专利名称:非易失性存储器件及其制造方法
技术领域:
本发明一般地涉及半导体器件,更特别地涉及供存储单元中使用的半导体器件。
背景技术:
在基于SONOS(硅-氧化物-氮化物-氧化物-硅)的非易失性存储(NVM)单元中,向氮化物的热载流电子注入(HCI)可以用来编程具有高阈电压(Vt)状态和低Vt状态的存储单元。高效的HCI编程要求高的沟道区掺杂和陡峭的漏结;但是,由于具有高的沟道区掺杂,读干扰被加重。也就是,低Vt状态下存储单元的重复读取不断地增加存储单元的Vt。Vt可能增加到存储单元的状态可以从低Vt状态改变到高Vt状态的一点,从而导致存储单元的可靠性失败。因此,需要一种在重复读取过程中具有增强可靠性的存储单元。
本发明作为例子来说明并且不被附图所限制,附图中相似参考数字指示相似元素,并且其中图1说明根据本发明一种实施方案的其中形成有阱布植和沟道布植的半导体衬底的横截面视图;图2说明根据本发明一种实施方案的在半导体衬底上形成有栅叠层的图1半导体衬底的横截面视图;图3说明根据本发明一种实施方案的在形成晕轮布植之后的图2栅叠层的横截面视图;图4说明根据本发明一种实施方案的在半导体衬底内形成源和漏区以及扩展区并且沿着栅叠层的侧壁形成侧壁隔离物之后的图3半导体器件;图5说明根据本发明一种可选实施方案的其中形成有阱布植的半导体衬底的横截面视图;图6说明根据本发明一种实施方案的在半导体衬底和沟道布植上形成有第一氧化物层、氮化物层,以及第二氧化物层的图5半导体衬底的横截面视图;图7说明根据本发明一种实施方案的在形成栅叠层之后的图6半导体衬底的横截面视图;以及图8说明根据本发明一种实施方案的在半导体衬底内形成源和漏区以及扩展区并且沿着栅叠层的侧壁形成侧壁隔离物之后的图7半导体器件。
本领域技术人员应当认识到,图中的元素为了简单和清楚而说明并不一定按比例画出。例如,图中一些元素的尺寸可能相对于其他元素被放大以帮助增进本发明实施方案的理解。
具体实施例方式
在本发明的一种实施方案中,可以用作NVM存储单元的半导体器件形成有防击穿(APT)区和任选漏侧的高掺杂区(晕轮)。如果存在,晕轮区导致半导体器件的沟道区和漏区之间增加的掺杂物梯度。APT区使沟道区可以具有相对低的掺杂物浓度或者关于APT区相反地掺杂,这通过降低自然Vt使读干扰(即读周期过程中的阈电压漂移)达到最小。因此,使用晕轮区和APT区使半导体器件的高效热载流子注入编程可以保持同时减小读干扰。
图1说明包括具有隔离沟22和24、包围N型阱14和18、在隔离沟22和24之间的隔离N型阱16,以及掩膜层30的半导体衬底12的半导体器件10。应当注意,隔离沟22和24、包围N型阱14和18、隔离N型阱16,以及掩膜层30的形成在本领域是众所周知的,因此在这里仅简单地描述。隔离沟22和24在衬底12中形成,然后包围N型阱14和18被形成。隔离沟22和24可以包括任何类型的绝缘材料,例如氧化物、氮化物等,或它们的任意组合。在形成包围N型阱14和18之后,形成图案的掩膜层30用来定义隔离沟22和24之间的开口。应当注意,形成图案的掩膜层30可以是任何类型的掩膜层,例如光刻胶层、硬掩膜等。然后,隔离N型阱16在衬底12中形成。在形成隔离N型阱16之后,被隔离P型阱20在隔离N型阱16中形成,使得P型阱20与衬底12隔离。
在形成被隔离P型阱20之后,防击穿(APT)区26和沟道区28在隔离沟22和24之间形成。(应当注意,APT区26和沟道区28可以按任意顺序形成。)沟道区28和APT区26被形成,使得沟道区28位于衬底12的上表面和APT区26之间,并且APT区26位于沟道区28和被隔离P型阱20之间。(应当注意,APT区26也可以称作高掺杂区26。)用于形成APT区26的掺杂物被选择,使得它不会显著地扩散到沟道区28中。箭头31说明掺杂物均匀地施加到衬底12上。APT区26和沟道区28两者的布植方向基本上垂直于衬底12。也就是,方向离垂直不大于大约10度。还应当注意,APT区26的掺杂物浓度大于被隔离P型阱20的掺杂物浓度。
