用于保护活性金属阳极的离子导电复合体的利记博彩app

文档序号:6806953阅读:667来源:国知局
专利名称:用于保护活性金属阳极的离子导电复合体的利记博彩app
背景技术
1.发明领域本发明总体上涉及在电池中使用的隔离件和电极结构。本发明更具体涉及用于保护活性金属阳极使之避免与空气、湿气和其他电池组件发生有害反应的复合体及其制造方法。
2.相关技术描述低当量重的碱金属,例如锂,作为电池电极成分,使其特别具有吸引力。与传统电池标准的镍和镉相比,锂提供了更大的单位体积的能量。遗憾的是,可再充电的锂金属电池在市场上还没有取得成功。
可再充电锂金属电池的失效主要是由于电池循环的问题。在重复充电和放电的循环中,从锂金属电极中逐渐长出锂“树枝状晶体”,通过电解质,最后与正极相接触。这就在电池中引起内短路,使得在相对不太多的循环之后电池就不能使用。在循环的同时,锂电极还可以长出“海绵状”的沉积物,它能够从负极逸出,由此而降低了电池的容量。
为了解决锂在液体电极系统中循环性能不良的问题,某些研究人员提出了给面对锂负电极一侧的电解质涂布一个“保护层”。这样的保护层必须能够通导锂离子,但同时还要避免在锂电极表面和电解质本体之间的接触。但许多涂布保护层的技术都没有成功。
通过锂金属和在与锂相接触的电池电解质中的化合物之间的反应,就地形成了某些预期的锂金属保护层。在组装电池以后,通过受控的化学反应使大多数这些就地的薄膜生长。一般说来,这样的薄膜具有多孔的形态,允许某些电解质渗透过裸露的锂金属表面。因此,它们不能够适当地保护锂电极。
设想了各种预成形的锂保护层。例如,美国专利5,314,765(1994年5月24日授予Bates)叙述了一种用于制造含有溅镀锂磷氧氮化物(LiPON)或相关材料薄层的锂电极的异地制造技术。LiPON是一种玻璃状的单离子导体(通导锂离子),它已经被作为在硅上制造的并用来给集成电路供电的固态锂微型电池的潜在电解质进行研究(见均授予Bates等人的美国专利5,597,660、5,567,210、5,338,625和5,512,147)。
在本申请人实验室中的工作开发了在活性金属电池的电极中,用于像LiPON那样的玻璃状或无定形保护层的技术。(见例如2000年2月15日授权的美国专利6,025,094、2002年6月11日授权的6,402,795、2001年4月10日授权的6,214,061和2002年7月2日颁发的6,413,284,所有这些均授予Visco等人,并转让给PolyPlusBattery公司)。尽管有这些进步,另外的也能够增强活性金属,特别是锂金属电池性能的保护层和结构还在继续寻找当中。特别是将高离子导电性和化学稳定性的特征结合在材料中的保护层和对保护层两侧的调理都是所希望的。
发明概述本发明提供用来保护阳极和电解质的离子导电复合体(composite)及其制造方法。可以将此复合体加入活性金属负电极(阳极)结构和电池中。按照本发明,在具有所需高的总离子导电性及对阳极、阴极和在制造电池时所遇到的环境条件的化学稳定性的复合材料中结合了不同离子导体的性能。此复合体能够保护活性金属阳极不受其他电池成分或环境条件的有害反应损害,同时提供高度的离子导电性,使得容易制造和/或增强加入了此复合体的电池的性能。
此复合体由至少两层具有不同化学相容性要求的材料构成。“化学相容性”(或“化学相容的”)意味着,当与一种或几种其他参考电池成分接触或者在制造、处理或储存条件下,参考材料不发生反应而生成对电池操作有害的产物。复合体的第一材料层(或第一层材料)是离子导电的,而且与活性金属电极材料是化学相容的。在本发明此方面化学相容性指的是化学稳定的材料,和由此当与活性金属电极材料接触时基本上不反应。还指的是对空气具有化学稳定性的材料,使得容易存储和处理,并且当与活性金属电极材料相接触时具有反应性,生成对活性金属电极材料具有化学稳定性,并具有所需离子导电的产物(即第一层材料)。这样的活性材料有时也叫作“前体”材料。此复合体的第二材料层基本上是没有透过性、具有离子导电性并且与第一材料相容的。还可以有另外的层来达到这些目的,或者另外增强电极的稳定性或性能。此复合体的所有层都具有至少10-7S/cm,一般至少10-6S/cm,例如至少10-5S/cm至10-4S/cm,和高达10-3S/cm或更高的高离子导电性,使得此多层保护结构的总离子导电性为至少10-7S/cm,以及高达10-3S/cm或更高。
许多种材料可用来制造与如上所述的原理符合的按照本发明的保护复合体。例如,与活性金属接触的第一层整体或部分由活性金属氮化物、活性金属磷化物、活性金属卤化物或活性金属磷氧氮化物基的玻璃组成。具体的例子包括Li3N、Li3P、LiI、LiBr、LiCl、LiF和LiPON。可以将这些物质涂布在活性金属电极上,或者可以应用前体,例如金属氮化物、金属磷化物、金属卤化物、红磷、含碘、氮或磷的有机物和聚合物等就地形成。通过将前体不完全地转化为其含锂的类似物可以导致就地形成第一层。然而,这种不完全的转化满足第一层材料用于保护按照本发明的复合体的要求,因此在本发明的范围之内。
保护复合体的第二层可以由基本上不具透过性的玻璃状或无定形离子导体组成,例如磷基玻璃、氧化物基玻璃、磷氧氮化物基玻璃、硫基玻璃、氧化物/硫化物基玻璃、硒化物基玻璃、镓基玻璃、锗基玻璃、玻璃陶瓷活性金属离子导体、锂β-氧化铝、钠β-氧化铝、Li超离子导体(LISICON)、Na超离子导体(NASICON)等。具体的例子包括LiPON、Li3PO4·Li2S·SiS2、Li2S·GeS2·Ga2S3、Li2O·11Al2O3、NaO·11Al2O3、(Na,Li)1+xTi2-xAlx(PO4)3(0.6≤x≤0.9)和在结晶学上相关的结构、Na3Zr2Si2PO12、Li3Zr2Si2PO12、Na5ZrP3O12、Na5TiP3O12、Na3Fe2P3O12、Na4NbP3O12、Li5ZrP3O12、Li5TiP3O12、Li3Fe2P3O12和Li4NbP3O12。
用于保护复合体第二层的特别适当的玻璃陶瓷材料是具有如下组成的锂离子导电玻璃陶瓷组成 mol%P2O526~55%SiO20~15%GeO2+TiO225~50%其中GeO20~50%TiO20~50%ZrO20~10%M2O30~<10%Al2O30~15%Ga2O30~15%
