.半导体器件的制造方法,其特征是具有下列工序,形成非晶硅膜,在该非晶硅膜表面保持和促进硅结晶的金属元素接触,通过加热处理得到使该非晶硅膜结晶的结晶硅膜,在含有氟和/或氯的气氛中,在结晶硅膜的表面形成湿氧化膜,除掉该氧化膜。
44.按照权利要求41至43中任何一项权利要求的半导体器件的制造方法,其特征是,使该非晶硅膜结晶的结晶硅膜中的结晶,是连续地连接结晶格子的结晶。
45.按照权利要求41至43的任何一项权利要求的半导体器件的制造方法,其特征是,使该非晶硅膜结晶的结晶硅膜中的结晶是细棒状结晶或者是细扁平棒状的结晶。
46.按照权利要求41至43中任何一项权利要求的半导体器件的制造方法,其特征是,使该非晶硅膜结晶的结晶硅膜中的结晶是许多细棒状结晶或者是细扁平棒状结晶,并且那些结晶是间隔地平行或大致平行地生长的结晶。
47.按照权利要求41至43中任何一项权利要求的半导体器件的制造方法,其特征是,氧化膜中的该金属元素的浓度比结晶硅膜中该金属元素的浓度高。
48.按照权利要求41至43中任何一项权利要求的半导体器件的制造方法,其特征是,在第2加热处理的气氛中,含有容积1%以上,爆炸界限以下浓度的氢。
49.按照权利要求41至43中任何一项权利要求的半导体器件的制造方法,其特征是,在还原气氛中进行第1加热处理。
50.按照权利要求41至43中任何一项权利要求的半导体器件的制造方法,其特征是,选用Fe、Co、Ni、Ru、Rh、Pd、Os、Ir、Pt、Cu、Au中一个或多个元素作为促进硅结晶的金属元素。
51.按照权利要求41至43中任何一项权利要求的半导体器件的制造方法,其特征是,利用Ni作为促进硅结晶的金属元素。
52.按照权利要求41至43中任何一项权利要求的半导体器件的制造方法,其特征是,通过第1加热处理得到使该非晶硅膜结晶的结晶硅膜后,对该结晶硅膜照射激光或强光。
53.半导体器件具有结晶性的硅膜,其特征是,在该硅膜中含有促进硅结晶的金属元素的浓度为1×1016cm-3~5×1018cm-3,含氟原子的浓度为1×1015cm-3~1×1020cm-3,含有氢原子的浓度为1×1017cm-3~1×1021cm-3。
54.按照权利要求53的半导体器件,其特征是,具有该结晶的硅膜中的结晶是连续地连接结晶格子的结晶。
55.按照权利要求53的半导体器件,其特征是,具有该结晶的硅膜中的结晶是细棒状的结晶或者是细扁平棒状的结晶。
56.按照权利要求53的半导体器件,其特征是,具有该结晶的硅膜中的结晶,是许多细棒状的结晶或者是细扁平棒状的结晶,并且,那些结晶是间隔地平行或者大致平等生长的结晶。
57.按照权利要求53的半导体器件,其特征是选用Fe、Co、Ni、Ru、Rh、Pd、Os、Ir、Pt、Cu、Au中一种或多种元素作为促进硅结晶的金属元素。
58.按照权利要求53的半导体器件,其特征是,用Ni作为促进硅结晶的金属元素。
59.按照权利要求53的半导体器件,其特征是,在绝缘膜上面形成该硅膜,在该绝缘膜和该硅膜的界面附近,存在有高浓度分布的氟原子。
60.半导体器件的制造方法,其特征是具有下列工序。形成非晶硅膜,形成使该非晶硅膜结晶的结晶硅膜,在添加氟化合物的氧化气氛中加热处理,在该结晶硅膜的表面形成热氧化膜,除掉该结晶硅膜表面上的热氧化膜,在该结晶硅膜表面淀积绝缘膜。
61.半导体器件的制造方法,涉及在具有绝缘表面的基片上制造薄膜晶体管的方法,其特征是具有下列工序,形成非晶硅膜,形成使该非晶硅膜结晶的结晶硅膜,在添加氟化合物的氧化气氛中加热,在该结晶硅膜的表面生长热氧化膜,除掉该结晶硅膜上的热氧化膜,构图结晶硅膜形成薄膜晶体管的有源层,在有源层表面淀积绝缘膜,至少在沟道区域的表面形成栅绝缘膜,在栅绝缘膜表面上形成栅电极,以该栅电极作为掩模,把导电型的杂质离子注入到该有源层,自对准地形成源区,漏区。
62.按照权利要求60或61的半导体器件的制造方法,其特征是,形成使该非晶硅膜结晶的结晶硅膜的工序是在该非晶硅膜表面掺入促进硅结晶的金属元素后,通过加热处理使非晶硅膜结晶,得到结晶硅的工序。
63.按照权利要求60或61的半导体器件的制造方法,其特征是,形成使该非晶硅膜结晶的结晶硅膜的工序是,在该非晶硅膜表面,掺入促进硅结晶的金属元素后,进行加热处理使该非晶硅膜结晶,得到结晶硅膜后,对该结晶硅膜照射激光或强光的工序。
64.按照权利要求60或61的半导体器件的制造方法,其特征是,热氧化膜的厚度为200~500A°。
65.按照权利要求60或61的半导体器件的制造方法,其特征是具有下述工序,在形成非晶硅膜工序后,把1×1016~5×1019原子/cm3的促进硅结晶的金属元素掺入到非晶硅膜中。
66.按照权利要求60或者61的半导体器件的制造方法,其特征是,该金属元素是选自Fe、Co、Ni、Ru、Rh、Pd、Os、Ir、Pt、Cu、Au中的至少一种以上的元素。
全文摘要
通过除去或者减少利用金属元素得到结晶硅膜中的该金属元素,得到具有优良特性的结晶硅膜,并且利用该结晶硅膜得到具有优良特性的半导体器件。通过第1加热处理,在非晶硅膜中,掺入促进硅结晶的金属元素,得到使该非晶硅膜结晶的结晶硅膜以后,在氧化气氛中进行第2加热处理、除去或者减少在该结晶硅膜中存在的金属元素,除掉形成的热氧化膜,在除掉该热氧化膜区域的表面上,再次进行热氧化,通过形成热氧化膜等得到半导体器件及其制造方法。该氧化气氛,采用含氧的氧化气氛,和含有卤素的氧化气氛等。
文档编号H01L21/77GK1630024SQ200410048959
公开日2005年6月22日 申请日期1997年1月19日 优先权日1996年1月19日
发明者山崎舜平, 寺本聪, 小山润, 尾形靖, 早川昌彦, 纳光明, 大谷久, 滨谷敏次 申请人:株式会社半导体能源研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1