专利名称:燃料重整设备的利记博彩app
技术领域:
本发明涉及从烃类燃料产生主要包含氢的重整气体的重整设备。
背景技术:
日本专利局2000年公布的JP 2000-191304公开一种在重整器的上游形成的用来启动烃类燃料重整设备的催化燃烧室。该催化燃烧室带有电加热器。当启动该重整设备时,首先通过该电加热器加热该催化燃烧室,在完成预热后,向催化燃烧室提供燃料和空气并开始催化燃烧。把燃烧气提供到重整器并且使重整器变热。
在加热重整器后,通过向催化燃烧室提供过量燃料产生燃料蒸气,并把产生的燃料蒸气提供到重整器以重整燃料。
从而该催化燃烧室具有加热重整器的加热器的功能以及向变热后的重整器提供燃料蒸气的蒸发器的功能。
发明内容
如果当催化燃烧室准备好充当蒸发器时重整器尚未达到可以开始重整反应的活化温度,从催化燃烧室提供到重整器的燃料蒸气不被重整。在这种情况下,燃料蒸气可能排放到大气中,或者由于重整器中燃料、蒸气的冷凝可能吸取重整器的热量。
为了防止这种故障并且为了缩短重整设备所需的启动时间,必须在蒸发器开始提供燃料蒸气之前无故障地激活重整器中的催化剂。
从而本发明的一个目的是缩短燃料重整设备的催化剂活化所需要的时间。本发明的另一个目的是实现燃料重整设备从加热操作到正常操作的平滑转换。
为了达到上面的目的,本发明提供一种通过重整烃类燃料和空气的混合物产生含有氢的重整气体的燃料重整设备。该燃料重整设备包括燃料混合室,把烃类燃料喷射到该燃料混合室中的燃料喷射器,对该燃料混合室提供空气并产生空气燃料混合物的第一配气阀,进一步对燃料混合室中的空气燃料混合物提供空气的第二配气阀,以及重整器,该重整器包括通过使从燃料混合室提供的空气燃料混合物历经重整反应而产生重整气体的重整催化剂,和使空气燃料混合物历经催化燃烧的氧化催化剂。
在下面的说明中阐述并在各附图中示出本发明的细节以及其它特征和优点。
图1是依据本发明的重整设备的示意图。
图2是一个流程图,说明依据本发明通过一个控制器执行的燃料重整设备的加热例程。
图3是一个时序图,说明由于该加热例程的执行向重整器提供的燃料量和空气量中的变化。
图4是说明该控制器执行的阀控制子例程的流程图。
图5是说明负载增加期间由该控制器执行的重整设备控制例程的流程图。
图6是说明停止期间由该控制器执行的重整设备控制例程的流程图。
图7是一个流程图,说明依据本发明的第二实施例,在负载增加期间由控制器执行的重整设备控制例程。
图8是一个流程图,说明依据本发明的第三实施例,在负载增加期间由控制器执行的重整设备控制例程。
图9是一个流程图,说明依据本发明的第四实施例,在停止期间由控制器执行的重整设备控制例程。
图10类似图1但示出本发明的第五实施例。
图11类似图1但示出本发明的第六实施例。
图12类似图1但示出本发明的第七实施例。
具体实施例方式
参照图1,在用于燃料电池发电设备的燃料重整设备的机箱20内按顺序设置燃料混合室24、电加热器4、重整器5、热交换器6、变换转换器7和优先氧化反应器(PROX反应器)。
燃料喷射器1安装到燃料混合室24中。燃料喷射器1从喷嘴1A把诸如汽油或甲醇的烃类燃料喷射到燃料混合室24中。
在燃料混合室24中设置对喷射的燃料供给空气的第一空气供应口2和第二空气供应口3。通过空气供应通道22和第一配气阀10从吹风机9向第一空气供应口2供给空气。第一配气阀10使剩余的空气流入空气供应通道21。当第一空气供应口2的空气供应流率增加时,第一配气阀10的开度越大。
来自空气供应通道21的空气经第二配气阀11提供到第二空气供应口3。当增加第二空气供应口3的空气供应流率时,第二配气阀10的开度越大。空气和来自燃料喷射器1的燃料喷雾相混合,从而在燃料混合室24中产生空气燃料混合物。第一空气供应口2的开度最好靠近燃料喷射器1的喷嘴1A,从而一旦从喷嘴1A喷射燃料马上雾化。还可用压缩机代替吹风机9。
当空气供应通道21把第二配气阀11中的部分空气分流到第二空气供应口3后,它和PROX反应器8连接。
通过第一流率传感器12检测对第一配气阀10的空气供应流率AFM1,并且通过第二流率传感器13检测对第二配气阀11的空气供应流率AFM2。
燃料混合室24中产生的燃料空气混合物通过电加热器4加热,并且在气态下送到重整器5。最好还使电加热器4的加热元件支持具有燃料重整作用的氧化催化剂。
重整器5包含重整催化剂以及氧化催化剂,或者包含具有组合的氧化催化剂功能的重整催化剂。已知对烃类燃料的重整应用下面三类重整反应。