Li2O 3~25%该锂离子导电玻璃陶瓷含有占优势的由Li1+x(M,Al,Ga)x(Ge1-yTiy)2-x(PO4)3和/或Li1+x+yQxTi2-xSiyP3-yO12组成的结晶相,其中在前一个式子中x≤0.8,0≤y≤1.0,M是选自Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm和Yb的元素,而在后一个式子中,0<x≤0.4,0<y≤0.6,而且Q是Al或Ga。此玻璃陶瓷是通过将原料熔融,将熔融体铸造为玻璃,并使玻璃经受热处理而得到的。这样的材料可以从日本的OHARA公司购买,并且在美国专利5,702,995、6,030,909、6,315,882和6,485,622中有进一步叙述,这些专利在此都引作参考。
两层都也可以包括附加成分。例如,适当的活性金属相容层(第一层)可以包括聚合物成分,以增强其性能。例如,聚合物-碘络合物,像聚(2-乙烯基吡啶)-碘(P2VP-I2)、聚乙烯-碘,或者与四烷基铵-碘的络合物可以与Li反应,形成离子导电性明显高于纯LiI的LiI基薄膜。同样,适当的第一层可以包括用来使其应用简化的材料,例如湿润层的残留物(例如Ag)用来避免(在淀积的过程中的)锂蒸气和当使用LiPON作为第一层材料时的LiPON之间的反应。
适当的第二层可以包括聚合物成分以增强其性能。例如,也可以结合使用玻璃陶瓷活性金属离子导体,像如上所述的玻璃陶瓷材料和聚合物电解质,形成可以用作保护复合体第二层材料的柔性复合体片。OHARA公司(日本)已经开发了这种柔性复合材料的一个重要实例。它由如上所述的Li离子导体玻璃陶瓷材料的粒子和基于PEO-Li盐络合物的固体聚合物电解质组成。OHARA公司将此材料制成厚度为约50μm的片状,在赋予其柔软性的同时,保持其高离子导电性。由于其比较高的离子导电性(OHARA公司的产品在室温下大于4×10-5S/cm),和对金属锂的稳定性,可以在室温或高温下,在全固态电池中使用此类复合体电解质。
此外,可以使用各种技术来制造这些层。这包括将例如LiN3或离子导电玻璃的材料层进行沉积或蒸发(包括电子束蒸发)。同样,如在上面所注意到的,可以从一种或几种前体与活性金属电极的无害反应就地形成活性金属电极相邻的层。例如,可以通过使CuN3与Li阳极表面接触,在Li阳极上形成LiN3层,或者通过使红磷与Li阳极表面接触,在Li阳极上形成LiP3。
本发明包括带有充分形成保护层的被保护阳极结构和加入了对环境稳定的前体的电池隔离件,它们中的每一个都可以在正常的环境气氛条件下处理或储存,在加入到电池中之前不会变坏。也提供了电池及制造复合体和电池的方法。
在下面的详细叙述中将进一步叙述和例举本发明的这些和其他特征。
附图简述

图1是对加入本发明的离子导电性保护复合体的活性金属电池的示意性说明。
图2是对本发明的保护复合体电池隔离件的示意性说明。
图3是对加入本发明的离子导电性保护复合体的活性金属阳极结构的示意性说明。
图4A~B、图5和图6A~B是对加入本发明的离子导电性保护复合体的电化学装置结构的可选择制造方法的示意性说明。
图7A~B和图8A~D是说明本发明的离子导电性保护复合体性能益处的数据图。
具体实施方案详述现在详细地参考本发明的特定实施方案。在附图中举例说明了特定实施方案的实施例。当结合这些特定实施方案叙述本发明时,应该理解,并不想将本发明限制在这些特定的实施方案中。相反,只要被包括在所附权利要求所限定的本发明的精神和范围之内,它可以覆盖各种供选择的、变更的和等价的方案。在下面的描述中,为了提供对本发明的透彻理解,列出了多种具体的细节。在不用一部分或全部这些具体细节的情况下就可以实施本发明。在另一些情况下,为了不使本发明不必要地难以理解,不再详细叙述公知方法的操作。
当在本说明书和所附的权利要求中使用“包括”、“包括…的方法”、“包括…的装置”或类似语言时,除非另有说明,单数的形式也包含复数的意义。除非另有定义,在此使用的所有技术和科学术语都具有如本发明所属本领域普通技术人员普遍理解的同样意义。
引言用于保护阳极和电解质的离子导电复合体及其制造方法。可以将此复合体加入到活性金属负电极(阳极)结构和电池中。按照本发明,在具有高的总离子导电性和对阳极、阴极及在制造电池时所遇到的环境条件具有化学稳定性的所需性能的复合材料中,结合了各种离子导体的性能。此复合体能够保护活性金属阳极不受与其他电池成分或环境条件有害反应的影响,同时提供高的离子电导率,以方便加入此复合体的电池的制造和/或增强其性能。
该复合体由至少两层具有不同化学相容性要求的材料组成。“化学相容性”(或“化学相容的”)意味着当与一种或几种其他的参考电池成分接触时或在制造、处理或储存条件下,参考材料不会发生反应而生成对电池操作有害的产物。该复合体的第一材料层是离子导电的,也是与活性金属电极材料化学相容的。在本发明此方面化学相容性指的是化学稳定的材料,因此当与活性金属电极材料相接触时基本上是不反应的。在环境条件下活性金属是具有高活性的,并且当被用作电极时能够从阻隔层获得好处。活性金属一般是碱金属(例如锂、钠或钾)、碱土金属(例如钙或镁)、和/或某些过渡金属(例如锌)和/或它们中两种或多种的合金。可以使用下面的活性金属碱金属(例如Li、Na、K)、碱土金属(例如Ca、Mg、Ba)或与Ca、Mg、Sn、Ag、Zn、Bi、Al、Cd、Ga、In的二元或三元碱金属合金。优选的合金包括锂铝合金、锂硅合金、锂锡合金、锂银合金和钠铅合金(例如Na4Pb)。优选的活性金属电极由锂组成。化学相容性还指的是对氧化物质是化学稳定的,而当与活性金属电极材料接触时是活性的,能够产生对活性金属电极材料是化学稳定的,并具有所需离子导电的材料(即第一层材料)。这种活性材料有时被称为“前体”材料。
此复合体的第二材料层基本上是没有透过性的、离子导电的并与第一材料化学相容的。所谓基本上没有透过性的,意味着此材料对电池电解质和溶剂以及其他将有损电极材料的电池成分材料提供足够的阻隔性,以避免任何会使电极性能变坏的损害。因此,它应该是不可溶胀的,并且没有孔隙、缺陷和允许空气、湿气、电解质等透过它到达第一材料的通道。优选第二材料层对于环境的湿气、二氧化碳、氧气等是不能透过的,使得被其包裹的锂合金电极可以在环境条件下处理而无须像在其他加工锂电极时一般要使用的干燥箱的条件。由于在此叙述的复合体保护层为锂(或其他活性金属)提供了如此良好的保护,可以设想本发明的电极和电极/电解质复合体在电池外面具有很长的储存期。因此,本发明不仅设想了包括负电极的电池,而且还设想了没有使用的负电极和电极/电解质层压材料自身。可以以片、卷、叠层的形式提供这样的负电极和电极/电解质层压材料。最后,它们与其他的电池组件结合而制造电池。本发明增大的电池稳定性将大大简化此制造程序。