在一种实施方案中,APT区26和沟道区28被形成,使得沟道区28的掺杂物浓度小于APT区26的掺杂物浓度。在一种实施方案中,APT区26和沟道区28使用P型掺杂物,例如硼或铟来形成。在该实施方案中,沟道区28的掺杂物浓度可以比APT区26的掺杂物浓度低10~50倍。因此,APT区26可以用大约30~50千电子伏特(keV)的能量和大约1×1012/cm2~1×1014/cm2的剂量来布植,并且沟道区28可以用大约5~30keV的能量和大约1×1011/cm2~1×1013/cm2的剂量来布植。应当注意,在一种实施方案中,不同的P型掺杂物可以用于沟道区28和APT区26,例如硼用于沟道区28并且铟用于APT区26。可选地,相同的P型掺杂物可以用于两个区。
在所说明的实施方案中,半导体衬底12是容积衬底。在该实施方案中,衬底12是包含半导体的衬底,并且可以包括硅、砷化镓、硅锗等,或者它们的任意组合。可选地,衬底12可以是绝缘体上外延硅(SOI)衬底(没有显示),具有底半导体层、在底半导体层上方的埋入绝缘层,以及顶半导体层。在该实施方案中应当注意,包围N型阱14和18以及隔离N型阱16是不必需的。也就是,被隔离P型阱20相当于SOI衬底的顶半导体层。在该实施方案中,埋入绝缘层可以是氧化硅层,并且顶和底半导体层可以由硅、锗、砷化镓等制成。
图2说明在去除掩膜层30以及在隔离阱22和24之间在沟道区28上形成SONOS栅叠层32之后的半导体器件10,其中SONOS栅叠层32包括在沟道区28上形成的第一氧化物40、在第一氧化物40上形成的氮化物38、在氮化物38上形成的第二氧化物36,以及在第二氧化物36上形成的栅34。(应当注意,第一氧化物40、氮化物38,以及第二氧化物36可以称作氧化物-氮化物-氧化物结构。)掩膜层30可以使用常规工艺来去除。在形成栅叠层32时,第一氧化物层分别使用化学汽相沉积(CVD)或热氧化工艺在半导体衬底12上沉积或生长。可选地,第一氧化物层可以通过物理汽相沉积(PVD)、原子层沉积(ALD)、热氧化等,或上述方法的组合来形成。然后,氮化物层沉积在第一氧化物层上。氮化物层可以通过CVD、PVD、ALD等,或它们的组合来形成。第二氧化物层分别使用化学汽相沉积(CVD)或热氧化工艺在氮化物层上沉积。可选地,第二氧化物层可以通过物理汽相沉积(PVD)、原子层沉积(ALD)、热氧化等,或上述方法的组合来形成。栅层通过CVD、PVD、ALD等,或它们的组合沉积在所形成的第二氧化物层上。然后使用常规的掩膜和刻蚀工艺,第一氧化物层、氮化物层、第二氧化物层,以及栅层可以被形成图案并刻蚀,以形成最后得到的栅叠层32。(应当注意,在可选实施方案中,叠层的每个层可以单独形成图案并刻蚀,以形成最后得到的栅叠层32。)在一种实施方案中,最后得到的栅叠层32(同样地,在栅叠层32下方的沟道区28的一部分)具有大约0.35微米~0.06微米的长度。
栅叠层32的栅34可以是任何导电材料,例如多晶硅或包含金属的材料,并且可以称作控制栅。第一氧化物40和第二氧化物36可以是任何电介质,例如绝缘材料或绝缘材料的叠层,例如氧化硅、氮氧化合物、金属氧化物、氮化物等,或它们的任意组合。氮化物38可以是氮化硅、氮氧化合物、或者已知具有电荷陷阱使得电荷可以存储于其中的任何其他材料。因此,第一氧化物40和第二氧化物36也可以分别称作第一和第二绝缘层或分别地底和顶电介质,并且氮化物38可以称作电荷存储层、存储元件或电介质。
虽然栅叠层32说明为SONOS叠层,在可选实施方案中,栅叠层32可以是任何类型的NVM栅叠层。例如,栅叠层32可以用浮动栅叠层(没有显示)来代替,其具有在隔离沟22和24之间在沟道区28上形成的隧道电介质、在隧道电介质上形成的浮动栅、在浮动栅上形成的控制电介质,以及在控制电介质上形成的控制栅。在形成浮动栅叠层时,隧道电介质层通过CVD、PVD、ALD、热氧化等,或它们的组合在半导体衬底12上面形成。隧道电介质层可以是任何绝缘材料,例如氧化物(例如二氧化硅)、氮化物、氮氧化合物、金属氧化物等。然后隧道电介质层使用常规工艺来形成图案并刻蚀,以在沟道区28上面形成浮动栅叠层的隧道电介质(其中隧道电介质位于与图2中说明的栅叠层32的氧化物40相似的位置)。
然后,浮动栅层通过CVD、PVD、ALD等,或它们的组合在半导体衬底12和隧道电介质上形成。在一种实施方案中,浮动栅层可以是任何导电材料,例如多晶硅、金属等。在另一种实施方案中,浮动栅层可以是许多纳米晶体(即分立存储单元),例如在纳米晶体NVM器件中。然后,浮动栅层使用常规工艺来形成图案并刻蚀,以在隧道电介质上面形成浮动栅叠层的浮动栅。