具体地,它们是气化重整、部分氧化重整和自热重整(ATR)。
气化重整由下面的式(1)表示 式(1)的反应伴随着用下面的(2)和(3)示出的反应(2)(3)当重整环境处于高温时,主要进行式(1)的反应。相应地,重整气体中含有的氢和氧化碳的浓度增加。式(1)的反应是一种吸热反应,从而为了维持该反应必须供热。
当重整环境处于低温时,式(2)和(3)的反应比例增加,从而重整气体中氢和一氧化碳的浓度下降并且甲烷和水蒸汽的浓度增加。部分氧化重整用下面的式(4)表示 该反应是放热反应,并且可以通过调整燃料蒸气供给量和空气供给量来维持。
自热重整是在同一个反应地点进行的气化重整和部分氧化重整的组合,并且吸热反应和放热反应之间的热交换是平衡的。
尽管对该重整设备的重整器5应用部分氧化重整器,该重整器5可以为完成重整反应的任何类型。而且,在燃料浓度高于理想配比空气燃料比的富燃料空气比条件下,发生所有重整反应。
热交热器6位于重整器5的下游并利用重整气体的热来预加热吹风机9传送的空气。
位于热交热器6和PROX反应器8下游的变换转换器7是周知的用来去掉重整气体中含有的一氧化碳(CO)的部件。变换转换器7利用水把重整气体中的一氧化碳转换成二氧化碳(CO2),而PROX反应器8利用从第二配气阀11提供的空气中的氧把重整气体中的一氧化碳转换成二氧化碳(CO2)。
燃料喷射器1、第一配气阀10、第二配气阀11、吹风机9以及电加热器4的操作是由控制器30控制的。
尽管图1中只把燃料喷射器1示成是进行燃料喷射的部件,但是从未示出的燃料泵按恒定压力向燃料喷射器1提供燃料,并且燃料喷射器1根据来自控制器30的燃料喷射信号喷射燃料。通过利用脉宽调制信号控制喷嘴1A的阀打开时间周期或者通过调节喷嘴1A的开度来控制燃料喷射器1的喷射量。
控制器30包括一个配备有中央处理器(CPU)、只读存储器(ROM)、随机存取存储器(RAM)和输入/输出接口(I/O接口)的微计算机。控制器30还可以包括多个微计算机。
为了进行控制,该燃料重整设备包括检测电加热器4的温度的温度传感器31,检测重整器5的温度的温度传感器32,检测PROX反应器8的温度的温度传感器33,检测燃料电池发电设备的动力产生负载的负载传感器34,以及接通或断开燃料电池发电设备的主开关35。这些温度传感器31-35的检测温度分别作为信号输入到控制器30。
接着参照图2说明由控制器30进行的该燃料重建部件的加热例程。当接通主开关35时执行该例程。
首先在步骤S1,控制器30使电加热器4供能。
在接着的步骤S2中,由温度传感器31检测的电加热器4的温度和目标温度T0比较。目标温度T0是判定是否开始供给燃料的温度。在电加热器4的温度达到目标温度T0之前,控制器30不前进到随后的步骤。当电加热器4的温度达到目标温度T0时,控制器30在步骤S3读温度传感器32检测到的重整器5的温度并把它作为温度T1存储到内部RAM中。
在接着的步骤S4中,启动燃料喷射器1燃料的喷射以及吹风机9的操作以对燃料混合室24供给燃料和空气。
当第一次执行步骤S4时,把目标燃料喷射量和目标空气供应量分别设置在预定值。吹风机9一旦开始它的操作,就在执行后面会说明的步骤S17的处理之前持续它的运行。
当第二次或者以后再执行步骤S4时,增加目标燃料喷射量和目标空气供应量并且增加对燃料喷射器1的相应控制,分别对第一配气阀10和第二配气阀11施加预定增量。把第一配气阀10的配给比调节到使对重整器5供给的燃料空气混合物是过剩空气系数为2到5的贫空气燃料混合物。在第二次或者以后进行步骤S4的处理时,首先通过调节第一配气阀10的开度进行空气供应量的控制,并且在调节第一配气阀10的开度后空气供应量仍小于目标空气供应量时,再调节第二配气阀11的开度。
把贫空气燃料混合物提供到重整器5以便在重整器5中存在氧化催化剂的情况下进行空气燃料混合物的催化燃烧,从而提高重整器5中的重整催化剂的温度而且通过燃烧燃气体的热来加热热交换器6、变换转换器7和PROX反应器8。
在接着的步骤S5中,控制器30再一次读温度传感器32检测的重整器5的温度并把它作为温度T2存储在内部RAM中。
在接着的步骤S6中,温度T2和重整器5的加热目标温度Ts相比较。当温度T2已达到加热目标温度Ts时,控制器30进行步骤S13-S17的处理。当温度T2尚未达到该加热目标温度Ts时,控制器30进行步骤S7-S12的处理。加热目标温度Ts是在其上贫空气燃料混合物中发生部分氧化反应的温度,其通常为摄氏200到500度。