应该注意到,第一和第二材料在本质上都是离子导电的。这就是说,它们不取决于是否有液体电解质或其他用于离子导电的试剂存在。
为了实现这些目标,或者另外增强电极的稳定性或性能,也可以再有一些附加层。此复合体的所有层都具有至少10-7S/cm,一般至少10-6S/cm,例如至少10-5S/cm至10-4S/cm,以及高达10-3S/cm或更高的高离子导电性,使得多层保护结构的总离子导电性为至少10-7S/cm,以及高达10-3S/cm或更高。
保护复合体和结构图1举例说明了按照本发明的离子导电性保护复合体,在本文中它用在活性金属电池120中,例如按照本发明的锂-硫电池。此复合体100由既具有离子导电性又对活性金属电极材料是化学相容的材料构成的第一层102组成。此复合体还包括由基本上没有透过性、具有离子导电性和对第一材料是化学相容的材料的第二层104。此复合体的离子电导率为至少10-7S/cm,一般至少10-6S/cm,例如至少10-5S/cm至10-4S/cm,以及高达10-3S/cm或更高。第一层102与活性金属(例如锂)阳极106相邻。活性金属阴极106与由导体金属如铜构成的集流器(current collector)108连接。在复合体100的另一侧,第二层104(任选地)与电解质110接触。或者,在某些实施方案中,第二层104本身可以是电池唯一的电解质。与电解质相邻的是带有其集流器114的阴极112。
图2说明按照本发明的保护复合电池隔离件。隔离件200包括具有离子导电性并与活性金属化学相容的第一材料或前体层202。在大多数情况下,第一材料与氧化物质(例如空气、湿气等)不是化学相容的。与活性金属相接触的第一层,可以全部或部分由活性金属氮化物、活性金属磷化物、活性金属卤化物或活性金属磷氧氮化物基玻璃组成。具体的例子包括Li3N、Li3P、LiI、LiBr、LiCl和LiF。在至少一种情况下,第一材料LiOPN与氧化物质是化学相容的。第一材料层的厚度优选为约0.1~5μm,或0.2~1μm,例如约0.25μm。
如在上面所注意到,第一材料也可以是与活性金属相容,并且当与活性金属电极材料接触时生成对活性金属电极材料具有化学稳定性,并具有所需离子电导率的产物的前体材料(即第一层材料)。适当的前体材料的例子包括金属氮化物、红磷、含氮和含磷有机物(例如胺、膦、环硼氮烷(B3N3H6)、三嗪(C3N3H3))和卤化物。一些具体例子包括P(红磷)、Cu3N、SnNx、Zn3N2、FeNx、CoNx、氮化铝(AlN)、氮化硅(Si3N4)和I2、Br2、Cl2和F2。这些前体材料基本上能够与活性金属(例如Li)反应,生成Li金属盐,例如如上所述的氮化锂、磷化锂和卤化锂。在某些情况下,这些第一层材料的前体在空气(包括湿气和在环境气氛中通常存在的其他物质)中也可以是稳定的,因此会使运输和制造更加容易。例子包括金属氮化物例如Cu3N。
适当的活性金属相容层还可以包括能够增强其性能的聚合物组分。例如聚合物-碘络合物,像是聚(2-乙烯基吡啶)-碘(P2VP-I2)、聚乙烯-碘或者与四烷基铵-碘的络合物可以与Li反应,形成离子导电性明显高于纯LiI的LiI基薄膜。
第一材料的离子电导率高,至少为10-7S/cm,一般为至少约10-5S/cm,并可以高达10-3S/cm或更高。
与第一材料或前体层202相邻的是第二层204,它是基本上没有透过性的,是离子导电的并且与第一材料或前体是化学相容的,例如有磷基玻璃、氧化物基玻璃、磷氧氮化物基玻璃、硫基玻璃、氧化物/硫化物基玻璃、硒化物基玻璃、镓基玻璃、锗基玻璃、玻璃陶瓷活性金属离子导体、锂β-氧化铝、钠β-氧化铝、Li超离子导体(LISICON)、Na超离子导体(NASICON)等。具体的例子包括LiPON、Li3PO4·Li2S·SiS2、Li2S·GeS2·Ga2S3、Li2O·11Al2O3、NaO·11Al2O3、(Na,Li)1+xTi2-xAlx(PO4)3(0.6≤x≤0.9)和在结晶学上相关的结构、Na3Zr2Si2PO12、Li3Zr2Si2PO12、Na5ZrP3O12、Na5TiP3O12、Na3Fe2P3O12、Na4NbP3O12、Li5ZrP3O12、Li5TiP3O12、Li3Fe2P3O12和Li4NbP3O12。
对于此保护复合体的第二层,特别适当的玻璃陶瓷材料是具有如下组成的锂离子导电玻璃陶瓷
组成 mol%P2O526~55%SiO20~15%GeO2+TiO225~50%其中GeO20~50%TiO20~50%ZrO20~10%M2O30~<10%Al2O30~15%Ga2O30~15%Li2O3~25%该锂离子导电玻璃陶瓷含有占优势的由Li1+x(M,Al,Ga)x(Ge1-yTiy)2-x(PO4)3和/或Li1+x+yQxTi2-xSiyP3-yO12组成的结晶相,其中在前一个式子中x≤0.8,0≤y≤1.0,M是选自Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm和Yb的元素,而在后一个式子中,0<x≤0.4,0<y≤0.6,而且Q是Al或Ga。此玻璃陶瓷是通过将原料熔融,将熔融体铸造为玻璃,并使玻璃经受热处理而得到的。这样的材料可以从日本的OHARA公司购买,并且在美国专利5,702,995、6,030,909、6,315,882和6,485,622中有进一步叙述,这些专利在此都引作参考。
这些玻璃和玻璃陶瓷中的某一些,其高的导电率(离子导电率在约10-5~10-3S/cm范围内或更高)可以增强被保护的锂阳极的性能,并允许沉积较厚的膜,而不会大量损失电阻。
适当的第二层还可以包括增强其性能的聚合物组分。例如,也可以将玻璃陶瓷活性金属离子导体,例如如上所述的玻璃陶瓷材料与聚合物电解质结合形成可以用作保护复合体第二层的柔性复合片材。OHARA公司(日本)已经开发了这种柔性复合材料的一个重要实例。它由如上所述的Li离子导体玻璃陶瓷材料的粒子和基于PEO-Li盐络合物的固体聚合物电解质组成。OHARA公司将此材料制成厚度为约50μm的片状,在赋予其柔软性的同时,保持其高离子导电性。由于其比较高的离子导电性(OHARA公司的产品在室温下大于4×10-5S/cm),和对金属锂的稳定性,可以在室温或高温下,在全固态电池中使用此类复合体电解质。