然后,控制电介质层通过CVD、PVD、ALD、热氧化等,或它们的组合在半导体衬底12和浮动栅上形成。然后,控制电介质层使用常规工艺来形成图案并刻蚀,以在浮动栅上面形成浮动栅叠层的控制电介质。应当注意,控制电介质是任选的,并不是在所有浮动栅器件中都形成。如果存在,控制电介质层可以是任何绝缘材料,例如氧化物(例如二氧化硅)、氮化物、金属氧化物、高介电常数材料(即具有大于大约4并小于大约15的介电常数的材料)等,或它们的组合。然后,控制栅层通过CVD、PVD、ALD等,或它们的组合在半导体衬底12和控制电介质上形成。控制栅层可以是任何导电材料,例如多晶硅或包含金属的材料。使用常规的掩膜和刻蚀工艺,控制栅层被形成图案并刻蚀,以在控制电介质上面形成浮动栅叠层的控制栅。(应当注意,在可选实施方案中,不是分别形成图案并刻蚀浮动叠层的每个层,层的组合或所有层可以使用相同图案和刻蚀工艺来形成图案并刻蚀,以便减小形成最后得到的浮动栅叠层所需的工艺步骤。)现在参考图3,形成图案的掩膜层42使用常规的掩膜工艺来形成。应当注意,掩膜层42可以是任何类型的掩膜层,例如光刻胶或硬掩膜。形成图案的掩膜层42(也称作布植掩膜)掩蔽半导体器件10的源侧(位于栅叠层32的第一侧,源区随后将在那里形成),同时暴露半导体器件10的漏侧(位于栅叠层32的与第一侧相对的第二侧,漏区随后将在那里形成)。如图3中所说明的,倾角布植44用来形成晕轮区46,其在栅叠层32下方延伸从栅叠层32的第一边开始测量的距离47。在一种实施方案中,距离47至多大约500埃。倾角布植44具有相应的布植角θ,其中θ是从垂直向开始计算的。在一种实施方案中,θ大约为20~60度,更优选地大约30~40度。因此,布植44的角度足以增加在栅叠层32下方区域45处晕轮区46中的掺杂物浓度,使得它大于沟道区28的掺杂物浓度。在一种实施方案中,晕轮区46使用P型掺杂物,例如硼或铟,以大约10~50keV的能量并具有大约1×1012/cm2~1×1014/cm2的剂量来布植。(应当注意,可选地晕轮区46可以称作倾角晕轮46或者高或重掺杂区46。并且,晕轮区46的掺杂物浓度一般大于被隔离P型阱20的掺杂物浓度。)图4说明在去除掩膜层42以及形成侧壁隔离物48和50、源和漏延伸区51和53,以及源和漏区52和54之后的半导体器件10。掩膜层42可以使用常规工艺步骤来去除。在去除掩膜层42之后,源延伸区51和漏延伸区53使用常规的掩膜和布植工艺来形成。应当注意,延伸区51和53延伸到沟道区28中,并且每个都在栅叠层32的一部分的下方。在一种实施方案中,N型掺杂物,例如砷、磷或锑以大约30~70keV的能量并具有大约1×1014/cm2~1×1015/cm2的剂量来布植,以形成延伸区51和53。漏延伸区53被形成,使得它不会延伸超过晕轮区46。应当注意,在形成漏延伸区53之后,导致从沟道区28到漏延伸区53的递增的掺杂物梯度。虽然没有晕轮区46时从沟道区28到漏延伸区53存在递增的掺杂物梯度,晕轮区46的存在进一步增加该掺杂物梯度。并且,晕轮区46的存在允许沟道区28中相对低的掺杂物浓度。
在形成延伸区51和53之后,隔离物48和50使用常规工艺步骤沿着栅叠层32的侧壁形成。这些隔离物,例如可以包括任何绝缘材料,例如氧化物或氮化物。可选地,隔离物48和50可以不存在。如果隔离物48和50不存在,那么源和漏区52和54可以不形成,使得延伸区51和53分别用作源和漏区。但是,随着隔离物48和50的存在,源和漏区可以使用另外的布植步骤来形成。在一种实施方案中,N型掺杂物,例如砷、磷或锑以大约10~30keV的能量并具有大约1×1015/cm2~5×1016/cm2的剂量来布植,以形成源区52和漏区54。应当注意,漏和源区52和54不在隔离沟22和24下方延伸。还应当注意,APT 26的深度被选择,使得它不在源和漏区52和54的深度下方延伸。虽然没有显示,更多的常规工艺可以用来完成半导体器件10。例如,触点可以在源区52、栅34、漏区54,以及被隔离P型阱20上形成。并且,其他半导体器件级可以在半导体器件10的下方或上方形成。
如图4中所示,Vw 60对应于施加到被隔离P型阱20的电压,Vs62对应于施加到源区52的电压,Vg 64对应于施加到栅34的电压,并且Vd 66对应于施加到漏区54的电压。在所说明的实施方案中,半导体器件10可以用作NVM存储器(没有显示)内的NVM存储单元。如这里所使用的,高Vt状态对应于存储单元的编程状态,而低Vt状态对应于存储单元的擦除状态。(但是应当注意,在可选实施方案中编程和擦除状态可以反过来。)半导体器件10通过从氮化物38中移走电子,导致半导体器件10具有低Vt(例如低于大约2伏特)来擦除。许多已知的方法可以用来使半导体器件10置于低Vt状态,例如Fowler-Nordheim隧道、热空穴注入、直接隧穿等。