在步骤S7,温度T2和开始供给燃料之前存储在RAM中的温度T1比较。当温度T2低于温度T1时,在步骤S8中,控制器30用温度T2的值替代温度T1,并且从步骤S5重复处理。
这样,如果在步骤S7中温度T2上升到温度T1之上,控制器30在步骤S9停止对电加热器4的供能。步骤S5-S8的处理意味着在重整器5的温度于开始供给燃料后显示出升高之前继续对电加热器4的加热。另外,在步骤S7中,温度升高证实的确在重整器5中产生反应热。
现在,在于步骤S9中停止对电加热器4的供能后,控制器30在步骤S10比较温差T2-T1和预定温差ΔT0。该预定温差ΔT0是重整器5每单元时间内温升的目标值。当温差T2-T1超过该预定温差ΔT0时,重整器5的催化剂可能会因热冲击而损坏。
在这种情况下,在步骤S12中,控制器30减小要应用到步骤S4中的处理的目标燃料喷射量的增量以及目标空气供应量的增量。
在步骤S12的处理后,控制器30在步骤S11中用温度T2的值替代温度T1,并且从步骤S4重复处理。同样在步骤S10中,当温差T2-T1未超过预定温差ΔT0时,控制器30类似地在步骤S8用温度T2的值替代温度T1,并且从步骤S5重复处理。
通过重复步骤S4-S12的处理,当重整器5的温度T2在步骤S6达到加热目标温度Ts时,控制器30进行步骤S13-S17的处理。
在步骤S13,控制器30读由温度传感器33检测的PROX反应器8的温度T3并且把它存储到内部RAM中。
在接着的步骤S14中,控制器30比较温度T3和PROX反应器8的加热目标温度TSP。通常,PROX反应器8的加热目标温度TSP为摄氏80-200度。在温度T3达到PROX反应器8的加热目标温度TSP之前,控制器30不进入以后的步骤,而只是重复步骤S13的读取温度T3。这里,当PROX反应器8的温度T3达到加热目标温度TSP时,认为位于上游的变换转换器7也达到加热温度。
当在步骤S14中温度T3达到PROX反应器8的加热目标温度TSP时,控制器30在步骤S15中通过执行图4中示出的子例程来控制第一配气阀10和第二配气阀11的开度,从而第一空气供应口2的空气供应量是对应于其过剩空气系数λ为0.2到0.5的富空气燃料混合物的空气供应量,同时包含第二空气供应口3的空气供应量的对重整器5的总空气供应量保持在对应于其过剩空气系数λ为2到5的贫空气燃料混合物的空气供应量。
在步骤S16,通过使第二配气阀11对第二配气口3的配气比为零,中断从第二配气口3对重整器5的空气供应,从而重整器5中的燃料空气混合物从过剩空气系数λ为2到5的贫空气燃料混合物改变成过剩空气系数λ为0.2到0.5的富空气燃料混合物。
在最后的步骤S17中,控制器30分别把吹风机9的转速、第一配气阀10的开度以及第二配气阀11的开度控制到该重整设备的正常操作的各最佳值。在步骤S17的处理后,控制器30结束该例程。
接着,参照图4说明步骤S15中的由控制器30执行的阀控制子例程。
首先在步骤S101,控制器30读由第一流率传感器12检测的对第一空气供应阀10的空气供应流率AFM1。
在接着的步骤S102中,控制器30把该对第一空气供应阀10的空气供应流率AFM1作为初始值AFM0存储在该RAM中。
在下面的步骤S103中,控制器30读由第二流率传感器13检测的对第二空气供应阀10的空气供应流率AFM2。
在接着的步骤S104中,控制器30从AFM1减去AFM2以计算第一空气供应口2的空气供应流率。
在接着的步骤S105中,判定燃料喷射器1的燃料喷射量和第一空气供应口2的空气供应量之比是否对应于过剩空气系数λ为0.2到0.5的富空气燃料混合物。如前面提到那样,燃料喷射器1的燃料喷射量是通过来自控制器30的信号控制的。因此,控制器30已经知道燃料喷射器1的燃料喷射量。
当步骤S105的判定结果为肯定时,控制器30结束该子例程。
在执行该例程之前进行的图2的例程的步骤S4中,通过提高从第一配气阀10对燃料混合室24的配给比在重整器5中产生贫空气燃料混合物。从而,当步骤S105的判定结果为否定时,其意味着第一配气阀10的空气供应量是过量的。
在步骤S106,按一个步程增大第二配气阀11的开度。在步骤S107,按一个步程减小第一配气阀10的开度。作为步骤S106、S107的处理结果,第一空气供应口2的空气供应流率与第二空气供应口3的空气供应流率相应地减小。
