双金属镶嵌沟深度监控系统的利记博彩app

文档序号:7116787阅读:363来源:国知局
专利名称:双金属镶嵌沟深度监控系统的利记博彩app
技术领域
本发明大体上关于在半导体基板上形成双金属镶嵌结构的方法。祥言之,本发明关于在绝缘材料的单层上有效地形成双金属镶嵌结构,而不需要沟道蚀刻终止层。
背景技术
现有的半导体装置一般包括半导体基板和形成于其上的多层电介质和导体层。集成电路包含许多的微电子组件,譬如金属氧化半导体场效应晶体管(MOSFET)、多个包含了由互联机间隔所隔开的导体线的导体图案、和多条譬如总线线、位线、字符线和逻辑互联机的互联机。此等由金属互联机材料所制成的互联机,通常就集成电路的尺寸(宽度)和多种功能特征而言,构成了限制因素。由于此种情况,因此需要有能够有效地提供具有小尺寸且能够达成高操作速率、改进信号对噪声比并改进可靠度的可靠的互联机结构。
使用双金属镶嵌过程,半导体组件通过数千个用于导体线和通孔的开口而图案化,该等导体线和通孔填满了譬如铝或铜的导电材料,并用来作为集成电路的主动和(或)被动组件的互联机。双金属镶嵌过程亦可用来形成于多层基板的绝缘层中的导体金属的多层信号线,在此多层基板上安装有半导体组件。
金属镶嵌(单金属镶嵌)是一种互联机制造过程,其中凹槽形成于绝缘结构上并填满了金属以形成导体线。双金属镶嵌过程为一种多层的互联机过程,其中除了形成单金属镶嵌的凹槽外,同时亦形成导体通孔开口。
于标准双金属镶嵌过程中,具有通孔开口的影像图案的第一屏蔽形成于绝缘结构上,而晶元于绝缘结构的上部分进行非等向性蚀刻(通孔蚀刻)。去除图案化光阻材料后,在具有对准于通孔开口的导电线的影像图案的绝缘结构上形成第二屏蔽。于非等向性蚀刻于绝缘材料的上半部用于导电线的该等开口,呈现于上半部的通孔开口系同时蚀刻于绝缘材料的下半部(沟道蚀刻)。于完成蚀刻后,将通孔和凹槽填满金属。此过程显示于第1图中。
于另一个标准双金属镶嵌过程中,第一屏蔽形成于具有通孔开口的影像图案的绝缘结构上,而该图案系非等向性蚀刻于绝缘结构中(通孔蚀刻)。于去除了图案化的光阻材料后,第二屏蔽形成于具有对准于通孔开口的导电线的影像图案的绝缘结构上,而该等导电线的图案系经非等向性蚀刻(沟道蚀刻)。于完成蚀刻后,将通孔和凹槽填满金属。此过程显示于第2图中。
双金属镶嵌过程为单金属镶嵌过程的改良,因为双金属镶嵌过程允许同时用金属充填导体凹槽和通孔,因此而省却了一些过程步骤。虽然标准双金属镶嵌过程较其它的形成互联机的过程具有优点,但是该标准双金属镶嵌过程仍有许多缺点。例如,透过绝缘结构而形成通孔和沟道的该绝缘结构,一般为包括了三层,即,由第一材料形成的相当厚的上层和下层绝缘层,夹着一层由第二材料形成的相当薄的中间绝缘层,其中该第一材料和该第二材料之间具有蚀刻选择性。相当薄的绝缘层已知为沟道蚀刻终止层。此表现的相当薄的绝缘层因此改进了正确及精确终止沟道蚀刻的能力,而使得沟道的深度可对应于所希望的深度。
使用多层的绝缘结构由于需要形成多层的精确厚度而使得过程复杂。然而,在缺乏沟道蚀刻终止层的情况下,施行沟道蚀刻会导致沟道太浅或太深的情形,并且造成晶元的剖面不均匀(譬如在接近晶元边缘区域的沟道太浅,而在晶元的中央区域的沟道太深)。再者,各晶元之间的沟道蚀刻性能并不相同。

发明内容
本发明通过省却了使用沟道蚀刻终止层的需求,而提供了改良的双金属镶嵌过程的系统和方法。就此而言,本使用双金属镶嵌过程的系统和方法系使用了制造简单的单层的绝缘结构。此系统和方法使用了监控系统能够于蚀刻沟道过程期间监控整个晶元的沟道蚀刻深度和轮廓,由此而使得操作者能够正确地终止沟道蚀刻过程。
于本发明的一个态样系关于一种双金属镶嵌过程的方法,包括于含有单层的电介质材料的绝缘结构中形成多个通孔开口,其中数组的通孔开口位于大致的直线上;并同时(i)于绝缘结构中形成多个沟道,各沟道沿着一群通孔开口大致形成的直线而定位,和(ii)使用散射仪系统监测沟道的形成,通过产生关联于形成沟道的标记(signature),与标记库中的标记相比较,以判定沟道深度而监控沟道的形成,并当达到所希望的沟道深度时,则终止形成该沟道。
本发明的另一个态样系关于在半导体基板中形成一种双金属镶嵌开口的方法,包括提供一半导体基板,在该半导体基板的上表面具有绝缘结构,该绝缘结构包含单层的电介质材料;在绝缘结构中形成至少一个通孔开口;并同时(i)于该绝缘结构中形成沟道,该沟道定位于该通孔开口上,该通孔开口和该沟道组构成双金属镶嵌开口,和(ii)使用散射仪系统来监测沟道的形成,通过将入射光的光束导向于绝缘结构,收集从该绝缘结构来的反射光,将反射光变换成关联于形成沟道的标记,将该标记与标记库中的标记相比较,以判定沟道深度,以及当达到所希望的沟道深度时,则终止形成该沟道。
于本发明的又另一个态样,系关于一种形成双金属镶嵌结构的方法,包括于含有单层的电介质材料的绝缘结构中形成多个通孔开口,其中数组的通孔开口位于大致的直线上;同时(i)使用沟道蚀刻控制器,于绝缘结构中形成多个沟道,各沟道沿着一群通孔开口大致形成的直线而定位,和(ii)使用散射仪系统,通过产生关联于形成沟道的标记,与标记库中的标记相比较,以判定沟道深度而监控沟道的形成,并若判定沟道深度不是在所希望的沟道深度的可接受的范围内时,则下指令该沟道蚀刻控制器继续形成该沟道,并选择性地调整沟道蚀刻处理组件;而若判定沟道深度是在所希望的沟道深度的可接受的范围内时,则下指令该沟道蚀刻控制器终止形成该沟道。