半导体器件10通过将电子存储于氮化物38中,导致半导体器件10具有高Vt(例如高于大约4伏特)来编程。因此,半导体器件10可以通过施加漏电压(Vd)和源电压(Vs),其中Vd比Vs高大约3~5伏特来编程。例如,在一种实施方案中,可以使用1伏特的Vs和4伏特的Vd。在该实施方案中,施加大约5~10伏特的栅电压(Vg)和大约0~-3伏特的阱电压(Vw)。在施加有上述电压的半导体器件10的编程过程中,热载流子在漏耗尽区中产生,其中一些通过氧化物40注入到氮化物38中。这导致增加半导体器件10的Vt。应当注意,由晕轮区46和漏延伸区53产生的掺杂物梯度增强该热载流子注入,从而保持半导体器件10的高效热载流子编程。该效率被保持,即使沟道区28具有相对低的掺杂物浓度(大约1×1016/cm3~1×1017/cm3)。此外,沟道区28的相对低的掺杂物浓度减小半导体器件10的自然Vt从而改善读干扰,这将在下面描述。
半导体器件10的自然Vt指的是在将任何电荷置入氮化物38之前的阈电压。对于较高的自然Vt,读干扰被退化。(应当注意,如这里所使用的,读干扰描述当低Vt存储单元被不断读取时阈电压(Vt)的逐渐增加,即读周期过程中的阈电压漂移。)因此,当自然Vt增加时,离存储单元失败的时间减少。也就是,当自然Vt增加时,对存储单元的较少次数的读取由于从低Vt到高Vt的漂移而导致引失败。因此,通过降低自然Vt,低Vt状态的读干扰被改善(即阈电压漂移减小)。例如,参考回图4,半导体器件10的读取可以通过施加比Vs高大约0.5~1.5伏特的Vd来执行。例如,在一种实施方案中,Vs可以是0伏特并且Vd可以是1伏特。在该实施方案中,足以在沟道区28中产生大约10~30微安培的电流的Vg和Vw被施加。例如,在一种实施方案中,可以使用2伏特的Vg和0伏特的Vw。(应当注意,在该实例中提供的电压根据源电压(Vs)来给出。也就是,在该实例中,如果Vs增加1伏特,那么Vd、Vg和Vw也增加1伏特。)在读取或访问已擦除半导体器件10的过程中(即半导体器件10处于低Vt状态),反型层在沟道区28中形成,并且耗尽区(没有显示)在漏区54和漏延伸区53的周围形成。该耗尽区基本上掩蔽在晕轮区46中形成的掺杂物梯度,从而防止晕轮区46的较高掺杂物增加半导体器件10的Vt。这样,Vt保持在低Vt状态,从而通过减小Vt漂移而改善读干扰。
因为如上所述栅叠层32的长度大约0.35~0.06微米,短沟道泄漏可能在半导体器件10的编程过程中发生。但是,高掺杂APT区26也用来减小该短沟道泄漏,从而减小功率损耗和提高编程效率。
图5~8说明本发明的可选实施方案,其中不是使用相同导电型的掺杂物来形成沟道区28和APT区26,而是使用不同导电型的掺杂物的两个布植步骤可以用来形成沟道区86和APT区74。也就是,在该可选实施方案中,沟道区28和APT区26可以分别用沟道区86和APT区74来代替,它们以与上述沟道区28和APT区26类似的方式工作,以允许半导体器件的高效热载流子注入编程并同时减小读干扰。并且,如将在下面描述的,在该可选实施方案中,晕轮区46可以不存在。(应当注意,在下面图5~8的描述中,与在图1~4的描述中使用的参考数字相同的参考数字指示相似或类似的元素。)图5说明包括具有隔离沟22和24、包围N型阱14和18、在隔离沟22和24之间的隔离N型阱16,以及形成图案的掩膜层30的半导体衬底12的半导体器件10。应当注意,隔离沟22和24、包围N型阱14和18、隔离N型阱16,以及掩膜层30的形成与上面参考图1所描述的相同,因此将不在这里参考图5再次描述。在形成隔离沟22和24、包围N型阱14和18、形成图案的掩膜层30、隔离N型阱16,以及被隔离P型阱20之后(其中在上面参考图1提供的相同的描述、材料和可选方案在这里参考图5而应用),APT区74在被隔离P型阱20中在隔离沟22和24之间形成。(应当注意,APT区74也可以称作高掺杂区74)。