此复合阻隔层应该具有固有的高离子导电性。一般说来,此复合体的离子电导率为至少10-7S/cm,一般至少约10-6S/cm至10-5S/cm,并可以高达10-4S/cm至10-3S/cm或更高。第一前体材料层的厚度应该足以避免第二材料层和相邻材料或层,特别是带有将要使用的隔离件的阳极活性金属之间的接触。例如,第一材料层的厚度可以为约0.1~5μm,0.2~1μm,或者约0.25μm。
第二材料层的厚度优选为约0.1~1,000μm,或者在第二材料层的离子电导率是约10-7S/cm时为约0.25~1μm,在第二材料层的离子电导率是约10-4~约10-3S/cm时是大约10~1000μm,优选为1~500μm,更优选为10~100μm,例如20μm。
当第一材料层是在空气中化学稳定的前体材料,例如Cu3N或LiPON时,可以在通常的环境气氛条件下处理或储存保护复合电池隔离件,而不会在加入电池中之前受到损坏。当将此隔离件加入到电池中时,前体层202与活性金属(例如Li)电极接触。前体与活性金属反应,形成与活性金属电极材料化学相容的离子导电材料。第二层与涂覆或已涂覆到阴极和集流器上的电解质接触。或者,在电池中,第二层起着唯一电解质的作用。在每种情况下,保护复合体中两层的组合保护了活性金属电极和电解质和/或阴极,不受互相之间有害反应的影响。
图3举例说明加入了按照本发明的保护复合体的包裹阳极结构。此结构300包括活性金属例如锂的电极308,它与集流器310例如铜和保护复合体302相连接。保护复合体310由具有离子导电性并与活性金属电极材料化学相容,但不与氧化物质(例如空气)化学相容的材料构成的第一层304组成。例如,与活性金属接触的第一层,可以全部或部分由活性金属氮化物、活性金属磷化物或活性金属卤化物组成。具体的例子包括Li3N、Li3P、LiI、LiBr、LiCl和LiF。第一材料层的厚度优选为约0.1~5μm,或0.2~1μm,例如约0.25μm。
可以将这样的第一层材料涂布到活性金属电极上,或者它们可通过涂布诸如金属氮化物、金属磷化物、金属卤化物、红磷、碘等前体来就地形成。可以通过将前体转化为含锂类似物的方法来就地生成第一层,例如按照如下各种反应进行(以使用P、CuN3和PbI2前体为例)
1.(前体形成Li离子导体的反应);2(a).(形成Li离子导体/金属复合体的反应);2(b).(形成Li离子导体/金属复合体的反应)。
可以包括导电金属粒子的第一层复合体,是作为就地转化的结果而形成的,满足用于按照本发明的保护复合体的第一层材料的要求,因此在本发明的范围内。
保护复合体的第二层306由基本上没有透过性的玻璃状或无定形的离子导体构成,例如磷基玻璃、氧化物基玻璃、磷氧氮化物基玻璃、硫基玻璃、氧化物/硫化物基玻璃、硒化物基玻璃、镓基玻璃、锗基玻璃、玻璃陶瓷活性金属离子导体、锂β-氧化铝、钠β-氧化铝、Li超离子导体(LISICON)、Na超离子导体(NASICON)等。具体的例子包括LiPON、Li3PO4·Li2S·SiS2、Li2S·GeS2·Ga2S3、Li1-x-yQxTi2-xSiyP3-yO12(购自日本的OHARA公司,在美国专利5,702,995、6,030,909、6,315,881中有进一步叙述,这些专利在此引作参考)、Li2O·11Al2O3、NaO·11Al2O3、(Na,Li)1+xTi2-xAlx(PO4)3(0.6≤x≤0.9)和在结晶学上相关的结构、Na3Zr2Si2PO12、Li3Zr2Si2PO12、Na5ZrP3O12、Na5TiP3O12、Na3Fe2P3O12、Na4NbP3O12、Li5ZrP3O12、Li5TiP3O12、Li3Fe2P3O12和Li4NbP3O12。
此复合体的离子电导率为至少10-7S/cm,一般为至少10-6S/cm,例如为至少10-5S/cm至10-4S/cm,以及高达10-3S/cm或更高。第二材料层的厚度优选为约0.1~1000m,或者在第二材料层的离子导电性为约10-7S/cm时,为约0.25~1μm,或者在第二材料层的离子电导率为约10-4~10-3S/cm时,为10~1000μm,优选为1~500μm,更优选为1~100μm,例如20μm。
当把此阳极结构加入到电池中时,第一层304与活性金属(例如锂)阳极相邻,而第二层306与电解质相连,或者在第二层是电池中唯一的电解质时,与阴极相连。
两层也都可以包括另外的成分。例如,适当的第一活性金属相容层304可以包括增强其性能的聚合物组分。例如,聚合物-碘络合物,像聚(2-乙烯基吡啶)-碘(P2VP-I2)、聚乙烯-碘,或者与四烷基铵-碘的络合物可以与Li反应,形成离子导电性明显高于纯LiI的LiI基薄膜。同样,适当的第二层306可以包括增强其性能的聚合物组分。例如,可以在聚合物基体中制造像如上所述的购自0HARA公司的玻璃陶瓷活性金属离子导体,此基体赋予其柔软性,同时保持其高离子导电性(购自日本OHARA公司)。
此外,可以使用各种技术来制造这些层。它们包括沉积或蒸发(包括电子束蒸发)材料层,例如LiN3或离子导电玻璃。同样,如在上面注意到的,可以从一种或几种前体与活性金属电极的无害反应就地形成活性金属电极的相邻的层。例如,可以通过使CuN3与Li阳极表面接触在Li阳极上形成Li3N层,或者通过使红磷与Li阳极表面接触,在Li阳极表面上形成Li3P。
还可以使用其中用其他材料如过渡层和/或润湿层涂布第一材料和第二材料的方法。例如,用LiOPN层,接着用薄的银(Ag)涂层涂布OHARA玻璃陶瓷板。当在此结构上蒸发锂时,Ag就转化为Ag-Li,并且至少部分扩散到所沉积的锂的更大主体中,这就建立起被保护的锂电极。薄的Ag涂层防止热的(蒸气相)锂与LiPON第一材料层接触并发生不利的反应。在沉积以后,固体相锂对LiPON是稳定的。可以使用多层这样的过渡层/润湿层(例如Sn)和第一层材料组合来达到所需的结果。
因此,本发明包括带有充分形成保护层的被保护阳极结构和加入了对环境稳定的前体的电池隔离件,它们当中的每一个都可以在正常的环境气氛条件下处理或储存,而不会在加入到电池中之前变坏。还提供了电池及制造隔离件、阳极结构和电池的方法。