第1图显示依照本发明的一个态样的系统的上位概念示意图。
第2图显示依照本发明的一个态样的系统的示意方块图。
第3图显示依照本发明的一个态样的包括神经网络的系统的示意方块图。
第4图显示依照本发明的一个态样的使用于第3图的系统中的神经网络的上位概念示意图。
第5图显示依照本发明的一个态样的使用于双金属镶嵌过程的系统的示意,部分方块图。
第6图显示依照本发明的一个态样的经过双金属镶嵌过程的晶元的横剖面图。
第7图显示依照本发明的一个态样的经过双金属镶嵌过程的晶元的横剖面图。
第8图显示依照本发明的一个态样的经过双金属镶嵌过程的晶元的横剖面图。
第9图显示依照本发明的一个态样的例示神经网络的示意图。
第10图显示依照本发明的一个态样的例示散射仪系统的示意图。
第11图显示现有技术双金属镶嵌过程。
第12图显示现有技术双金属镶嵌过程。
第13至16图显示依照本发明的一个态样的双金属镶嵌过程。
第17至20图显示依照本发明的另一个态样的双金属镶嵌过程。
具体实施例方式
本发明包含当施行双金属镶嵌过程时,通过免除所需的于绝缘结构中使用沟道蚀刻终止层,而改善效能,该双金属镶嵌系透过该绝缘结构而形成。本发明包含于单层的电介质或绝缘材料形成双金属镶嵌开口(通孔和沟道)。也就是说,穿过绝缘结构而形成双金属镶嵌开口,该绝缘结构本质上系组成一层,并不包含多层。结果是,改良了双金属镶嵌过程的效果,因为不必再透过形成多层的电介质材料制成的绝缘结构,穿过该绝缘结构而形成双金属镶嵌开口。
兹参照第13至16图,显示了依照本发明的一个实施例的双金属镶嵌过程。特别是参照第13图,半导体基板500设有在其上表面上包含单层电介质或绝缘材料的绝缘结构502。此项基板不仅包括譬如半导体基板500的半导体基板,而且亦包括制造于该半导体基板上及于下文将讨论的过程点的任何的和所有的层和结构。半导体基板500可包括譬如主动组件和被动组件的一个或多个结构,该等结构包括有多晶硅闸极、字符线、源极区、汲极区、位线、基极、射极、集极、导体线、导体插塞、扩散区,等等。
电介质或绝缘材料包括硅酸盐的硅基底电介质材料、和低k值材料。硅基底电介质材料包括二氧化硅、氮化硅和氮氧化硅。硅酸盐包括掺杂氟的硅玻璃(FSG)、四乙脂原硅酸盐(tetraethylorthosilicate,TEOS)、硼磷酸四乙脂原硅酸盐(borophosphotetraethylorthosilicate,BPTEOS)、磷硅酸盐玻璃(phosphosilicate glass,PSG)、硼磷硅酸盐玻璃(borophosphosilicate glass,BPSG)、任何其它适合的旋压玻离。
低k值聚合物材料包括一种或多种的聚醯亚胺(polyimides)、氟化聚醯亚胺(fluorinated polyimides)、聚半倍硅氧烷(polysilsequioxane)、苯并环丁烯(benzocyclobutene,BCB)、聚(芳撑脂(arylene ester))、聚对亚苯基二甲基F(parylene F)、聚对亚苯基二甲基N、和无定形的四氟代聚乙烯(polytetrafluoroethylene)。商业上可购得的低k值材料的特定例子包括如下所列示的商品由AlliedSignal公司生产的FlareTM,相信系由全氟联苯(perfluorobiphenyl)和芳香双酚(aromatic bisphenols)衍生出;由Applied Material公司生产的Black DiamondTM;由Asahi Chemical公司生产的ALCAP-S;由Dow Chemical公司生产的SiLK和CycloteneBCB;由DuPont公司生产的Teflon四氟代聚乙烯;由DowCorning公司生产的XLK和3MS;由Hitachi Chemical公司生产的HSGRZ25;由Honeywell Electronic Materials公司生产的HOSPTM和NanoglassTM;由JSR Microelectronics公司生产的LKD;由Novellus公司生产的CORALTM和AF4;由Battelle PNNL公司生产的间隙孔石英;和由Schumacher公司生产的VeloxTMPAE-2。
于一个实施例中,绝缘结构502的厚度大约是2,000埃(∑)或更多,及大约30,000埃或更少。于另一个实施例中,绝缘结构502的厚度大约是50,000埃(∑)或更多,及大约20,000埃或更少。
在绝缘结构502的上表面上形成图案化的光阻504。图案化的光阻504具有开口506,该开口506暴露出绝缘结构一部分对应着其后的通孔开口。当整个结构经过蚀刻处理后,去除绝缘结构502的暴露部分。根据绝缘结构502的特性,选用特定的蚀刻剂和蚀刻条件。可以使用非等向性蚀刻或者等向性蚀刻,但是以使用非等向性蚀刻较佳。
兹参照第14图,经蚀刻的通孔512延伸穿过绝缘结构502。通孔512的宽度可以是大约0.25微米(μm)或更小、大约0.18μm或更小、大约0.15μm或更小、大约0.12μm或更小、和甚至大约0.1μm或更小。在绝缘结构502上形成另一图案化的光阻508,该图案化的光阻508包含对应于后来形成沟道的开口510。
兹参照第15图,在通过蚀刻同时形成沟道的时候,并用散射仪来监控沟道的形成。下文中将更完整说明散射仪的操作。散射仪监控器可以正确地检测沟道深度终点,而不需于绝缘结构502上设有沟道蚀刻终止层。基于此点,当到达所希望的沟道深度时(该深度依于绝缘结构502的厚度),散射仪监控器发信号给蚀刻过程以终止蚀刻。