箭头72说明掺杂物均匀地施加到衬底12上。APT区74的布植的方向基本上垂直于衬底12。也就是,方向离垂直不大于大约10度。在一种实施方案中,APT区74使用P型掺杂物,例如硼或铟来形成。例如,APT区74可以用大约30~50keV和大约1×1012/cm2~1×1014/cm2的剂量来布植。还应当注意,APT区74和被隔离P型阱20的掺杂物具有相同的导电型,并且APT区74的掺杂物浓度大于被隔离P型阱20的掺杂物浓度。例如,在一种实施方案中,APT区74的掺杂物浓度比被隔离P型阱20的掺杂物浓度高大约2~100倍。例如,APT区74掺杂物浓度可以是大约5×1017cm-3~5×1018cm-3,并且被隔离P型阱20的掺杂物浓度可以是大约5×1016cm-3~5×1017cm-3。
图6说明在去除形成图案的掩膜层30和形成第一氧化物层80、氮化物层82,以及第二氧化物层84之后的半导体器件70。应当注意,掩膜层可以如上面参考图2所描述而去除。在所说明的实施方案中,第一氧化物层80分别使用化学汽相沉积(CVD)或热氧化工艺在半导体衬底12上沉积或生长。可选地,第一氧化物层可以通过物理汽相沉积(PVD)、原子层沉积(ALD)、热氧化等,或上述方法的组合来形成。然后,氮化物层82沉积在第一氧化物层80上。氮化物层82可以通过CVD、PVD、ALD等,或它们的组合来形成。然后,第二氧化物层84分别使用化学汽相沉积(CVD)或热氧化工艺在氮化物层82上沉积。可选地,第二氧化物层84可以通过物理汽相沉积(PVD)、原子层沉积(ALD)、热氧化等,或上述方法的组合来形成。
在形成第二氧化物层84之后,形成图案的掩膜层76用来定义在隔离沟22和24之间的开口。应当注意,形成图案的掩膜层76可以是任何类型的掩膜层,例如光刻胶层、硬掩膜等。在形成图案的掩膜层76形成之后,沟道区86在被隔离P型阱20中形成。在一种实施方案中,沟道区86使用N型掺杂物,例如砷、磷或锑来形成。该N型掺杂物可以用大约5~70keV的能量和大约1×1011/cm2~5×1013/cm2的剂量来布植。在所说明的实施方案中,N型掺杂物抵消APT区74的已有P型掺杂物的一部分,以形成沟道区86。结果,沟道区86具有第一导电型(例如在该实施方案中为N型)并位于衬底12的上表面和APT区74之间,并且APT区74具有第二导电型(例如在该实施方案中为P型)并位于沟道区86和被隔离阱20之间。应当注意,为了使N型掺杂物适当地抵消APT区74的一部分,沟道区86中的N型掺杂物浓度应当高于APT区74中的P型掺杂物浓度。
在形成沟道区86之后,沟道区86的净掺杂浓度在一种实施方案中大约为0~5×1018cm-3。这里所使用的净掺杂浓度指的是一种导电型的掺杂物与另一种导电型的掺杂物之间的绝对差。例如,为沟道区86提供的净掺杂浓度指的是APT区74的P型掺杂物和沟道区86的N型掺杂物之差的绝对值。在本发明的一种实施方案中,沟道区86中P型掺杂物的浓度减去沟道区86中N型掺杂物的浓度小于或等于被隔离P型阱20中的净掺杂浓度。应当注意,沟道区86中P型掺杂物的浓度减去沟道区86中N型掺杂物的浓度可以提供负数,并具有大于被隔离P型阱20中的净掺杂浓度的绝对值。在本发明的另一种实施方案中,沟道区86中P型掺杂物的浓度减去沟道区86中N型掺杂物的浓度可以提供负数,并具有小于被隔离P型阱20中的净掺杂浓度的绝对值。在可选实施方案中,可以在APT区下方的区域中具有非均匀阱掺杂,使得APT掺杂浓度小于阱浓度的最大值。
应当注意,如图6中所示,沟道区86在形成第一氧化物层80、氮化物层82,以及第二氧化物层84之后形成。但是,在可选实施方案中,沟道区86可以在形成这些层之前形成。也就是,在形成参考图5描述的APT区74之后,随后的布植步骤可以用于使用相同的形成图案的掩膜层30来形成沟道区86。因此,在该实施方案中,形成图案的掩膜层76将不需要。