在接着的步骤S108中,控制器30再次读第一流率传感器12检测到的对第一配气阀10的空气供应流率AFM1。
在随后的步骤S109中,控制器30比较对第一配气阀10的空气供应流率AFM1和RAM中存储的初始值AFM0。
当对第一配气阀10的空气供应流率AFM1超过该初始值AFM0时,即,当由于步骤S106、S107的处理结果而增加对第一配气阀10的空气供应流率AFM1时,控制器30再返回到步骤S107并且按一个步程减小第一配气阀10的开度。如果减小第一配气阀10的开度,即,减小对第一空气供应口2的配给比,则提高空气供应通道21的空气流率而且因此增加空气流阻,结果是减小对第一配气阀10的空气供应流率AFM1。
另外,如果加大第二配气阀11的开度,会减小第二配气阀11上游的空气供应通道21中的流阻,从而作为结果增大对第一配气阀10的空气供应流率AFM1。
当重复步骤S107-S109的处理并且在步骤S109中对第一配气阀10的空气供应流率AFM1达到初始值AFM0时,控制器30在步骤S110把AFM1与AFM0的差的绝对值与一预定变化ΔAFM进行比较。当AFM1与AFM0的差的绝对值小于该变化ΔAFM时,这表示对第一配气阀10的空气供应流率AFM1稳定在初始值AFM0附近。在这种情况下,控制器30重复步骤S104以及相随步骤的处理。另一方面,如果AFM1与AFM0的差的绝对值在步骤S110中不小于该变化ΔAFM,控制器30重复步骤S106-S110的处理,直至AFM1与AFM0的差的绝对值小于该变化ΔAFM。
换言之的情况,步骤S104-S110的处理在不改变对第一配气阀10的空气供应流率AFM1的情况下减小第一空气供应口2的空气供应流率并且加大第二空气供应口3的空气供应流率。
以这种方式,在步骤S105中,当第一空气供应口2的空气供应流率是对应于前面所述的过剩空气系数λ为0.2至0.5的富空气燃料混合物的流率时,控制器30结束该子例程。
于是,当启动该燃料重整设备时,贫空气燃料混合物首先通过电加热器4加热并且被提供到重整器5,从而重整器5的温度通过由于贫空气燃料混合物的氧化产生的热而升高。当重整器5的温度开始上升时,断开电加热器4,并且调节对重整器5的空气供应量从而重整器5的温度不会过快上升。当重整器5的温度达到加热目标温度Ts并且PROX反应器8的温度达到加热目标温度TSP时,立即把对重整器5供给的贫空气燃料混合物改变成原始的富空气燃料混合物以用于重整。
这样,利用重整器5中贫空气燃料混合物的氧化反应热可在短时间内激活催化剂,同时至少保持对加热器4的供能。在证实重整器5的催化剂温度和PROX反应器8的温度已达到各自的加热目标温度时,对重整器5提供用于重整的富空气燃料混合物。当提供这种富空气燃料混合物时,无故障地激活重整器5以及PROX反应器8中的催化剂,并且无延迟地转变成正常运行。
图3示出执行加热例程期间向重整器5供给的燃料空气混合物的组成的改变。首先,由于步骤S4的处理,从第一空气供应口2向燃料混合室24提供大量空气,并且当燃料喷射器1开始喷射燃料时,向重整器5供给贫空气燃料混合物。另外,从第二空气供应口3供给不充足的空气,从而该贫空气燃料混合物的过剩空气系数λ是在范围2-5中的目标值。
在步骤S5-S14的处理期间,保持贫空气燃料混合物的供应,并且继续重整器5、变换转换器7和PROX反应器8的加热。当在步骤S14确认完成PROX反应器8的加热时,在步骤S15把第一空气供应口2的空气供应量减小到正常重整操作中的供给量,并且通过加大第二空气供应口3的空气供应量向重整器5供给相同的贫空气燃料混合物。
然后,通过在步骤S16停止由第二空气供应口3的空气供应,实现至过剩空气系数λ为0.2-0.5的富空气燃料比的转变。接着,通过全都完成加热的重整器5、变换转换器7以及PROX反应器8进行正常重整操作。
步骤S15的处理相当于为燃料气体混合物的浓度从贫空气燃料混合物瞬刻改变成富空气燃料混合物做准备。作为步骤S15的处理的结果,当在步骤S16中断从第二空气供应口3对重整器5的空气供应时,燃料空气混合物的浓度立即从过剩空气系数λ为2到5的贫空气燃料混合物改变成过剩空气系数λ为0.2到0.5的富空气燃料混合物。
当向重整器5提供理想配比空气燃料比附近的燃料空气混合物时,反应温度达到超过摄氏2000度的极高温度,但是通过以这种方式立即从贫空气燃料混合物改变成富空气燃料混合物,可以避免因为理想配比空气燃料比附近的空气燃料混合物造成的催化剂载体或重整器5的催化剂损坏或分解。