根据绝缘结构502的特性,选用特定的蚀刻剂和蚀刻条件,可选用与蚀刻通孔512相同或不同的蚀刻剂,虽然条件可通过监控系统而予改变。可以使用非等向性蚀刻或者等向性蚀刻,但是以使用非等向性蚀刻较佳。沟道结合着先前形成的通孔,结构成双金属镶嵌开口514。双金属镶嵌开口514的沟道部分的宽度和深度可以个别地大约为0.35μm或更小、0.25μm或更小、大约0.18μm或更小、大约0.15μm或更小、大约0.12μm或更小、和甚至大约0.1μm或更小。
兹参照第16图,导电材料516沉积于双金属镶嵌开口514中。举例而言,导电材料可以沉积在整个结构上,接着进行化学机械研磨(CMP)来将结构平坦化。适当的导电材料包括铜、钨、金、银、铝、任何合金和(或)这些材料的组合。在沉积导电材料之前,可以选择性地形成障壁层(图中未显示)于双金属镶嵌开口514内。
兹参照第17图至第20图,显示依照本发明的一个实施例的双金属镶嵌过程。特别参照第17图,半导体基板500设有绝缘结构502,在该绝缘结构502的上表面上包含有单层的电介质或绝缘材料。电介质或绝缘材料包括硅酸盐的硅基底电介质材料,和低k值材料。于一个实施例中,绝缘结构502的厚度大约是2,000埃(∑)或更多,及大约30,000埃或更少。于另一个实施例中,绝缘结构502的厚度大约是50,000埃(∑)或更多,及大约20,000埃或更少。
在绝缘结构502的上表面上形成图案化的光阻504。图案化的光阻504具有开口506,该开口506暴露出绝缘结构一部分对应着其后的通孔开口。当整个结构经过蚀刻处理后,去除绝缘结构502的暴露部分。根据绝缘结构502的特性,选用特定的蚀刻剂和蚀刻条件。
兹参照第18图,蚀刻的通孔512部分地延伸于绝缘结构502之中。通孔512的宽度可以是大约0.25μm或更小。在绝缘结构502上形成另一图案化的光阻508,该图案化的光阻508包含对应于后来形成沟道的开口510。
兹参照第19图,在通过蚀刻同时形成沟道(并完全形成通孔)的时候,并用散射仪来监控沟道的形成。下文中将更完整说明散射仪的操作。散射仪监控器可以正确地检测沟道深度终点,而不需于绝缘结构502上(以及通孔终止点)设有沟道蚀刻终止层。基于此点,当到达所希望的沟道深度时(该深度依于绝缘结构502的厚度而定),散射仪监控器发信号给通知蚀刻过程以终止蚀刻。
根据绝缘结构502的特性,选用特定的蚀刻剂和蚀刻条件,可选用与蚀刻通孔512相同或不同的蚀刻剂,虽然条件可通过监控系统而予改变。沟道结合着通孔,组构成双金属镶嵌开口514。该双金属镶嵌开口514的沟道部分的宽度和深度可以个别地大约为0.35μm或更小。
兹参照第20图,导电材料516沉积于双金属镶嵌开口514中。举例而言,导电材料可以沉积在整个结构上,接着进行化学机械研磨(CMP)来将结构平坦化。适当的导电材料包括铜、钨、金、银、铝、任何合金和(或)这些材料的组合。在沉积导电材料之前,可以选择性地形成障壁层(图中未显示)于双金属镶嵌开口514内。
当受处理的晶元经过沟道蚀刻过程时,该受处理的晶元的监控有效地允许技术人员观察双金属镶嵌开口的表现和进展,以便能有效地最佳化进行的双金属镶嵌过程。当受处理的双金属镶嵌开口趋近于所需的深度、宽度和(或)希望的轮廓时,则可判定沟道蚀刻过程的终点,如此即不再需要于绝缘结构中使用沟道蚀刻终止层。
可通过散射仪系统而在某种程度上监控和最佳化双金属镶嵌过程。以下将很详细说明散射仪的观念和原理。兹参照第10图,依照本发明的一个态样,通过将光直接照射在晶元上并收集从该受处理的标的晶元反射回来的光,而产生散射度量资料。反射光对应于标的晶元的现在状态。也就是说,从晶元直接反射回来的光系与标的晶元的开口的深度和(或)轮廓有关。光检测装置收集反射光和(或)光资料,并将此信息发送到沟道监控系统。
沟道监控系统依照散射仪的技术和原理,通过分析从光检测器接收的光资料而监控双金属镶嵌过程。光资料可以转换或转译成散射度量资料。散射度量资料一般系由相对于入射光的反射光的分析,所产生的标记所组成。因此,所产生的标记对应于在双金属镶嵌过程期间于特定时间的标的晶元的现在状态。所产生的标记可与由任何数目的相关于已经过相似双金属镶嵌过程的晶元的已知标记所组成的数据库或标记库相比较。当发现相吻合时,则可通过沟道监控系统而判定标的晶元的状态(即,尺寸),并可将该状态反馈至双金属镶嵌过程/系统,以便使现有的和未来的晶元的沟道制成最佳化。晶元尺寸包括,例如,标的晶元的深度、宽度、和(或)轮廓,以及相关、受影响、或包含于双金属镶嵌过程中的其它尺寸。由于散射度量的非入侵性、非破坏性,因此散射度量资料可以于频繁的时距收集,于如此频繁的时距收集可方便对双金属镶嵌过程作一系列的分析。
散射度量资料亦可由控制器使用。控制器系操作地耦接至沟道监控系统。依照本发明的一个态样,控制器从沟道监控系统接收关于标的晶元的信息,和(或)相关资料。控制器使用此信息以控制蚀刻装置,该蚀刻装置包括一个或多个经由蚀刻驱动系统的双金属镶嵌处理组件。尤其是,该蚀刻驱动系统可用来转译和执行控制器的指导指令,以及用来处理由控制器所接收的为了执行此等指令的信息。或者,蚀刻驱动系统可将从控制器所接收的指导指令和(或)信息直接发送到一个或多个蚀刻处理组件。一个或多个蚀刻处理组件的例子,可包括用来施行沟道蚀刻过程的装置、机具、合成物、仪表或系统的至少其中之一,或者他们的组合。
