软磁元件的热处理的利记博彩app

文档序号:6803316阅读:701来源:国知局
专利名称:软磁元件的热处理的利记博彩app
技术领域
本发明涉及软磁复合材料元件。更具体地,本发明涉及一种通过控制软磁复合材料元件的热处理过程中的条件,从而提高这种元件的性能的方法。
背景技术
软磁材料用作例如感应器、定子、转子、发电机、致动器和传感器中的磁芯材料。通常,软磁磁芯-例如电机中的转子和定子-由钢片堆叠而成。软磁复合材料(SMC)基于通常是铁基的软磁颗粒,每个颗粒上具有电绝缘涂层。利用传统的粉末冶金工艺,通过将绝缘颗粒与润滑剂和/或粘合剂一起压制,从而制成SMC零件。由于SMC材料可以承载三维的磁通,并且由于通过压制工艺可以获得三维的形状,所以通过使用这种由粉末冶金制成的材料可以在SMC元件的设计中获得比使用钢叠片更高的自由度。
然而,将绝缘粉末颗粒压制成SMC元件会产生应力,特别是当元件被压成较高密度时。这些应力对磁性性能-例如磁导率和磁滞损耗-具有消极影响。热处理具有应力释放作用,因此可以部分地恢复磁导率和磁滞损耗。然而,热处理必须不能导致绝缘层/涂层的损坏,因为这样会发生金属与金属的接触,从而增加涡流损耗。另外,为进免在挤压操作中铁的颗粒之间的冷焊并保持连续的涂层,推荐在绝缘粉末中添加润滑剂。
对由粉末冶金制成的SMC元件进行热处理时出现的一个问题是磁性性能会根据热处理条件而变化。在工业生产中尤其如此。在工业生产中观察到的另一个问题是元件表面有瑕疵。

发明内容
本发明的一个目的是提供一种使元件的磁性性能得到提高并且更稳定的方法。
本发明的另一个目的是提供一种使元件表面没有瑕疵的方法。
简而言之,已发现,可以通过控制SMC元件在其中进行热处理的炉内气氛而实现这些目的和下文中显而易见的其它目的。具体而言,已发现,应该控制炉内气氛的CO含量。