从贫空气燃料比到富空气燃料比的改变仅仅是通过阀操作完成的,其中不必改变吹风机9的空气供应量。在普通转动式吹风机中,存在着操作响应延迟,但是由于仅仅通过阀操作使贫空气燃料混合物改变成富空气燃料混合物,所以即使把普通转动式吹风机用作为吹风机9,在空气燃料混合物的浓度的改变中也不存在响应延迟。
另外,在其它和空气燃料混合物改变远离的时间,如图3中所示那样,空气主要是从燃料喷射器1附近的第一空气供应口2提供的,从而可以利用从第一空气供应口2排出的空气的剪切力有效地实现在喷射后立即通行的燃料雾化。
接着参照图5说明在该燃料重整设备正常工作并且燃料电池发电设备的电力产生负载超过正常负载时,由控制器30执行的控制该燃料重整设备的例程。当控制器30检测出该燃料重建部件的正常操作期间的负载增加时执行该例程。
首先,控制器30在步骤S21计算负载增加量。在接着的步骤S22中,计算和该负载增加量对应的燃料增加量。
在接着的步骤S23中,控制器30计算为气化该燃料增加量所需的潜热量。
在接着的步骤S24中,对电加热器供能,从而产生和步骤S23中算出的潜热量等同的热量。在步骤S4的处理后,控制器30结束该例程。
提供到重整器5的空气在供给之前由热交换器6加热。尽管燃料喷射器1喷射的燃料通过从第一空气供应口2供给的高温空气气化,气化消耗的潜热量和燃料喷射量成比例。因此,当增加燃料喷射量时,由于来自第一空气供应口2的高温空气引起的热量将会是不足的,并且燃料的气化会变得困难。这样,当增加燃料喷射量时,通过电加热器4提供和该增加的潜热量相等的热量。尽管未在该流程图中示出,但是当电力产生负载降到正常负载时,控制器30停止对电加热器4的供能。
当根据电力产生负载增加燃料喷射量时,在该增加之后立即气化额外燃料所需的热量可能暂时超过从热交换器6得到的热量,但是由于上面这个例程,即使在这种情况下,该未能由电加热器4供给的热量被补偿,从而不存在向重整器5提供未气化燃料的风险,并且防止重整器5的性能上的暂时下降。
接着参照图6说明停止该燃料重整设备的工作时由控制器30执行的控制例程。当控制器30检测出主开关35已从接通变成断开时执行该例程。
在步骤S41,控制器30停止燃料喷射器1的燃料喷射。
在接着的步骤S42中,在按预定时间增加吹风机9的空气供应量后,控制器30停止吹风机9的工作。
由于执行该例程,当该燃料重整设备停止运行时,在包含重整器5的该设备里存在氧化环境,从而该设备内剩余的燃料完全氧化。于是,不可能向外部大气排放停机或重启动期间保留在该设备内的未燃烧燃料,而且废气成分总是保持在期望状态。
接着参照图7说明本发明的第二实施例。
该实施例和负载增加下进行的控制相关。控制器30执行替代第一实施例的图5例程的图7的例程。在该例程中,设置步骤S25-S27以替代图5例程的步骤S24。其它步骤的细节和图5例程的这些步骤相同。
在步骤S25中,控制器30计算通过重整器5中的催化燃烧产生和步骤S23中算出的潜热相等的热所需的附加燃料量。
在接着的步骤S26中,控制器30计算实现步骤S22中算出的燃料增加量以及步骤S25中算出的附加燃料量的催化燃烧的空气增加量。在下个步骤S27中,控制器30根据该算出的空气增加量确定吹风机9的转速以及第一配气阀10的开度,并且相应地操作吹风机9和第一配气阀10。此外,根据步骤S22中算出的燃料增加量以及步骤S25中算出的附加燃料量来加大燃料喷射器1的目标燃料喷射量。
在第一实施例中,通过电加热器4产生的热构成和所增加燃料的潜热量相等的热量,但在本实施例中,通过增加燃料供给量和空气供应量补偿热量不足。依据该方法,可以在不利用电加热器4的情况下借助热交换器6增加和燃料增加量相对应的空气加热量。
接着参照图8说明本发明的第三实施例。
该实施例和负载增加时的控制相关。控制器30执行替代第二实施例的图7的例程的图8的例程。在该例程中,在执行图7例程的步骤S26后进行步骤S28-S31的处理。其它步骤的处理和图7例程中相同。
在步骤S28中,根据前面步骤S21-S26中的燃料增加量和空气增加量来估计重整器5中的温度上升量。
在接着的步骤S29中,控制器30根据该重整器5中的估计温度以及步骤S21-S26中确定的燃料喷射量和空气供应量来计算一氧化碳的平衡产生量。