本发明促使信息的控制反馈,以便有效造成于双金属镶嵌过程的一个或多个改变。举例而言,依照本发明的一态样,反馈到蚀刻驱动系统的信息,可发送信号给该蚀刻驱动系统以使沟道蚀刻过程继续或使该沟道蚀刻过程终止。终止可采用立即终止或于预定时间后终止。依照本发明的另一态样,可依照处理的标的晶元的判定的状态,而发信号至该蚀刻驱动系统,以调整一个或多个沟道蚀刻处理组件。为了能达成判定终点,此等对于沟道蚀刻处理组件的调整或修改是必要的。可以加入经整治的神经网络或类似装置,如第3至4图如第9图中所示,将于后文中详细说明,以有助于对双金属镶嵌过程作此等的最佳化修改。举例而言,经训练的神经网络可加入至系统以监控双金属镶嵌过程,并程序化以关联和(或)估算于施行本发明的过程中所产生和判定的双金属镶嵌过程参数、测量值、和其它的资料。
应了解到,本发明的各种态样可使用关联于促使非限制的最佳化,和(或)相关于双金属镶嵌过程的最小错误成本的技术。因此,于本发明中可使用非线性训练系统/方法论(例如,向后传递(back propagation)、贝叶斯估计(Bayesian)、模糊集(fuzzy sets)、非线性回归(non-linearregression)、或其它的神经网络模型,包括各专家的混合、小脑模式运算计算机(CMACS)、径向基础函数、直接搜寻网络和函数链路网络)。
兹参照初始的第1图,上位概念示意图显示一个系统20用于监督双金属镶嵌过程。系统20包括晶元30,其中晶元30将要接受,或正接受双金属镶嵌/沟道蚀刻过程。系统20亦包括可操作地耦接到沟道蚀刻室/装置(图中未显示)的双金属镶嵌过程监控系统40。沟道蚀刻室/装置施行沟道蚀刻过程,并包括一个或多个的蚀刻处理组件。
双金属镶嵌监控系统40可以是独立的装置,和(或)亦可以分布于二个或多个协作的装置和(或)过程之间。双金属镶嵌监控系统40可以设在一个譬如计算机或处理器的物理或逻辑装置中,和(或)可分布于二个或多个物理和(或)逻辑装置之间。双金属镶嵌监控系统40可包括一个或多个位于处理室内的组件,和(或)一个或多个不位于处理室内的组件。依于所希望的应用,蚀刻处理组件50可使用于通孔和(或)沟道蚀刻处理。
双金属镶嵌监控系统40可操作地耦接至一个或多个蚀刻处理组件50。该一个或多个蚀刻处理组件50与双金属镶嵌监控系统40协同工作。由说明的方式,该一个或多个蚀刻处理组件50接收和执行从该双金属镶嵌监控系统40来的指导指令。双金属镶嵌监控系统40通过产生和分析相关于例如晶元30的一个或多个尺寸的资料,尤其是在晶元30中沟道的形成,而规划指导指令。
通过将入射光60指向于晶元30,并收集从晶元30来的反射光和(或)折射光70,双金属镶嵌监控系统40产生此资料。可由许多不同的光源,譬如频率稳定的激光来提供入射光60。双金属镶嵌监控系统40可将入射光60导向实质的所有的晶元30,或晶元30的预先选定区域。举例而言,双金属镶嵌监控系统40可将入射光60导向于标的晶元30的选定的区域,俾使得这些区域提供资料足够产生散射度量标记。由双金属镶嵌监控系统40收集反射光70,并用散射度量技术分析以便产生标记。所产生的标记有助于用来判定一个或多个晶元尺寸,和(或)一个或多个关联于标的晶元30的沟道蚀刻过程参数90。
晶元尺寸包括但不限于标的晶元30的厚度和轮廓。沟道蚀刻过程参数90(图中未显示)包括但不限于蚀刻剂成分91、电介质材料92的本性、蚀刻剂流率93、温度95、压力97、和蚀刻率96(统称为沟道蚀刻过程参数90)。
双金属镶嵌过程监控系统40包括散射度量系统,用来分析由收集反射光70所产生的散射度量资料。散射仪分析可包括将一个或多个产生的标记与包含于标记库80中的一个或多个已知的标记作比较。此等标记的产生可由结合反射光70测量值以产生与反射光70图案相关联的标记。
当进行双金属镶嵌过程时,可于整个双金属镶嵌过程中连续地或于频繁的时距产生关联于晶元30(或经过沟道蚀刻过程的层)的标记。举例而言,于时间T1从晶元30反射的光产生标记S1,该标记S1对应于沟道深度H1和(或)晶元轮廓P1。同样地,于时间T3从晶元30反射的光产生标记S3,该标记S3对应于沟道深度H3和(或)晶元轮廓P3。分析该标记序列能有助于判定该晶元30或沟道是否均匀地蚀刻,和(或)是否晶元30例如是以所希望的速度、宽度、压力和(或)深度蚀刻。
能由此序列分析而产生反馈信息,以维持、增加或减少一个或多个沟道蚀刻处理组件,以便于修改进行的沟道蚀刻过程。举例而言,相关于序列分析的信息能反馈至蚀刻处理组件50,其中一个或多个组件50可修改或最佳化以造成进行的双沟道蚀刻过程中一个或多个改变。如此的修改可包括改变蚀刻剂成分、蚀刻率和(或)压力,以便于判定和(或)达成对于该沟道蚀刻过程适当的终点。
双金属镶嵌过程监控系统可操作地耦接至标记库80。该标记库80可储存各种形式的资料,譬如,但不限于,一个或多个列表、数组、表、数据库、连结的列表和数据块(data cube)。标记库80可位于一个或多个实体装置,譬如,磁盘驱动器、磁带机、和(或)内存单元。
可使用关联于反射光70和(或)储存于标记库80的已知标记的分析,包括序列分析,以控制一个或多个蚀刻处理组件50。应了解到,可使用蚀刻处理组件50而依于所希望的应用,以任何方式形成晶元表面内的通孔或沟道。
兹参照第2图,显示用来监控双金属镶嵌过程和使用散射仪来判定沟道蚀刻的终点的系统100。依照本发明的一个态样,系统100具有控制反馈的能力,以执行对于未来晶元的于双金属镶嵌过程中一个或多个改变。依照另一个态样,系统100为具有控制反馈能力的闭回路系统,以促使对于现有沟道形成于其上的晶元或未来的晶元的双金属镶嵌过程的最佳化。