图1示出在不同CO含量下,初始磁导率随频率的变化;图2示出在不同CO含量和1特斯拉磁感应强度下,磁芯损耗随频率的变化;图3示出在不同炉温下,元件温度随停留时间的变化;图4示出在不同温度和停留时间下进行热处理时,初始磁导率随频率的变化;图5a-c示出热处理过的元件的表面状况。
具体实施例方式
SMC元件适于由铁磁粉末制备,该铁磁粉末的颗粒上具有电绝缘涂层。压制前,将该粉末与一种有机润滑剂混合。随后对压制后的元件在一含氧炉内气氛例如空气中进行热处理。
专门根据本发明而考虑(使用)的铁磁粉末基于主要由纯铁组成的基粉,并且可以是例如可买得到的水雾化铁粉或具有圆的、不规则的或扁平的颗粒的海绵铁粉。可使用的不规则的水雾化粉末的典型例子是瑞典Hoganas AB公司的ABC 100和ASC 100系列粉末。基粉的颗粒尺寸取决于粉末预期的最终用途,并且通常小于500μm。对于(用于)较高频率(的粉末),颗粒尺寸优选地小于45μm。这些基粉上有一氧涂层或隔层,并且一个突出特征是,该粉末的氧含量与基粉的氧含量相比仅有少量提高。更具体的,该粉末中氧含量按重量计算比基粉中的氧含量最多高0.2%,优选地最多高0.15%。通过在有机溶剂中用磷酸对基粉进行处理可以使基粉上涂覆该绝缘层,如美国专利6,348,265中所述,该专利在此被引作参考。因此,本发明具体针对软磁粉末,其中,绝缘的粉末颗粒由主要是纯铁的基粉组成,该基粉具有一很薄的含氧和磷的绝缘隔层。
现已发现,炉内气氛的CO含量对于最终的SMC压制件的性能起着重要的作用,该炉内气氛按体积计算优选包含至少10%的氧气。炉内气氛的CO的含量根据所使用的润滑剂的类型和数量以及热处理过程中炉内的润滑剂的分解程度而变化。在炉内气氛中最高可获得按体积计算5%的CO。通过将CO的含量控制在按体积计算0.25%以下,不仅发现可以获得更稳定的磁性性能,而且还发现磁性性能-例如初始磁导率的损耗和频率稳定性-可以得到提高。炉内气氛中CO的含量越低,这种优点就越显著。因此,优选地,CO的含量按体积计算低于约0.1%或甚至低于0.05%。在不受任何特定理论束缚的情况下,可以认为,高含量的CO会损害绝缘的粉末颗粒的表面涂层,结果在高浓度CO下被热处理过的材料的频率稳定性较低。而且,已发现,CO浓度的减少会导致总损耗的减少。因此,通过控制炉内气氛中CO的含量,可以提高SMC零件的磁性性能。
在实践中,本发明方法适于通过在整个热处理循环期间测量热处理炉的至少一个位置处的CO的浓度而进行,并将所测量的CO浓度的值用于控制炉内气氛。因此,CO的含量可以通过控制流经炉子的气流进行调节。此外,炉温可设定为高于最高预期元件的温度的一个值。然后,对SMC元件的温度进行测量,并且当元件的温度达到预期元件温度时终止热处理循环。因而,可以在元件达到至少400℃的温度时终止热处理。优选的是,热处理一直进行直到元件达到450℃和650℃之间的一个温度,并且最优选的是达到450℃和600℃之间的一个温度。炉子的合适的温度设定为约450℃至1000℃。可在热处理过程后测量元件温度,并当达到最终元件温度时中断热处理。在炉中对元件进行热处理的时间根据元件的尺寸和所要求的元件的最终温度而变化,并可由本领域技术人员很容易地确定。
本发明另一优点是,通过测量元件温度,可以使较高的炉温与较短的停留时间相结合,利用这一点可消除经过应力释放处理的元件表面的有机润滑剂的残留物。
优选地在空气中对热处理过的元件进行后续的冷却,但炉冷或在其它介质中的冷却也是可以的。
将通过如下例子对本发明进行进一步说明例1通过压制具有连续涂层的Somaloy 500TM纯铁基粉末和0.5%的KenolubeTM润滑剂生产出内径为45mm、外径为55mm并且高为5mm的磁性环。压制压力是800MPa,并且获得了7.35g/cm3的压坯密度。在500℃空气中、在连续生产炉中、在通过调节流过炉子的气流获得的不同的CO浓度下对该环进行热处理。
对随频率而变化的初始磁导率进行测量。所获得的SMC元件在较高频率下保持初始磁导率的能力被称为频率稳定性。
图1示出,在较低的CO浓度下进行热处理的材料的频率稳定性较高。对于0.25%及以下的CO浓度,可以获得合格的频率稳定性的值。
同时对总损耗进行了测量,并且图2示出在三种不同CO浓度下进行热处理的材料的总损耗。图2示出,当CO浓度减小时,总损耗也减小。
例2利用与例1中相同的铁基粉末混合物生产出直径为80mm、高为30mm并且重量约为1kg的圆柱形SMC元件,并分别在两种不同的炉温,即500℃和600℃下进行热处理。对于在500℃下进行热处理的元件,热处理分别在30分钟和55分钟后结束。对于在600℃下进行热处理的元件,该过程在28分钟后结束。
图3示出元件的温度曲线,可以推断,在600℃炉温下进行热处理的元件的温度在28分钟后达到550℃。
图4示出,在500℃下进行55分钟热处理的元件和在600℃下进行28分钟热处理的元件可以获得相同的磁导率,而在500℃下进行30分钟热处理的元件在频率达到80kHz之前的磁导率较低。
在600℃炉温下进行28分钟热处理的元件和在500℃炉温下进行50分钟热处理的元件的频率稳定性是合格的,并且由于在(频率)低于80kHz时这些元件的磁导率高于在500℃下进行30分钟热处理的元件的磁导率,所以优选使用较高炉温和较短停留时间的方法。
对元件表面就表面光洁度进行目测评价。图5b示出,在600℃下进行28分钟热处理的元件与图5a中的在500℃下进行30分钟热处理的元件相比具有较好的表面光洁度。图5c中的在500℃下进行50分钟热处理的元件的表面光洁度是合格的,并且比在500℃下进行30分钟热处理的元件的表面光洁度要好得多,但其光泽比在600℃下进行28分钟热处理的元件的光泽差。因此,通过使用较高热处理温度和较少停留时间,可以提高生产率,同时不会损害磁导率。同时还可获得更好的表面光洁度。
权利要求
1.一种提高由粉末冶金生产的SMC元件的磁性性能的方法-在炉内气氛中对由绝缘粉末颗粒形式的软磁材料和有机润滑剂组成的压制体进行应力释放热处理;-将该炉内气氛中CO的含量控制在按体积计算小于0.25%;以及-当该元件达到至少400℃的温度时,终止该热处理。
2.根据权利要求1所述的方法,其特征在于,所述炉内气氛中CO的含量按体积计算小于0.1%,优选地,按体积计算小于0.05%。
3.根据权利要求1或2所述的方法,其特征在于,所述绝缘粉末颗粒由一种主要是纯铁的基粉组成,该基粉具有一含氧和磷的绝缘隔层。
4.根据权利要求1-3中任一项所述的方法,其特征在于,当该元件达到450℃和650℃之间的一个温度,优选地达到450℃和600℃之间的一个温度时,终止该热处理。
5.根据权利要求1-4中任一项所述的方法,其特征在于,该热处理在这样的条件下进行炉内气氛按体积计算包含至少10%的氧气;炉温设定在450℃和1000℃之间。
6.根据权利要求1-5中任一项所述的方法,其特征在于,在该整个热处理循环中,在该热处理炉中的至少一个位置对CO的浓度进行测量。
7.根据权利要求1-6中任一项所述的方法,其特征在于,通过控制流过该炉子的空气流,将该CO含量减少到按体积计算小于0.25%,优选地小于0.1%并且最优选地小于0.05%的值。
全文摘要
本发明涉及一种提高由粉末冶金生产的SMC压制体的性能的方法,该压制体由绝缘粉末颗粒形式的软磁材料和有机润滑剂组成,并在炉内在CO含量按体积计算小于0.25%的含氧气氛中进行应力释放热处理,直到元件温度达到至少400℃。
文档编号H01F1/24GK1706012SQ200380101842
公开日2005年12月7日 申请日期2003年10月22日 优先权日2002年10月25日
发明者叶舟, P·拉松, H·安德松, L·胡尔特曼 申请人:霍加纳斯股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1