在接着的步骤S30中,控制器30计算去掉产生的一氧化碳所需的氧气量。在最后一个步骤S31中,控制器30调节吹风机9的转速以及第一配气阀10的开度,从而附加地提供步骤S26中计算的空气增加量以及步骤S30中计算的氧气量。此外,根据步骤S22中算出的燃料增加量和步骤S25中算出的附加燃料量来增大目标燃料喷射量。
重整气体中一氧化碳的允许浓度取决于燃料电池发电设备使用的燃料电池的电解薄膜的中毒退化限制值。在步骤S30中,计算所需的氧气量,从而重整气体中的一氧化碳浓度低于该中毒退化限制值。
依据该实施例,不仅热交换器6应对燃料喷射量增加的性能增强,而且可通过增加对PROX反应器8的空气供应量防止伴随燃料喷射量增加的一氧化碳生成的增加。从而,依据该实施例,即使增加电力产生负载,也可以把重整气体中的一氧化碳浓度保持在低于允许限制的期望范围内。
接着,参照图9说明本发明的第四实施例。
该实施例涉及结束该燃料重整设备的运行时的控制。当燃料电池发电设备停止工作时,控制器30进行替代第一实施例的图6例程的图9的例程。在该例程中,设置步骤S43以替代图6例程的步骤S42。
在该步骤S43中,控制器30使吹风机9的空气供应量为最大,并对电加热器4供能。在使这种状态持续预定时间后,停止吹风机9的工作并且停止对电加热器4的供能。
依据该实施例,通过电加热器4加热该设备内剩余的燃料,从而可以更大确定性氧化剩余燃料。
接着参照图10说明本发明的第五实施例。
该实施例涉及燃料电池发电设备的结构。该燃料电池发电设备包括由一组(14)燃料电池构成的燃料电池堆14,这些电池根据向阳极14A提供的氢和向阴极14B提供的氧之间的电化学反应产生动力。通过重整气体供给通道17向阳极14A提供该燃料重整设备产生的重整气体,并且从吹风机15向阴极14B提供空气。由于燃料电池堆14的电力产生,从阳极14A排出含有氢的阳极污物,并从阴极1 4B排出含有空气的阴极污物。这些污物在燃料室16中燃烧后排放到大气中。
在该实施例中,空气供应通道21连接到重整气体供给通道17,以代替如第一实施例情况中那样把它连接到PROX反应器8。
在燃料重整设备刚从加热操作转到重整操作后,重整反应是不稳定的,并且一氧化碳和未燃烧的烃类燃料可能流入重整气体供给通道17。结果是,重整燃料中的一氧化碳浓度可能超过允许限制。但是,依据本实施例,从空气供应通道21向重整气体供给通道17提供的空气稀释重整气体中的一氧化碳的浓度,从而防止阳极14A带有的催化剂的退化。
接着参照图11说明本发明的第六实施例。
该实施例涉及燃料电池发电设备的结构。在该实施例中,空气供应通道21连接到燃烧室16,以替代如第五实施例中那样把空气供应通道21连接到重整气体供给通道17。
在本实施例中,燃料重整设备刚刚从加热操作转到重整操作后产生的含有一氧化碳以及未燃烧烃类燃料的重整气体由从空气供应通道21提供的空气稀释,并且通过燃烧室16中的燃料在完全氧化的状态下排放到大气中。
在本实施例中,由于一氧化碳和未燃烧的烃类燃料暂时流入燃料电池堆14的阳极14A,必须用对一氧化碳和未燃烧烃类燃料具有高阻的材料构建阳极14A。
接着参照图12说明本说明的第七实施例。
该实施例涉及燃料重整设备的构造。
在从吹风机9到热交换器6的空气供应通道22的中间设置第三配气阀16并且设置从第三配气阀16分出来的旁路通道23。旁路通道23旁路热交换器6并且把空气供应通道22再接合在热交换器6和第一流率传感器12之间。该燃料重整设备的其余构造特征和第一实施例相同。
在正常操作期间,热交热器6加热从吹风机9送出的要提供给燃料重整设备的空气。另一方面,当停止工作时,第三配气阀16工作以把所有来自吹风机9的空气在不加热情况下经旁路通道23提供到该燃料重整设备。
结果是,燃料喷射器1由从第一空气供应口2供给的冷空气冷却。燃料喷射器1端部处的剩余燃料被该空气吹走并且在重整器5中经历重整和氧化之后被排放到大气中。从而可以防止当燃料重整设备停止操作或重新启动操作时废气成分的恶化。
2002年6月20日在日本申请的T0kugan 2002-180433的内容收录在此作为参考。
尽管上面通过本发明的一些实施例说明了本发明,本发明不受上面所说明的实施例的限制。根据上面的讲授本领域技术人员会想到对上面说明的实施例的各种修改和变型。
例如,第二到第四实施例的对负载增加或停止运行的处理可以和第五实施例或第六实施例结合。
依据本发明,燃料重整设备的加热时间得到缩短,从而当应用于车辆燃料电池发电设备的重整设备时本发明具有优先效果。
其中要求排它性财产权或特权的本发明实施例在附后权利要求书中定义。