系统100包括将要进行或正在进行双金属镶嵌过程的晶元110(绝缘层115和基板113)。系统100亦包括双金属镶嵌监控系统150、控制器160和沟道蚀刻驱动系统170,该等装置或系统150、160和170协同操作以便于控制蚀刻装置171,和有助于判定沟道蚀刻过程中的终点。祥言之,双金属镶嵌监控系统150操作地耦接至控制器160,该控制器160管理沟道蚀刻驱动系统170。沟道蚀刻驱动系统170选择性地控制蚀刻装置171。蚀刻装置171施行沟道蚀刻过程并包括一个或多个蚀刻处理组件,譬如,蚀刻剂供应器173。
沟道蚀刻驱动系统170接收从控制器160来的信息和(或)指导指令。该信息(或)和指导指令系由控制器160根据从双金属镶嵌监控系统150传送来,由该双金属镶嵌监控系统150所搜集的资料所作的分析。控制器160可包括处理器(图中未显示),该处理器用来决定将要传输到沟道蚀刻驱动系统170的信息的内容和型式。例如,双金属镶嵌监控系统150聚集反射光资料,并使用散射仪技术或方法对资料执行分析。然后将分析的数据传输到控制器160。控制器160通过判定将要传输到沟道蚀刻驱动系统170的信息的内容和型式,而处理该分析的资料。因此,控制器160和(或)沟道蚀刻驱动系统170可选择性地调节或控制连接到或关联于沟道蚀刻驱动系统170的该蚀刻装置171。
再者,监控系统150、控制器160和驱动系统170之间的协同相互作用,可促使沟道蚀刻过程而不须在绝缘结构中使用沟道蚀刻终止层。最后,可减缓沟道深度误差,并达成增进半导体制造效率。
兹仍参照第2图,现将更详细说明关联于系统100的组件。双金属镶嵌监控系统150可操作地连接至一个或多个目标光源185,和一个或多个光检测器187。目标光源185将光投射到将要或正接受到双金属镶嵌/沟道蚀刻过程的晶元110。光可以是譬如激光的一条或多条光束;然而,可以使用适合施行本发明的其它型式的光。光可投射在晶元110的整个表面,或在晶元110表面的选定区域。从晶元110反射的光由一个或多个光检测器187所收集。应了解到光亦可从晶元110表面折射。
双金属镶嵌监控系统150分析使用散射度量系统155所收集的光资料,并产生标记。收集光的分析包含依照散射度量原理判定至少一个相关于标的晶元110的尺寸。例如,可测得绝缘层115的深度、宽度、和(或)轮廓(以及其上的开口),并与所希望的深度、宽度,和(或)希望的轮廓相比较。相关于入射光而测量反射光,以便获得相关于标的绝缘层115的各种尺寸。
应了解到可以使用任何适当的散射度量系统155,以施行本发明。再者,预期此等系统将落于本发明的申请专利范围内。
系统100亦包括光源180,该光源180透过或经由双金属镶嵌监控系统150而将光供应至目标光源185。光源180可以是频率稳定的激光;然而,应了解到可以使用适当实施本发明的任何的激光或其它光源。其它的例子包括激光二极管或氦氖气体激光。
亦可由控制器160进一步分析控制的光资料。控制器160可操作地耦接到沟道蚀刻驱动系统170。因此,沟道蚀刻驱动系统170至少一部分由控制器160所调节。沟道蚀刻驱动系统170至少一部分依照从控制器160所接收的信息,选择性地控制蚀刻装置171,和一个或多个沟道蚀刻处理组件。控制器160可判定沟道蚀刻处理的进行,以及绝缘层115的最新现在状态。
依照本发明的一个态样,控制器160能处理测量的深度Hm以判定对于现在的沟道蚀刻过程的适当的终点。举例而言,测量的深度可与储存的标记作比较。各储存的标记可包括一组的沟道蚀刻过程参数,当执行该组参数时,有助于判定终止或终点。当发现相吻合时,可由控制器160分析该组的沟道蚀刻过程参数,并由沟道蚀刻驱动系统170所执行以达成对于现在的沟道蚀刻过程的适当终点。控制器160可依于现在的沟道蚀刻过程参数,而传送所有的或部分的该组沟道蚀刻过程参数至沟道蚀刻驱动系统170。因此,控制器160经由沟道蚀刻驱动系统170选择性地调节一个或多个沟道蚀刻处理组件,以便判定持续进行中双金属镶嵌过程的终止点。
如上所述,控制器160可包括处理器(图中未显示)。此种处理器或中央处理单元,可以是任何多个处理器之一,譬如AMD K7、AMDAthlonTM、AMD DuronTM、和其它相似的和(或)兼容的处理单元。控制器160/处理器可程序化以控制和操作在系统100内的多种组件,以便施行其中所述的各种功能。
控制器160亦可操作地耦接到内存190。内存190用来储存信息,譬如由控制器160所执行的程序代码,用来施行系统100其中所述的操作功能。以说明方式,内存190能保持参数或标记或其它的数据,该数据可与观察(测量)的资料作比较。内存190亦用作为用来暂时储存沟道蚀刻处理参数和测量的晶元和(或)层尺寸,譬如沟道蚀刻处理进行值、沟道蚀刻处理进行表、组件协调表、晶元和(或)层形状和大小、散射度量信息、达成的晶元和(或)层尺寸、所希望的晶元和(或)层尺寸、以及其它的可用来帮助本发明实施的资料的储存媒体。
系统100由电源供应器195而提供电源。此种电源供应器195可以是任何施行本发明所需的适当的电源供应器,譬如是电池和(或)线电源。