图7说明在形成栅叠层32之后的半导体器件70。在氮化物层82上形成第二氧化物层84之后,形成图案的掩膜层76被移走(例如,使用常规工艺)。然后,栅层通过CVD、PVD、ALD等,或它们的组合沉积在所形成的第二氧化物层84上。然后使用常规的掩膜和刻蚀工艺,第一氧化物80、氮化物层82、第二氧化物层84,以及栅层可以被形成图案并刻蚀,以形成最后得到的栅叠层32。也就是,第一氧化物层80的刻蚀导致第一氧化物40,氮化物层82的刻蚀导致氮化物38,第二氧化物层84的刻蚀导致第二氧化物36,并且栅层的刻蚀导致栅34。(应当注意,在可选实施方案中,叠层的每个层可以单独形成图案并刻蚀,以形成最后得到的栅叠层32。例如,氧化物层80和84以及氮化物层82可以在形成沟道区86之前被形成图案并刻蚀。)在一种实施方案中,最后得到的栅叠层32(同样地,栅叠层32下方的沟道区86的一部分)具有大约0.35微米~0.06微米的长度。(应当注意,上面参考第一氧化物40、氮化物36、第二氧化物36,以及栅34而提供的描述,包括材料和可选方案也适用与图7的栅叠层32。)虽然栅叠层32以图7中的SONOS叠层说明,在可选实施方案中,栅叠层32可以是任何类型的NVM栅叠层,如上面参考图3所描述的。因此,上面为栅叠层32提供的所有描述也适用于该实施方案。也就是,上面参考图3的栅叠层32描述的所有形成方法、材料,以及可选方案在这里再次应用于栅叠层32。例如,栅叠层32可以用上面所描述的浮动栅叠层(没有显示)来代替。但是应当注意,如果栅叠层32用浮动栅叠层代替的话,浮动栅可能太厚而不允许用于形成沟道区86的布植的适当穿透。因此,在使用浮动栅叠层的实施方案中,沟道区86可以在形成APT区74之后和形成浮动栅叠层的任何部分之前形成。
在一种实施方案中,在形成栅叠层32之后,晕轮区例如晕轮区46可以被隔离P型阱20中形成,如上面参考图3所描述的。也就是,在形成栅叠层32之后,形成图案的掩膜层42可以用来形成晕轮区46,如上面参考图3所描述的。在该实施方案中,晕轮区46(在图7和8中没有显示)将与沟道区86和APT区74(而不是沟道区28和APT区26)相邻。但是,参考图3为晕轮区46和倾角布植44而描述的相同的形成方法、材料,以及可选方案可以应用于具有沟道区86和APT区74代替沟道区28和APT区26的当前实施方案。应当注意,在图5~8的当前实施方案中,由于用来形成沟道区86和APT区74的反掺杂方法,晕轮区46可以是不需要的。
图8说明在去除掩膜层76、形成栅叠层32、形成晕轮区46,以及形成侧壁隔离物48和50、源和漏延伸区51和53,以及源和漏区52和54之后的半导体器件70。应当注意,上面为晕轮区46、侧壁隔离物48和50、源和漏延伸区51和53,以及源和漏区52和54提供的相同描述在这里参考图8而应用。也就是,参考图4而描述的相同的形成方法、材料,以及可选方案应用于图8。还应当注意,在图8中晕轮区46被显示,因此图8的半导体器件70类似于图4的半导体器件10,除了图4的沟道区28和APT区26用沟道区86和APT区74来代替之外,使得晕轮区46与沟道区86和APT区74相邻。但是应当注意,在可选实施方案中,晕轮区46可以不存在。在该可选实施方案中,沟道区86和APT区74将与漏延伸区53和漏区54相邻。
如图8中所示(类似于图4),Vw 60对应于施加到被隔离P型阱20的电压,Vs 62对应于施加到源区52的电压,Vg 64对应于施加到栅34的电压,并且Vd 66对应于施加到漏区54的电压。在所说明的实施方案中,半导体器件70可以用作NVM存储器(没有显示)中的NVM存储单元。如这里所使用的,高Vt状态对应于存储单元的编程状态,而低Vt状态对应于存储单元的擦除状态。(但是应当注意,在可选实施方案中,编程和擦除状态可以反过来。)半导体器件70的编程和擦除操作与上面参考图4的半导体器件10所描述的相同。例如,在使用上面参考半导体器件10的编程而描述的电压的半导体器件70的编程过程中,热载流子在漏耗尽区中产生,其中一些通过氧化物40注入到氮化物38中。这导致增加半导体器件70的Vt。应当注意,如果晕轮区46存在,那么由晕轮区46和漏延伸区53形成的掺杂物梯度增强该热载流子注入,从而保持半导体器件70的高效热载流子编程。该效率被保持,即使沟道区86相对于APT区74被反掺杂。此外,沟道区86的反掺杂减小半导体器件70的Vt,从而改善读干扰,如将在下面描述的。
半导体器件70的自然Vt指的是把任何电荷置入氮化物38之前的阈电压。如同半导体器件10的情况一样,对于半导体器件70的较高的自然Vt,读干扰被退化。因此,通过减小自然Vt,低Vt状态的读干扰可以改善(即阈电压漂移减小)。较低的自然Vt减小读干扰的一种方法是通过允许低Vt状态的较低Vt。为了在半导体器件70的读取过程中形成反型层,施加超过低Vt状态的Vt预先确定量的栅偏压(Vg)(典型地称作栅过压)是必要的。低Vt状态的减小的Vt(通过沟道区86的反掺杂来获得),允许在读操作过程中绝对栅偏压(Vg)减小,同时保持恒定的栅过压。减小的绝对栅偏压(Vg)将减小跨越栅叠层32的电场,从而导致减小的读干扰。