制造技术在例如1997年11月11日授予Chu的美国专利5,686,201中记载了活性金属电池的制造材料和技术。在例如1998年8月25日提交的、发明人为May-Ying Chu、Steven J.Vi sco和Lutgard C.DeJonge的题为《具有阻隔层的包封锂合金电极》的美国专利申请09/139,601(现在是2001年4月10日授权的美国专利6,214,061);1998年5月29日提交的、发明人为Steven J.Visco和May-Ying Chu的题为《用于负电极的保护涂层》的美国专利申请09/086,665(现在是2000年5月15日授权的美国专利6,025,094);1998年8月25日提交的、发明人为May-Ying Chu、Steven J.Visco和Lutgard C.DeJonge的题为《在保护涂层下的镀金属负电极》的美国专利申请09/139,603(现在是2002年6月11日颁发的美国专利6,402,795);1998年8月25日提交的、发明人为Steven J.Visco和Floris Y.Tsang的题为《形成具有玻璃保护层的包封锂电极的方法》的美国专利申请09/139,601(现在是2001年4月10日授权的美国专利6,214,061)中进一步描述了具有阳极保护层的活性金属电池的制造材料和技术。如在2002年7月3日提交的、发明人为Steven J.Visco、YevgeniyS.Nimon和Bruce D.Katz的题为《包封的合金电极》的美国专利申请10/189,908进一步叙述的,活性金属电极也可以是活性金属合金电极。其中公开的包括阳极、阴极、隔离件、保护层等的电池组件材料和技术一段都适用于本发明,而且这些专利申请中的每一件都被整体收入全部用于参考。
特别是,可以使用各种方法来制造按照本发明的保护复合体。它们包括在第二材料层上沉积或蒸发(包括电子束蒸发)第一材料或前体层。同样,如在上面注意到的和将要在下面进一步叙述的,通过在前体上沉积或蒸发锂、通过使前体与锂金属(例如箔)直接接触,或者通过用锂经过第二层材料镀上前体,就可以由一种或几种前体与活性金属电极或材料的无害反应就地形成第一层。在某些实施方案中,可以如在下面进一步叙述的,也可以在第一层材料上形成第二层材料。
参照图4A,显示出用来制造按照本发明的保护复合体的第一种方法。在基本上是没有透过性的离子导电材料,例如高离子导电玻璃或玻璃陶瓷材料,例如如上所述的LiPON或OHARA玻璃陶瓷材料的第二层材料上,直接沉积高离子导电的与活性金属化学相容的材料的第一层。可以通过各种技术,包括例如RF溅镀、电子束蒸发、热蒸发或活性热蒸发或电子束蒸发来实施这一步。在该图中举例说明的特定实施例中,在氮等离子体中蒸发锂,以在例如上述的OHARA材料的玻璃陶瓷材料的表面上形成氮化锂(Li3N)层。然后在Li3N薄膜上蒸发锂金属。Li3N层将锂金属电极和第二材料层隔开,但允许锂离子从锂电极通过该玻璃。当然,如在本文中所述,也可以使用其他活性金属和第一与第二层材料。
或者,参照图4B,显示出制造按照本发明的保护复合体的第二种方法。在第二层材料上形成前体层之后,就地形成离子导电化学相容的第一层材料。在该图中举例说明的特定实施例中,用红磷,一种用作活性金属(在此情况下是锂)磷化物的前体,来涂布例如由上述的OHARA材料组成的的玻璃陶瓷层表面。然后,在磷上沉积锂金属层。锂和磷按照如下的反应生成Li3P。Li3P是与锂阳极和玻璃陶瓷材料都化学相容的离子导电材料。按照这种方法,玻璃陶瓷(或其他第二层材料)不与锂电极直接接触。当然,如在本文中所述,也可以使用其他的活性金属、第一层前体和第二层材料。供选择的前体的例子包括CuN3,它可以按照如下的反应以类似的方式,在第二层材料(例如玻璃陶瓷)上形成一个薄层,并与Li阳极相接触;或者按照如下的反应以类似的方式,在聚合物电解质上形成作为薄层的碘化铅,并与Li阳极相接触。
在前面的两种方法中,比起在第一层材料或前体上形成锂(或其它活性金属)层来说,更优选通过使金属锂与保护中间层材料或前体结合,例如通过与挤压出的锂金属箔直接接触,使保护复合体的第一层材料或前体与锂相接触。在图5中说明了对于图4A或图4B的这种供选择的实施方案中的一种。
在另一个实施方案中,可以用第一层材料的前体,例如Cu3N来涂布适当的,例如具有湿润层,如在铜上的锡膜的基体。然后可以用第二层材料,例如(离子)导电性玻璃进行涂布。然后可通过第一和第二层材料,对锡电极进行镀锂(或其他活性金属),从而形成活性金属电极。也可以通过此操作,将Cu3N前体转化为Li3N,以在锂金属电极上完成按照本发明的保护复合体。在前面已经引作参考的共同转让美国专利6,402,795中叙述了活性金属电镀方法的细节。
同样,在图4A或图4B中举例说明的两种方法中,比起在第一层材料或前体上形成锂(或其他活性金属)层,更优选在锂或其他活性金属材料上沉积(或用其他方法形成)保护复合体的第一层材料或前体。然后,可以通过例如蒸发高电导玻璃,在第一层材料上形成第二层材料。在图5中说明了此选项的一个实施方案,其中通过将锂蒸发到预成形的铜-锡(Cu-Sn)合金上,形成活性金属电极,从而形成作为形成保护复合体的第一和第二层材料用基体的预膨胀Li-Cu-Sn合金阳极。
同样如在上面所注意到的,在本发明的一个供选择的实施方案中,第一层可包括另外的组分。例如,适当的第一层可包括用来增强其性能的聚合物组分。例如,聚合物-碘络合物,像聚(2-乙烯基吡啶)-碘(P2VP-I2)、聚乙烯-碘或四烷基铵-碘可以与Li反应,形成基于离子导电性LiI的薄膜,如上所述它与活性金属和第二层材料都是化学相容的。不拟受任何理论的约束,预期使用聚合物-碘电荷转移络合物可导致形成含有LiI和聚合物并且离子导电性明显高于纯LiI的复合体。也可以以这种方式使用其他的卤素,例如在溴络合物中。
参照图6A,显示出本发明此方面的第一个实施方案。在第二层材料的表面上涂布聚合物层和碘层,使之反应生成聚合物-碘络合物。
按照此方法,可以使用刷涂、浸涂或喷涂的方法,将聚合物的薄层涂布在第二材料层(例如导电玻璃)上。例如,可以用此方法,用P2VP薄层(例如厚0.5~2.0μm,优选0.1~0.5μm)涂布导电玻璃层。
用于涂布碘涂层的一项技术是晶体碘升华,可以在室温下(例如约20~25℃),在置于干燥箱或干燥室中的反应器中进行。升华的碘层可以作得很薄(例如0.05~1.0μm),并且可以通过改变温度或基体与碘源之间的距离来调节升华速率。
或者,可以将高浓度的碘(例如50~100g/L)溶解于有机溶剂,例如乙腈和正庚烷中。可以用诸如浸涂、喷涂或刷涂等方法,将溶解的碘涂布在导电玻璃表面上。在此情况下,可以通过改变涂布处理的长度和碘的浓度,很容易地改变处理条件。用于此技术的碘源的例子包括金属碘化物,例如AgI和PbI2,已知它们在带有Li阳极和LiI基固体电解质的固体电池中,都可作为阴极材料。