兹参照第3图,显示相似于系统100的双金属镶嵌监控、最佳化和终点判定系统105。描绘于第2图中的双金属镶嵌监控和终点判定系统100亦可包括经训练的神经网络(TNN)200,用来检测和诊断关联于收集的光数据和产生的标记的一个或多个沟道蚀刻处理参数90内的问题。当沟道蚀刻处理参数90存在于光资料经检测和收集时,TNN 200能通过估算参数90而决定对于一个或多个沟道蚀刻处理参数90须作的调整。第4图中显示TNN 200的操作。
从第4图中可看出,TNN 200可接收从双金属镶嵌监控系统150来的输入资料,譬如,例如,沟道蚀刻处理参数90和(或)对应产生的标记。沟道蚀刻处理参数的例子包括蚀刻剂成分91的特性、绝缘材料92的特性、蚀刻剂流率93、温度95、压力97、和蚀刻速率96。TNN 200处理参数和(或)标记信息或资料,并输出一列表201,该列表201包括对该一个或多个沟道蚀刻处理参数90的一个或多个调整。然后列表201可以传输到控制器160用于执行。控制器160可转译列表信息成信息指令,然后可将这些指令发送到沟道蚀刻驱动系统170,如第2图中所描绘。或可取而代的或额外地,然后可将列表201发送到输出/显示装置202用于操作者估算。
TNN 200亦可作为检测参数调整施行错误(第4图中未显示)。也就是说,TNN 200可程序化以记住对于一个或多个沟道蚀刻处理参数作了调整的过去的列表201。因此,若TNN 200接收未反应于先前下指令要调整的输入资料(例如,沟道蚀刻处理参数90),则TNN 200输出对应于特定参数的错误信号。举例而言,于时间T5,TNN 200接收相关于产生的标记S5和对应的处理参数91、92、93、95和97的输入资料。依照所产生的标记S5和处理参数,TNN 200判定绝缘材料的特性和蚀刻剂流率93需要向下调整,该调整系特定于各参数。相关于这些调整的信息传输到控制器160,然后传输到沟道蚀刻驱动系统170用于有效地执行。然而,于时间T6,关联于蚀刻剂流率93的输入资料指示先前的调整为不适当地执行(亦即,增加的蚀刻剂流率93指示向上调整)。
产生的错误信号指示溶液流率,并经由错误的输出/显示装置202和其来源(例如,蚀刻剂流率)以警告系统105和(或)操作者。TNN 200亦可程序化以指示一个或多个沟道蚀刻过程参数90已从指定的调整产生偏差的范围。例如,溶液流率于时间T6较于时间T5的读取值增加1.5倍。因此,TNN 200具有可通过指定沟道蚀刻过程参数调整和进一步通过检测内部调整执行错误而促使沟道蚀刻过程最佳化的能力。
以下第5至8图详细说明关于双金属镶嵌监控和终点判定系统100。然而,应了解本发明构想亦可使用系统105。
兹参照第5图,显示使用系统100的一个态样。第5图显示用来监控双金属镶嵌过程的系统100,以便判定沟道蚀刻终点。如所示,晶元110(顶部绝缘层115和基板113)经过沟道蚀刻过程;然而,应了解到系统100可操作于任何将要接受如此过程的晶元结构。于晶元110的表面,依于所希望的施行方式,以某种方法和数量来应用蚀刻剂。定位蚀刻装置171组件,譬如例如蚀刻剂供应器173,以开始沟道蚀刻过程。于沟道蚀刻过程之前和(或)期间,可使用双金属镶嵌监控系统150。目标光源185投射一条或多条光束205到绝缘层115上(晶元110的顶表面)。依照散射度量技术,通过一个或多个光检测器187而检测反射光210,并由双金属镶嵌监控系统150所收集。
双金属镶嵌监控系统150分析所收集的光和(或)反射的资料,并产生使用散射度量技术的标记。收集的光和(或)反射资料的分析,可包含比较收集的光资料和储存光资料,以判定绝缘层115的状态(于投射光束205投射和从绝缘层115反射反射光210的时间)。判定绝缘层115的状态包括判定层尺寸,譬如对于绝缘层115的整个长度或对于绝缘层115的选择部分的沟道深度、沟道宽度、通孔深度、和绝缘层115的轮廓外形。所产生的标记和(或)相关的数据传送到控制器160,于该控制器160中将该标记和(或)数据处理成可用于沟道蚀刻驱动系统形式的信息和指导指令(第2图)。由控制器160所施行的处理亦可包含比较测量的沟道蚀刻过程参数,以得知沟道蚀刻过程参数以便判定现在沟道蚀刻过程的适当的终点。
于沟道蚀刻过程进行时双金属镶嵌监控系统150,将相关于绝缘层115的现在状态的直接、实时的测量和观察提供给控制器160。提供至控制器160和至沟道蚀刻驱动系统(第2图)的实时、直接测量,有助于超越在现有的终点检测系统和方法达成更精确判定沟道蚀刻过程终点。
第6至8图显示沟道蚀刻过程监控系统150使用于沟道蚀刻过程从处理开始时间(T0)之前的时间至处理结束的时间(TE)。于第6图中,入射光束205指向晶元110(即,层115)。可监控或测量晶元110的整个长度和(或)选择的部分,以便判定沟道蚀刻过程的进行和沟道蚀刻过程终点。入射光束205可以多条的光束于固定的角度同时投射到晶元110上,以便获得这些测量值。然后监控系统150收集从晶元110(绝缘层115)反射的反射光210。应了解到施行本发明时可以使用一条或多条的入射光束205,和可以收集一条或多条的反射光。
蚀刻前可以使用于T0时的测量值以确定晶元110的初始状态(例如,深度和轮廓)。亦可使用对应于晶元110的初始尺寸的测量值,以判定于沟道蚀刻过程期间已发生于某稍后时间(Tn)的蚀刻范围或程度。再者,比较于T0和Tn时的层的状态可有助于判定沟道蚀刻过程的终点。