如果低Vt状态的减小的Vt太低(由于沟道区86的反掺杂),源漏漏电流可能在包含半导体器件70的存储阵列中未选择的器件中发生。未选择的器件是存储阵列中并不打算在半导体器件70的读操作过程中读取的那些器件。如在本领域中众所周知的,反向的阱源偏压增加低Vt状态的Vt。因此,源漏漏电流可以通过在半导体器件70的读操作过程中施加反向的阱源偏压到存储阵列中未选择的器件上来防止。反向的阱源偏压应当足以减小由低Vt状态的低Vt引起的源漏漏电流。例如,参考回图8,半导体器件70的读取可以通过施加比Vs高大约0.5~1.5伏特的Vd来执行。例如,在一种实施方案中,Vs可以是0伏特并且Vd可以是1伏特。在该实施方案中,足以在沟道区28中产生大约10~30微安培电流的Vg和Vw被施加。例如,在一种实施方案中,大约1~2伏特的Vg和大约0~-3伏特的Vw可以使用。应当注意,在该实例中提供的电压根据源电压(Vs)给出。也就是,在该实例中,如果Vs增加1伏特,Vd、Vg和Vw也增加1伏特。
在读取或访问具有晕轮区46的已擦除半导体器件70(即处于低Vt状态的半导体器件70)的过程中,反型层在沟道区86中形成,并且耗尽区(没有显示)在漏区54和漏延伸区53周围形成。该耗尽区基本上掩蔽在晕轮区46中形成的掺杂物梯度,从而防止晕轮区46的较高掺杂物增加半导体70的Vt。这样,Vt保持处于低Vt状态,从而通过减小Vt漂移而改善读干扰。并且,因为如上所述栅叠层32的长度大约为0.35~0.06微米,短沟道漏电可能在半导体器件70的编程过程中发生。但是,高掺杂APT区74也起到减小该短沟道漏电的作用,从而减小功率损耗并提高编程效率。
虽然本发明已关于具体导电型而描述,本领域技术人员应当认识到,导电型可以反转。例如,源和漏以及延伸区可以是p型或n型,取决于被隔离阱的极性,以便形成p型或n型半导体器件。因此,被隔离阱20可能是N型阱而不是P型阱,并且源和漏区52和54以及延伸区51和53可以是P型。并且,在可选实施方案中,其他材料和工艺步骤可以用来形成半导体器件10;上面所描述的那些仅作为例子提供。
在前述说明书中,本发明关于具体实施方案而描述。但是,本领域技术人员应当认识到,可以不背离在下面的权利要求书中陈述的本发明的范围而做各种修改和改变。因此,说明书和附图应当认为是说明性的而不是限制性的,并且所有这些修改打算包含在本发明的范围内。
好处、其他优点,以及问题的解决方案已在上面关于具体实施方案而描述。但是,该好处、优点、问题的解决方案,以及可能导致好处、优点或解决方案出现或变得更明显的任何元素不解释为任何或全部权利要求的苛刻、必需或关键特征或元素。如这里所使用的,术语“包括”、“包含”或任何其他变型打算覆盖非排他的结论,使得包括一系列元素的过程、方法、产品或装置不仅包括那些元素,而且可以包括没有明确列出的或这些过程、方法、产品或装置所固有的其他元素。
权利要求
1.一种半导体器件(10),包括半导体衬底(12);均匀地布植于半导体衬底中在半导体衬底的表面下方第一预先确定距离的具有第一导电型的第一高掺杂层(26);在半导体衬底上形成的第一绝缘层(40);在第一绝缘层上形成的电荷存储层(38);在电荷存储层上形成的第二绝缘层(36);布植于衬底的第一预先确定区中的具有第二导电型的源(52,51);布植于衬底的第二预先确定区中的具有第二导电型的漏(54,53);以及仅布植于第一绝缘层的漏侧并贯穿漏而且在第一绝缘层的下方离第一绝缘层的边缘第二预先确定距离的具有第一导电型的第二高掺杂层(46)。
2.根据权利要求1的半导体器件,其中直接在第一绝缘层下方并在第一高掺杂层上方的衬底具有比第一高掺杂层的掺杂物浓度低的掺杂物浓度。
3.一种用于形成半导体器件的方法,包括步骤提供半导体衬底(12);将具有第一导电型的第一高掺杂层(26)布植到半导体衬底中离半导体衬底的表面下方第一预先确定距离;在半导体衬底上形成第一绝缘层(40);在第一绝缘层上形成电荷存储层(38);在电荷存储层上形成第二绝缘层(36);将具有第二导电型的源(52,51)布植到衬底的第一预先确定区中;将具有第二导电型的漏(54,53)布植到衬底的第二预先确定区中;以及将具有第一导电型的第二高掺杂层(46)仅布植到第一绝缘层的漏侧并贯穿漏而且在第一绝缘层的下方离第一绝缘层的边缘第二预先确定距离。