然后,通过例如蒸发或压制到涂布了此络合物的玻璃上,使得锂(或其他活性金属)与导电玻璃(或其它第二层材料)上的聚合物-碘络合物接触。结果是在Li阳极上形成含有LiI的复合体保护阻隔层。
参照图6B,显示出本发明此方面的供选择的实施方案。例如通过如上所述的技术,将能够与Li反应生成LiI层(A)的碘的薄层涂布在导电玻璃(或其他第二层材料)表面上。
可以例如如上所述,用聚合物薄层(B)涂布活性金属,例如锂箔,然后使锂箔与玻璃上的碘层相接触。在组装之后,碘与聚合物层反应,结果形成透过性降低的含有LiI的复合体保护阻隔层。
实施例下面的实施例提供举例说明按照本发明的对锂电极的复合保护结构有利性能,特别是很低的透过性的细节。提供这些实施例是为了示例和更清楚地举例说明本发明的各方面,而完全不拟对其构成限制。
实施例1在复合保护层中使用LiPON的阻抗测量在MRC 8671型溅镀沉积系统中,在铜箔试样上RF溅镀沉积上约0.75μm的LiPON。在氮气环境下,通过铜靶的RF磁控管溅镀,在某些铜箔试样上涂布附加的Cu3N层(约0.9μm)。将一个LiPON/Cu试样转移到真空蒸发器中,直接在LiPON表面上蒸发约3~7μm的锂金属。在另一个Cu3N/LiPON/Cu试样上涂布类似厚度的锂。未被保护的LiPON/Cu试样的阻抗如图7A中所示;将锂蒸发到LiPON表面上导致试样电阻显著增大,对于电化学器件这是不希望的。在图7B中可见到Cu3N保护薄膜的有利的效果;在此情况下,阻抗显著降低。
实施例2在复合保护层中使用玻璃陶瓷活性金属离子导体(OHARA)的阻抗测量从OHARA公司得到Li+导电性玻璃陶瓷板试样。将约3~7μm的锂直接蒸发到OHARA玻璃陶瓷板上。在图8A中可见到锂与电解质的有害反应;试样的阻抗很大,约是40,000Wcm2。在第二个玻璃陶瓷板试样上RF磁控管溅镀沉积Cu3N薄膜(厚度约0.9μm),随后蒸发大约3~7μm的锂。在图8B中可见到Cu3N薄膜的有利的效果;与没有Cu3N薄膜的板相比,玻璃陶瓷的阻抗明显改善。将图8A和图8B重叠在图8C上进一步说明被Cu3N保护的板性能的明显改善。在图8D中可见到保护膜的离子导电性质,其中锂经过Li/Cu3N/玻璃界面运动;设想这是由于离子绝缘的Cu3N薄膜转化为高导电的Li3N+Cu。
结论虽然以清楚地理解为目的比较详细地叙述了上述本发明,但应该理解,在所附权利要求的范围内可以实施某些变更和改变。应该注意到,本发明的方法和组成有许多可供选择的实施方法。因此,本实施方案应该被看作是说明性的,而不是限制性的,而且本发明并不限于在此所给出的细节。
在此所引用的所有参考资料都用于参考目的。
权利要求
1.一种电化学器件组件,它包括具有第一表面和第二表面的活性金属电极;在电极的第一表面上的保护复合隔离件,该复合体包括与该电极接触的第一材料层,该第一材料层是离子导电的,并与活性金属是化学相容的;以及与该第一层接触的第二材料层,该第二材料层基本上是不可渗透的,具有离子导电性并与第一材料是化学相容的;其中,该复合体的离子电导率至少为10-7S/cm。
2.权利要求1的组件,该组件在活性金属电极的第二表面上还包括一个集流器。
3.权利要求1的组件,其中第二材料层在随后形成的电池中是唯一的电解质。
4.权利要求1的组件,其中所述结构还包括电解质。
5.权利要求1的组件,其中第二材料层的离子电导率为至少10-7S/cm。
6.权利要求1的组件,其中第二材料层的离子电导率为约10-6S/cm~10-3S/cm。
7.权利要求1的组件,其中第二材料层的离子电导率为约10-3S/cm。
8.权利要求1的组件,其中第一材料层的厚度为约0.1~5μm。
9.权利要求1的组件,其中第一材料层的厚度为约0.2~1μm。
10.权利要求1的组件,其中第一材料层的厚度为约0.25μm。
11.权利要求1的组件,其中第二材料层的厚度为约0.1~1000μm。
12.权利要求1的组件,其中第二材料层的离子电导率为约10-7S/cm,而第二材料层的厚度为约0.25~1μm。
13.权利要求1的组件,其中第二材料层的离子电导率为约10-4~大约10-3S/cm,而第二材料层的厚度为约10~500μm。
14.权利要求13的组件,其中第二材料层的厚度为约10~100μm。
15.权利要求1的组件,其中电极的活性金属选自碱金属、碱土金属和过渡金属。
16.权利要求1的组件,其中电极的活性金属是碱金属。
17.权利要求1的组件,其中电极的活性金属是锂或锂合金。
18.权利要求1的组件,其中第一层包括选自活性金属氮化物、活性金属磷化物和活性金属卤化物,以及活性金属磷氧氮化物玻璃的材料。
19.权利要求1的组件,其中第一层包括选自Li3N、Li3P和LiI、LiBr、LiCl、LiF及LiPON的材料。
20.权利要求1的组件,其中第二层包括选自磷基玻璃、氧化物基玻璃、硫基玻璃、氧化物/硫化物基玻璃、硒化物基玻璃、镓基玻璃、锗基玻璃、玻璃陶瓷活性金属离子导体、钠β-氧化铝和锂β-氧化铝的材料。
21.权利要求1的组件,其中第二层包括选自LiPON、Li3PO4·Li2S·SiS2、Li2S·GeS2·Ga2S3、LISICON、NASICON、钠β-氧化铝和锂β-氧化铝的材料。
22.权利要求1的组件,其中第一层材料含有活性金属卤化物和聚合物的络合物。
23.权利要求22的组件,其中所述聚合物选自聚(2-乙烯基吡啶)、聚乙烯和四烷基铵。
24.权利要求23的组件,其中所述络合物是LiI-聚(2-乙烯基吡啶)。
25.权利要求1的组件,其中第一层含有Li3N。
26.权利要求1的组件,其中第一层含有Li3P。
27.权利要求1的组件,其中第一层含有LiPON。
28.权利要求1的组件,其中第二层是具有如下组成的离子导电玻璃陶瓷组成 mol%P2O526~55%SiO20~15%GeO2+TiO225~50%其中GeO20~50%TiO20~50%ZrO20~10%M2O30~<10%Al2O30~15%Ga2O30~15%Li2O 3~25%该离子导电玻璃陶瓷含有占优势的由Li1+x(M,Al,Ga)x(Ge1-yTiy)2-x(PO4)3和/或Li1+x+yQxTi2-xSiyP3-yO12组成的结晶相,其中在前一个式子中x≤0.8,0≤y≤1.0,M是选自Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm和Yb的元素,而在后一个式子中,0<x≤0.4,0<y≤0.6,而且其中Q是Al或Ga。
29.权利要求28的组件,其中第一层含有Li3P。