于第7图中,使用沟道蚀刻监控系统150以监控沟道蚀刻过程213于进行中的晶元110,尤其是绝缘层115。蚀刻剂供应器173和其它的沟道蚀刻过程组件横移过绝缘层115以施加蚀刻剂。当沟道蚀刻过程组件横移过绝缘层115时,沟道蚀刻监控系统150连续投射光束205,收集反射光210,并分析所收集的光资料以便判定沟道蚀刻过程213的终点。祥言之,当进行沟道蚀刻过程213时,沟道蚀刻监控系统150能够累积相关于研磨层的实时信息,并可控制将该信息经由控制器160(第2图中)溃送回到沟道蚀刻监控系统(和沟道蚀刻过程组件)。于是,沟道蚀刻监控系统150可帮助判定沟道蚀刻过程的终点的精确度和控制度,而不须在绝缘层115上设有沟道蚀刻终止层。
第8图显示沟道蚀刻过程213(第7图)完成后的晶元110。从图中可以看出,该具有绝缘层215的晶元110,在其上具有双金属镶嵌开口。沟道蚀刻监控系统150可在完成沟道蚀刻过程213后,如上述般继续操作,以验证系统所判定的终点的正确性。
兹参照第9图,例示的神经网络200包括具有神经元220、222、224、225和226的输入层218,该等神经元分别对应于从沟道蚀刻监控系统150的传感器或检测装置(图中未显示)来的蚀刻剂成分特性、绝缘材料特性、蚀刻剂流率、压力、温度、和蚀刻速率。在神经网络200上设有一个或多个中间或隐藏层228,其中可设有任何数目的隐藏层神经元230。神经网络200可进一步包括具有多个对应于类别241的预定沟道蚀刻/过程参数分类值的输出神经元的输出层240。因此,举例来说,输出层240可包括分别对应于类值0、1、2、3和4的输出神经元242、244、246、248、和250,藉此神经网络200可输出调整列表201以指示至该一个或多个沟道蚀刻过程参数90所需调整值,以及指示至关联于神经网络200的监控系统(例如系统105)中调整执行错误的存在值和范围。
关于此点,可依据建立神经网络技艺方面已知的设计原理,而判定于隐藏层228中的神经元的数目、型式、和配置。举例来说,分别于输入和输出层218和240中神经元的数目,可依照关联于系统105的属性(例如压力、流率、蚀刻率等)的数目,和参数类别241的数目而选择。此外,可依照所给予的应用(例如,沟道蚀刻监控系统)或依照其它的设计考量,而决定层的数目、层的组件神经元的数目、对于不同层的神经元之间和在一层内的神经元之间连接的型式、在网络200内神经元接收输入和产生输出的方式、以及神经元之间的连接强度。
因此,本发明考量具有许多等级结构的神经元网络,包括第9图的范例网络200所示者,以及其它未显示者,譬如共振结构。此外,网络200的内层连接可包括完全连接、部分连接、前向馈送、双向传送、周期传送、和偏心(off-center)或偏围(off-surround)互连。而且,可依照各种不同的技术而训练范例神经网络200,包括但不限于反向传送、无监督学习、和加强学习,其中该学习可于线上实施或离线实施。例如,当类别之间的转变为连续的,和过程参数的类别之间的差异是些微时,对于为了调整执行错误检测目的而使用无监督学习是困难的,于该情况最好是使用监督学习,因为监督学习可有利地使用反向传送。关于此点,可通过充分的训练资料量,包含许多沟道蚀刻过程参数程度(例如,强度(severities))和监控系统的操作状况来执行类别器训练。再者,可依于本发明的需要,依照任何适当的训练法则或规则,而完成网络200的训练,该等法则或规则包括但不限于Hebb规则、Hopfield法则、Delta规则、Kohonen学习法则、和(或)等等。
第10图显示散色度量系统300的范例,该系统300收集反射光。用任何适当的已知方法将从激光305来的光聚焦形成光束310。譬如晶元315的一个样品,放置在任何适当已知结构的光束310和光检测器或光倍增器320的路径中。可使用不同的检测方法来判定散射功率。欲获得光栅间距,光检测器或光倍增器320可安装于任何适当已知设计的旋转台325上。可使用任何适当已知设计的微控制器330来处理检测器读出,包括但不限于不同绕射次序的角度位置,该绕射次序可引导计算绕射光栅间距。因此,可精确测量从样品315来的反射光。
散射度量是一种取出关于入射光照射于表面上的表面信息的技术。散射度量是一种使样品的几何构形与其散射效应联系的度量方法。散射度量系根据从光栅轮廓的光绕射反应的光栅轮廓的再结构。可取得有关性能的信息包括但不限于深度、宽度、腐蚀、轮廓、双金属镶嵌开口/沟道的厚度、和表现于表面上的的特征关键性的尺寸。可通过比较照射于表面的光的相位和(或)强度与由该入射光照射表面所复合的反射光和(或)绕射光合成的相位和(或)强度信号,而取出信息。根据光照射的表面的属性,反射和(或)绕射光的强度和(或)相位将改变。此等属性包括,但不限于,表面上的沟道、表面的平面性、表面上细微结构、表面中空隙、和表面上开口的深度。于本发明中,将检验反射和(或)绕射光的强度和(或)相位,当其与将进行蚀刻的晶元上所希望的关键尺寸有关时。
上述属性的不同的组合,于入射光的相位和(或)强度上有不同的效果,造成于反射和(或)绕射光的复合光中实质独特的强度/相位标记。因此,通过检验强度/相位标记的信号(标记或储存值)库,可判定有关表面的属性。可通过从不同表面反射和(或)折射的光,由于或至少是部分由于光照射表面的复合折射率,而产生此等实质独特的相位/强度标记。可通过检验表面的折射率(n)和消光系数(k),而计算复合折射率(N)。可通过下列方程式而说明一个此种复合折射率的计算N=n-jk,其中j是虚数。