权利要求
1.一种通过重整烃类燃料和空气的混合物来产生含有氢的重整气体的燃料重整设备,包括燃料混合室(24);把烃类燃料喷射到该燃料混合室(24)中的燃料喷射器(1);对该燃料混合室(24)提供空气并产生空气燃料混合物的第一配气阀(10);进一步对燃料混合室(24)中的空气燃料混合物提供空气的第二配气阀(11);以及重整器(5),该重整器包括通过使从燃料混合室(24)提供的空气燃料混合物经历重整反应来产生重整气体的重整催化剂,以及使空气燃料混合物经历催化燃烧的氧化催化剂。
2.如权利要求1所述的燃料重整设备,其中,该燃料重整设备还包括加热燃料空气混合物的加热器(4)以及控制器(30),该控制器用于在该燃料重整设备开始工作时控制加热器(4)对燃料空气混合物加热(S1),以及控制第一配气阀(10)对燃料混合室(24)的空气供应量以便把空气燃料混合物的过剩空气系数保持在预定的贫状态(S4)。
3.如权利要求2所述的燃料重整设备,其中,该燃料重整设备还包括检测该重整器(5)的温度的传感器(32),并且该控制器(30)还用于判定在向重整器(5)供给由加热器(4)加热的空气燃料混合物的状态下重整器(5)的温度是否在上升(S7),并且当重整器(5)的温度上升时控制加热器(4)停止对空气燃料混合物的加热(S9)。
4.如权利要求3所述的燃料重整设备,其中,该控制器(30)还用于判定重整器(5)的温度是否小于预定温度(S6),按预设的增量增加燃料喷射器(1)的燃料喷射量(S4),按预设的增量增加空气供应量(S4),在重整器(5)的温度小于预定温度的状态下判定重整器(5)的温度的上升率是否超过预定速率(S10),并且当该上升率超过该预定速率时减小燃料喷射量的增量和空气供应量的增量(S12)。
5.如权利要求4所述的燃料重整设备,其中,该控制器(30)还用于当重整器(5)的温度不小于该预定温度时,减小第一配气阀(10)的空气供应量直至空气燃料混合物的过剩空气系数达到预定的富状态(S107),增加第二配气阀(11)对燃料混合室(24)的空气供应量以补偿第一配气阀(10)空气供应量的减小(S106),然后关闭第二配气阀(11)(S16)。
6.如权利要求1所述的燃料重整设备,其中,该燃料重整设备还包括向第一配气阀(10)和第二配气阀(11)供应空气的空气供应机构(9),以及通过在空气和从重整器(5)排出的气体之间进行热交换来加热该空气供应机构(9)和第一配气阀(10)之间的空气的热交换器(6)。
7.如权利要求1至6中任一权利要求所述的燃料重整设备,其中,该燃料重整设备还包括一个向第一配气阀(10)供应空气的空气供应机构(9)以及一个通过利用空气的催化燃烧从重整气体中去除一氧化碳的一氧化碳除去部件(8),其中,第一配气阀(10)配置成把空气供应机构(9)提供的空气分路到燃料混合室(24)和第二配气阀(11),并且第二配气阀(11)配置成把从第一配气阀(10)提供的空气分路到燃料混合室(24)和一氧化碳除去部件(8)。
8.如权利要求1至6中任一权利要求所述的燃料重整设备,其中,该燃料重整设备和燃料电池堆(14)一起使用,该燃料电池堆(14)包括阳极(14A)和阳极(14B)并且通过提供到阳极(14A)的重整气体中的氢和提供到阴极(14B)的氧之间的电化学反应产生电力,该燃料重整设备包括向第一配气阀(10)提供空气的空气供应机构(9),该第一配气阀(10)配置成把空气供应机构(9)提供的空气分路到燃料混合室(24)和第二配气阀(11),并且第二配气阀(11)配置成把从第一配气阀(10)提供的空气分路到燃料混合室(24)和阳极(14A)。
9.如权利要求1至6中任一权利要求所述的燃料重整设备,其中,该燃料重整设备和燃料电池堆(14)一起使用,该燃料电池堆(14)包括阳极(14A)和阴极(14B)并且通过提供到阳极(14A)的重整气体中的氢和提供到阴极(14B)的氧之间的电化学反应产生电力,而且燃烧室(16)燃烧从阳极(14A)排出的阳极污物,该燃料重整设备包括向第一配气阀(10)提供空气的空气供应机构(9),第一配气阀(10)配置成把从空气供应机构(9)提供的空气分路到燃料混合室(24)和第二配气阀(11),并且第二配气阀(11)配置成把从第一配气阀(10)提供的空气分路到燃料混合室(24)和燃烧室(16)。