30.权利要求28的组件,其中第一层含有Li3N
31.权利要求28的组件,其中第一层含有LiI·聚-2-乙烯基吡啶。
32.权利要求28的组件,其中第一层含有LiPON。
33.权利要求1的组件,其中第二层是包含离子导电玻璃陶瓷粒子的柔性膜,该离子导电玻璃陶瓷具有如下组成组成 mol%P2O526~55%SiO20~15%GeO2+TiO225~50%其中GeO20~50%TiO20~50%ZrO20~10%M2O30~<10%Al2O30~15%Ga2O30~15%Li2O3~25%并在固体聚合物电解质中含有占优势的由Li1+x(M,Al,Ga)x(Ge1-yTiy)2-x(PO4)3和/或Li1+x+yQxTi2-xSiyP3-yO12组成的结晶相,其中在前一个式子中x≤0.8,0≤y≤1.0,M是选自Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm和Yb的元素,而在后一个式子中,0<x≤0.4,0<y≤0.6,而且其中Q是Al或Ga
34.一种保护复合体电池隔离件,它包括与活性金属和空气化学相容的离子导电第一材料层或前体;以及与第一层相接触的第二材料层,该第二材料基本上是不可渗透的,具有离子导电性并与第一材料是化学相容的;其中该复合体的离子电导率为至少10-7S/cm。
35.权利要求34的隔离件,其中第二材料层的离子电导率为约10-4~10-3S/cm。
36.权利要求34的隔离件,其中第一材料层的厚度是约0.1~5μm。
37.权利要求34的隔离件,其中第二材料层的厚度是约0.1~1000μm。
38.权利要求34的隔离件,其中第二材料层的离子电导率为约10-4~约10-3S/cm,第二材料层的厚度为约10~500μm。
39.权利要求38的隔离件,其中第二材料层的厚度为约10~100μm。
40.权利要求34的隔离件,其中第一层含有LiPON。
41.权利要求34的隔离件,其中第一层含有金属氮化物第一层材料前体。
42.权利要求41的隔离件,其中第一层含有Cu3N。
43.权利要求34的隔离件,其中第二层包括选自基本上不可渗透的磷基玻璃、氧化物基玻璃、硫基玻璃、氧化物/硫化物基玻璃、硒化物基玻璃、镓基玻璃、锗基玻璃、玻璃陶瓷活性金属离子导体、钠β-氧化铝和锂β-氧化铝的材料。
44.权利要求34的隔离件,其中第二层包括选自LiPON、Li3PO4·Li2S·SiS2、Li2S·GeS2·Ga2S3、LISICON、NASICON、钠β-氧化铝和锂β-氧化铝的材料。
45.权利要求34的隔离件,其中第二层是具有如下组成的离子导电玻璃陶瓷组成mol%P2O526~55%SiO20~15%GeO2+TiO225~50%其中GeO20~50%TiO20~50%ZrO20~10%M2O30~<10%Al2O30~15%Ga2O30~15%Li2O3~25%该离子导电玻璃陶瓷含有占优势的由Li1+x(M,Al,Ga)x(Ge1-yTiy)2-x(PO4)3和/或Li1+x+yQxTi2-xSiyP3-yO12组成的结晶相,其中在前一个式子中x≤0.8,0≤y≤1.0,M是选自Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm和Yb的元素,而在后一个式子中,0<x≤0.4,0<y≤0.6,而且其中Q是Al或Ga。
46.权利要求34的隔离件,其中第二层是包含离子导电玻璃陶瓷粒子的柔性膜,该离子导电玻璃陶瓷具有如下组成组成 mol%P2O526~55%SiO20~15%GeO2+TiO225~50%其中GeO20~50%TiO20~50%ZrO20~10%M2O30~<10%Al2O30~15%Ga2O30~15%Li2O3~25%并在固体聚合物电解质中含有占优势的由Li1+x(M,Al,Ga)x(Ge1-yTiy)2-x(PO4)3和/或Li1+x+yQxTi2-xSiyP3-yO12组成的结晶相,其中在前一个式子中x≤0.8,0≤y≤1.0,M是选自Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm和Yb的元素,而在后一个式子中,0<x≤0.4,0<y≤0.6,而且其中Q是Al或Ga。
47.一种电化学器件组件的制造方法,该方法包括形成由下面的构件组成的层压制件活性金属阳极;与活性金属阳极相邻的第一材料层,它是离子导电的并与活性金属是化学相容的,以及与第一层相邻的第二材料层,它基本上是不可渗透的,具有离子导电性并与第一材料是化学相容的;其中该复合体的离子电导率为至少10-7S/cm。
48.权利要求47的方法,其中形成所述层压制件的步骤包括(a)提供由活性金属阳极和第二材料层中之一构成的基体;(b)在此基体上形成第一材料或第一材料的化学前体的层;以及(c)将另一活性金属阳极和来自(a)的第二材料层涂布在基体上的第一材料或前体层上。
49.权利要求48的方法,其中阳极的活性金属是锂或锂合金。
50.权利要求48的方法,其中第一材料和前体选自活性金属氮化物、活性金属磷化物、活性金属卤化物、活性金属磷氧氮化物玻璃、活性金属卤化物和聚合物的络合物、金属氮化物、红磷、胺、膦、环硼氮烷(B3N3H6)、三嗪(C3N3H3)和卤化物。
51.权利要求48的方法,其中第二材料选自基本上不可渗透的磷基玻璃、氧化物基玻璃、硫基玻璃、氧化物/硫化物基玻璃、硒化物基玻璃、镓基玻璃、锗基玻璃、玻璃陶瓷活性金属离子导体、钠β-氧化铝和锂β-氧化铝。
52.权利要求48的方法,其中第二层是具有如下组成的离子导电玻璃陶瓷组成 mol%P2O526~55%SiO20~15%GeO2+TiO225~50%其中GeO20~50%TiO20~50%ZrO20~10%M2O30~<10%Al2O30~15%Ga2O30~15%Li2O 3~25%该离子导电玻璃陶瓷含有占优势的由Li1+x(M,Al,Ga)x(Ge1-yTiy)2-x(PO4)3和/或Li1+x+yQxTi2-xSiyP3-yO12组成的结晶相,其中在前一个式子中x≤0.8,0≤y≤1.0,M是选自Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm和Yb的元素,而在后一个式子中,0<x≤0.4,0<y≤0.6,而且其中Q是Al或Ga。