可通过观察到的强度/相位标记和(或)由模造和仿真所产生的强度/相位标记和(或)诸标记,而建构标记库。由说明的方式,当暴露在已知强度、波长和相位的第一入射光下时,则晶元上的第一特征可产生第一相位/强度标记。同样地,当出现已知强度、波长和相位的第一入射光时,则晶元上的第二特征可产生第二相位/强度标记。例如,第一深度的沟道可产生第一标记,而第二深度的沟道可产生第二标记。观察的标记可与仿真和模造的标记相结合,以形成标记库。可用仿真和模造来产生标记,该用仿真和模造产生的标记可通过对比而与测量的相位/强度标记相匹配。于本发明的一个范例态样,仿真、模造和观察的标记系储存于标记库中,该标记库涵盖有三十万个相位/强度标记。因此,当由散射度量检测组件接收相位/强度标记时,相位/强度信号能够与例如信号库图形相匹配,以判定是否信号对应于储存的标记。
虽然本发明已关于某较佳实施例或诸实施例而作了显示和说明,但显然的对于其它熟习此技艺者而言,在阅读和了解本说明书和所附的图式后,将可对该等实施例作等效的替换和修饰。尤其关于由上述各组件(组合件、装置电路、等等)所实施的各种功能,用来描述此等组件的名称(包括任何对“机构(means)”的参考),除非有其它的指示,则意指将对应至施行所描述组件的特定功能的任何的组件(即,功能上的等效),即使非结构上相等于揭示的施行本发明的此处所显示的范例实施例的结构。此外,虽然本发明的特殊特征已就数个实施例中仅其中一个实施例而揭示,然当需要时,此特征可与其它实施例的一个或多个其它特征相结合,而具有任何所给定或特定应用的优点。
工业应用本发明大体上系应用于半导体过程的领域,尤其是应用于中央处理单元、非挥发性内存、和各种其它半导体装置的制造。
权利要求
1.一种双金属镶嵌过程方法,包括提供在其上表面上具有绝缘结构的半导体基板,该绝缘结构实质上由单层的电介质材料组成;于该绝缘结构上形成多个通孔开口,其中各群的通孔开口系实质地直线定位;同时,(i)于绝缘结构上形成多个沟道,各沟道沿着一群的通孔开口实质地直线定位,以及(ii)使用散射度量系统通过产生关联于形成沟道的一标记、将标记与标记库作比较以决定沟道深度、和当获得所希望的沟道深度时终止形成沟道,而监视该沟道的形成;以及用导体金属填满该沟道和通孔开口。
2.如权利要求1所述的方法,其中产生关联于形成该沟道的该标记包括将入射光束导射于该绝缘结构,收集从该绝缘结构来的反射光,以及将该反射光变换为标记。
3.如权利要求1所述的方法,其中关联于形成该沟道的该标记,当该标记出现于形成该等沟道之前、期间和之后,对应于关联于该绝缘结构的上表面的特定深度和轮廓。
4.如权利要求1所述的方法,其中用一分析系统来比较该标记与标记库,以决定沟道深度。
5.如权利要求1所述的方法,其中用一闭回路反馈控制系统依照该判定的沟道深度来终止该沟道的形成,包括经由该闭回路反馈控制系统将相关于沟道深度的信息供给至一沟道蚀刻控制器,其中该沟道蚀刻控制器连接到经训练的神经网络,促使该沟道的形成的终止。
6.如权利要求1所述的方法,其中该散射度量系统进一步比较该标记与标记库,以判定沟道轮廓,并当到达所希望的沟道轮廓时,终止形成该沟道。
7.如权利要求1所述的方法,其中用一分析系统比较该标记与标记库,以判定沟道深度和通孔深度。
8.如权利要求1所述的方法,其中该电介质材料包括选自由二氧化硅、氮化硅、氮氧化硅、掺杂氟的硅玻璃、四乙脂原硅酸盐、硼磷酸四乙脂原硅酸盐、磷硅酸盐玻璃、硼磷硅酸盐玻璃、聚醯亚胺、氟化聚醯亚胺、聚半倍硅氧烷、苯并环丁烯、聚(芳撑脂)、聚对亚苯基二甲基F、聚对亚苯基二甲基N、和无定形的四氟代聚乙烯所组成的群中的其中之一。
9.一种在半导体基板上形成双金属镶嵌开口的方法,包括提供在其上表面上具有绝缘结构的半导体基板,该绝缘结构实质上由单层的电介质材料组成;于该绝缘结构上形成至少一个通孔开口;以及同时,(i)于绝缘结构上形成一沟道,该沟道定位于该通孔开口上,该通孔开口和该沟道组构该双金属镶嵌开口,以及(ii)使用散射度量系统监视该沟道的形成,系通过将入射光束导射于该绝缘结构,收集从该绝缘结构来的反射光,将该反射光变换为关联于形成该沟道的标记,将该标记与标记库作比较以决定沟道深度,以及当获得所希望的沟道深度时终止形成该沟道。
10.一种形成双金属镶嵌结构的方法,包括提供在其上表面上具有绝缘结构的半导体基板,该绝缘结构实质上由单层的电介质材料组成;于该绝缘结构上形成多个通孔开口,其中各群的通孔开口系实质地定位成直线;同时,(i)使用沟道蚀刻控制器于绝缘结构上形成多个沟道,各沟道沿着一群的通孔开口实质地直线定位,以及(ii)使用散射度量系统通过产生关联于形成沟道的一标记、将标记与一标记库作比较以决定沟道深度,而监视该沟道的形成;以及若判定该沟道深度不在所希望的沟道深度范围内时,则指示该沟道蚀刻控制器继续形成该沟道并选择性地调整沟道蚀刻过程组件;若判定该沟道深度在所希望的沟道深度范围内时,则指示该沟道蚀刻控制器终止形成该沟道;以及用导体金属填满该沟道和通孔开口。
全文摘要
本发明揭示一种双金属镶嵌过程方法,包括于含有单层的电介质材料的绝缘结构中形成多个通孔开口;并同时(i)于绝缘结构中形成多个沟道,各沟道沿着一群通孔开口大致形成的直线而定位,和(ii)使用散射仪系统监控沟道的形成以判定沟道深度,以及当达到所希望的沟道深度时,则终止形成该沟道。
文档编号H01L21/3205GK1672255SQ03818256
公开日2005年9月21日 申请日期2003年7月3日 优先权日2002年8月5日
发明者R·苏伯拉玛尼安, C·F·莱昂斯 申请人:先进微装置公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1