10.如权利要求1至6中任一权利要求所述的燃料重整设备,其中,该燃料重整设备和燃料电池堆(14)一起使用,该燃料电池堆利用该燃料重整设备供给的重整气体中的氢根据电力产生负载产生电力,并且该燃料重整设备还包括加热空气燃料混合物的加热器(4),检测电力产生负载的传感器(34),以及控制器(30),该控制器(30)的用于计算和电力产生负载的增加量对应的烃类燃料的增加量(S21,S22),计算用来气化烃类燃料的增加量的潜热量(S23),以及控制加热器(4)加热空气燃料混合物以补偿该潜热量(S24)。
11.如权利要求1至6中任一权利要求所述的燃料重整设备,其中,该燃料重整设备和燃料电池堆(14)一起使用,该燃料电池堆利用该燃料重整设备供给的重整气体中的氢根据电力产生负载产生电力,并且该燃料重整设备还包括向第一配气阀(10)提供空气的空气供应机构(9),检测电力产生负载的传感器(34),以及控制器(30),该控制器(30)的用于计算和电力产生负载的增加量对应的烃类燃料的第一增加量(S21,S22),计算用于气化烃类燃料的第一增加量的潜热量(S23),计算烃类燃料的第二增加量以便通过该烃类燃料第二增加量的催化燃烧来补偿该潜热量,根据该烃类燃料第一增加量和该烃类燃料第二增加量之和增加燃料喷射器(1)的燃料喷射量(S31),以及根据燃料喷射器(1)的增加的燃料喷射控制空气供应机构(9)和第一配气阀(10),以便增加对燃料混合室(24)的空气供应量(S27,S31)。
12.如权利要求11所述的燃料重整设备,其中,该燃料重整设备还包括通过利用空气的催化反应从重整气体中去除一氧化碳的一氧化碳除去部件(8),第一配气阀(10)配置成把空气供应机构(9)提供的空气分路到燃料混合室(24)和第二配气阀(11),第二配气阀(11)配置成把从第一配气阀(10)提供的空气分路到燃料混合室(24)和一氧化碳除去部件(8),并且控制器(30)的还用于根据燃料喷射器(1)的增加的燃料喷射量和对燃料混合室(24)增加的空气供应量来估计重整器的温度上升量(S28),计算重整器(5)中的和该增加的燃料喷射量以及该增加的空气供应量对应的一氧化碳产生量(S29),以及控制空气供应机构(9)和第二配气阀(11)向一氧化碳除去部件(8)提供该一氧化碳除去部件(8)去除从重整气体产生的一氧化碳所需的空气量。
13.如权利要求1至6中任一权利要求所述的燃料重整设备,其中,该燃料重整设备还包括命令燃料重整设备开始和停止工作的开关(35)、向第一配气阀(10)提供空气的空气供应机构(9),以及控制器(30),该控制器(30)用于当开关(35)命令重整设备停止工作时,停止燃料喷射器(1)的烃类燃料喷射(S41)并且使空气供应机构(9)的空气供应量为最大(S42)。
14.如权利要求1至6中任一权利要求所述的燃料重整设备,其中,该燃料重整设备还包括命令燃料重整设备开始或停止工作的开关(35)、向第一配气阀(10)提供空气的空气供应机构(9)、加热空气燃料混合物的加热器(4),以及控制器(30),该控制器(30)用于当开关(35)命令燃料重整设备停止工作时,停止燃料喷射器(1)的烃类燃料喷射(S41),使空气供应机构(9)的空气供应量为最大,并且激励加热器(4)加热空气燃料混合物(S43)。
15.如权利要求1至6中任一权利要求所述的燃料重整设备,其中,该燃料重整设备还包括向第一配气阀(10)提供空气的空气供应机构(9),通过与重整气体的热交换来加热空气供应机构(9)向第一配气阀(10)提供的空气的热交换器(6),以及旁路热交换器(6)把空气供应机构(9)连接到第一配气阀(10)的旁路通路(23)。
全文摘要
一种燃料重整设备,通过重整烃类燃料和空气的混合物产生含有大量氢的重整气体并把重整气体提供到燃料电池堆(14)。该燃料重整设备包括把烃类燃料喷射到燃料混合室(24)中的燃料喷射器(1),把空气提供到燃料混合室(24)中的第一和第二配气阀(10,11),以及在存在重整催化剂情况下使从燃料混合室(24)提供的空气燃料混合物发生反应从而产生重整气体的重整器(5)。重整器(5)还具有氧化催化剂。当该燃料重整设备开始工作时,从第一和第二配气阀(10,11)向燃料混合室(24)供给大量空气,并且重整器(5)中的氧化催化剂促进空气燃料混合物的氧化以加热重整器(5)。
文档编号H01M8/06GK1662441SQ0381439
公开日2005年8月31日 申请日期2003年5月28日 优先权日2002年6月20日
发明者青山尚志 申请人:日产自动车株式会社