53.权利要求48的方法,其中第二层是包含离子导电玻璃陶瓷粒子的柔性膜,该离子导电玻璃陶瓷具有如下组成组成 mol%P2O526~55%SiO20~15%GeO2+TiO225~50%其中GeO20~50%TiO20~50%ZrO20~10%M2O30~<10%Al2O30~15%Ga2O30~15%Li2O3~25%并在固体聚合物电解质中含有占优势的由Li1+x(M,Al,Ga)x(Ge1-yTiy)2-x(PO4)3和/或Li1+x+yQxTi2-xSiyP3-yO12组成的结晶相,其中在前一个式子中x≤0.8,0≤y≤1.0,M是选自Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm和Yb的元素,而在后一个式子中,0<x≤0.4,0<y≤0.6,而且其中Q是Al或Ga。
54.权利要求48的方法,其中所述基体是第二材料层,所述第一材料层或前体层是选自活性金属氮化物、活性金属磷化物、活性金属卤化物的第一材料层,而活性金属阳极是由蒸发沉积的锂。
55.权利要求48的方法,其中所述基体是第二材料层,所述第一材料层或前体层是选自金属氮化物、红磷、胺、膦、环硼氮烷(B3N3H6)、三嗪(C3N3H3)和卤化物的前体,而活性金属阳极是由蒸发沉积的锂,由此在蒸发沉积的过程中通过使前体与锂反应而将前体转化为其含锂的第一层材料类似物。
56.权利要求48的方法,其中所述基体是第二材料层,所述第一材料层或前体层是LiPON,而活性金属阳极是在沉积锂之前在LiPON上形成的过渡层上通过蒸发而沉积的锂,由此过渡层防止气相锂和LiPON之间发生反应。
57.权利要求56的方法,其中过渡层包括可与锂混溶的金属。
58.权利要求57的方法,其中所述金属是Ag。
59.权利要求48的方法,其中所述基体是第二材料层,而所述第一材料或前体层是通过下列步骤形成的LiI-聚(2-乙烯基吡啶)络合物将聚(2-乙烯基吡啶)涂布在第二材料层上,然后将碘涂布在聚(2-乙烯基吡啶)上,然后涂布锂作为活性金属阳极,从而形成LiI-聚(2-乙烯基吡啶)络合物。
60.权利要求59的方法,其中活性金属阳极是通过将锂蒸发而涂布的。
61.权利要求59的方法,其中活性金属阳极是作为锂箔而被涂布的。
62.一种电池,该电池包括具有第一表面和第二表面的活性金属负电极;在电极的第一表面上的复合隔离件,该复合体包括与具有离子导电性并与活性金属化学相容的电极接触的第一材料层,以及与第一层相接触的第二材料层,该第二材料基本上是不可渗透的,具有离子导电性并与第一材料是化学相容的,其中该复合体的离子电导率为至少10-7S/cm,和选自硫基正电极、金属氧化物基正电极和金属硫化物基正电极的与所述第二层接触的正电极。
63.权利要求62的电池,该电池还包括在两个电极之间的聚合物电解质。
64.权利要求62的电池,其中负电极的活性金属是锂或锂合金。
65.权利要求62的电池,其中第一层包括选自活性金属氮化物、活性金属磷化物、活性金属卤化物和活性金属磷氧氮化物玻璃的材料。
66.权利要求62的电池,其中第一层包括选自Li3N、Li3P和LiI、LiBr、LiCl、LiF及LiPON的材料。
67.权利要求62的电池,其中第一层材料包括活性金属卤化物和聚合物的络合物。
68.权利要求67的电池,其中所述络合物是LiI-聚(2-乙烯基吡啶)。
69.权利要求62的电池,其中第二层包括选自磷基玻璃、氧化物基玻璃、硫基玻璃、氧化物/硫化物基玻璃、硒化物基玻璃、镓基玻璃、锗基玻璃、玻璃陶瓷活性金属离子导体、钠β-氧化铝和锂β-氧化铝的材料。
70.权利要求62的电池,其中第二层是具有如下组成的离子导电玻璃陶瓷组成 mol%P2O526~55%SiO20~15%GeO2+TiO225~50%其中GeO20~50%TiO20~50%ZrO20~10%M2O30~<10%Al2O30~15%Ga2O30~15%Li2O3~25%该离子导电玻璃陶瓷含有占优势的由Li1+x(M,Al,Ga)x(Ge1-yTiy)2-x(PO4)3和/或Li1+x+yQxTi2-xSiyP3-yO12组成的结晶相,其中在前一个式子中x≤0.8,0≤y≤1.0,M是选自Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm和Yb的元素,而在后一个式子中,0<x≤0.4,0<y≤0.6,而且其中Q是Al或Ga。
71.权利要求62的电池,其中第二层是包含离子导电玻璃陶瓷粒子的柔性膜,该离子导电玻璃陶瓷具有如下组成组成 mol%P2O526~55%SiO20~15%GeO2+TiO225~50%其中GeO20~50%TiO20~50%ZrO20~10%M2O30~<10%Al2O30~15%Ga2O30~15%Li2O3~25%并在固体聚合物电解质中含有占优势的由Li1+x(M,Al,Ga)x(Ge1-yTiy)2-x(PO4)3和/或Li1+x+yQxTi2-xSiyP3-yO12组成的结晶相,其中在前一个式子中x≤0.8,0≤y≤1.0,M是选自Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm和Yb的元素,而在后一个式子中,0<x≤0.4,0<y≤0.6,而且其中Q是Al或Ga。
72.一种电池的制造方法,该方法包括形成由下面的组件构成的层压制件活性金属电极;与该电极相接触的第一材料层,该第一材料是离子导电的并与活性金属是化学相容的,以及与第一层相接触的第二材料层,该第二材料基本上是不可渗透的,具有离子导电性并与第一材料是化学相容的,其中该复合体的离子电导率为至少10-7S/cm,以及涂布选自硫基正电极、金属氧化物基正电极和金属硫化物基正电极的与所述第二材料层相接触的正电极。
全文摘要
公开了用来保护活性金属阳极的离子导电性复合体及其制造方法。可以将该复合体加入到活性金属负电极(阳极)结构和电池中。按照本发明,在具有所需高的总离子导电性和对阳极、阴极以及在制造电池时所遇到的环境条件的化学稳定性的复合材料中结合了不同离子导体的性能。该复合体能够保护活性金属阳极使之不受与其他电池组件的有害反应或环境条件的影响,而同时提供高离子导电性,从而使得容易制造增强加入此复合体的电池和/或其性能。
文档编号H01M6/18GK1726608SQ200380106146
公开日2006年1月25日 申请日期2003年10月14日 优先权日2002年10月15日
发明者J·S·维斯科, Y·S·尼蒙, B·D·卡兹 申请人:波利普拉斯电池有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1