4.根据权利要求3的方法,其中第二高掺杂区以所确定的角度布植,以增加第二预先确定距离内的掺杂物梯度并保持沟道区中相对低的掺杂物浓度。
5.一种半导体器件(10),包括半导体衬底(12);均匀地布植于半导体衬底中在半导体衬底的表面下方第一预先确定距离的具有第一导电型的高掺杂层(26);在半导体衬底上形成的氧化物-氮化物-氧化物结构(40,38,36);在氧化物-氮化物-氧化物结构上形成的栅电极(34);布植于衬底的第一预先确定区中的具有第二导电型的源(52,51);布植于衬底的第二预先确定区中的具有第二导电型的漏(54,53);以及仅布植于氧化物-氮化物-氧化物结构的漏侧并贯穿漏而且在氧化物-氮化物-氧化物结构下方离氧化物-氮化物-氧化物结构的边缘第二预先确定距离的具有第一导电型的倾角晕轮区(46)。
6.一种在半导体衬底(12)中在第一导电型的阱(20)中形成非易失性存储器件(70)的方法,包括从阱的表面到第一深度用第一导电型的掺杂物布植阱的第一区(74);从阱的表面到第二深度用第二导电型的掺杂物布植第一区中的第二区(86),其中第一深度大于第二深度;在第二区上形成存储元件(38);在存储元件上形成控制栅(34);在第一和第二区中形成在侧面与控制栅相邻的第三区(52,51)和第四区(54,53),其中第三和第四区具有第二导电型。
7.一种存储器件(70),包括半导体衬底(12);衬底中的第一导电型的阱(20);在阱中从阱的表面延伸到第一深度并具有第一导电型的第一掺杂物浓度和第二导电型的第二掺杂物浓度的沟道区(86);在阱中在第一深度下方从第一深度延伸到第二深度的具有第一导电型的APT区(74);在沟道区上的存储元件(38);在存储元件上的控制栅(34);以及在阱中在侧面与控制栅相邻的第三区(52,51)和第四区(54,53),其中第三和第四区具有第二导电型。
8.根据权利要求7的存储器件,其中阱具有比第一浓度减去第二浓度大的净掺杂浓度。
9.一种存储器件(70),包括具有第一导电型的阱的半导体衬底(12);在阱的表面处具有第一导电型的第一掺杂物浓度和第二导电型的第二掺杂物浓度的沟道区(86);在阱中在沟道区下方的具有第一导电型的APT区(74);在沟道区上的存储元件(38);在存储元件上的控制栅(34);在阱中与沟道的第一侧相邻的源区(52,51),源区具有第二导电型;在阱中与沟道的第二侧相邻的漏区(54,53),漏区具有第二导电型;以及在阱中布置在漏区和APT区之间的重掺杂区(46),重掺杂区具有第一导电型。
10.一种在半导体衬底(12)中在第一导电型的阱(20)中形成非易失性存储器件(70)的方法,其中阱被隔离区(22,24)限定,包括将第一导电型的掺杂物布植到阱中的至少第一深度,以形成APT区(74);将第二导电型的掺杂物布植在阱的表面处,以在APT区上方在沟道区(86)中形成沟道;在沟道区(86)上形成存储元件(38);在存储元件上形成控制栅(34)并与在控制栅的第一侧和控制栅的第二侧的隔离区相隔离;在控制栅的第一侧和隔离区之间的区域中提供布植掩膜(42);以离垂直向20~60度的角度通过在控制栅的第二侧与隔离区之间的区域布植第一导电型的掺杂物到阱的表面,同时布植掩膜存在于控制栅的第一侧和隔离区之间;以及在控制栅的第一侧和漏区之间形成源(52,51)以及在控制栅的第二侧和隔离区之间形成漏区。
全文摘要
在根据本发明的一种实施方案中,一种半导体器件(10)具有均匀布植于半导体衬底(20)中的具有第一导电型的高掺杂层(26),其中沟道区(28)位于衬底(20)的上表面和高掺杂层(26)之间。在可选实施方案中,一种半导体器件(70)具有反掺杂沟道(86)和在沟道下方的防击穿区(74)。栅叠层(32)在衬底(20)上形成。具有第二导电型的源(52)和漏(54,53)布植于衬底中。最后得到的非易失性存储单元提供低的自然阈电压,以使读周期过程中的阈电压漂移达到最小。另外,具有第二导电型并以某个角度在漏侧布植的晕轮区(46)可以用来协助允许较高编程速度的热载流子注入。
文档编号H01L21/336GK1689165SQ03824003
公开日2005年10月26日 申请日期2003年9月23日 优先权日2002年10月9日
发明者高利尚卡尔·钦达劳雷, 保罗·A·英格尔索尔, 克莱格·T·斯维夫特, 亚历山大·B·豪伊夫勒 申请人:飞思卡尔半导体公司