专利名称:能量密度改进的非水型电化学电池的利记博彩app
技术领域:
本发明涉及一种非水型电池。例如一种电池,其中锂是活性阳极材料,而二硫化铁或黄铁矿是活性阴极材料。
长期以来都认为锂金属负电极(阳极)与黄铁矿或二硫化铁(阴极)的电化学耦合是理论上的高能量耦合。在下文中,“黄铁矿”和“二硫化铁”可互换使用。在任何金属中,锂金属的密度最低,它能提供2062毫安培-小时/厘米3(mAh/cm3)的体积能量密度和3861.7毫安培-小时/克(mAh/g)的重量能量密度。黄铁矿因为有经受4个电子还原的能力,它具有提供较大能量的可能,它有体积能量密度4307mAh/cm3和重量能量密度893.58mAh/g。
然而,这种特殊的电化学耦合电池要达到商业上可行的程度仍存在很多问题。一个关键问题是如何有效地利用内部的电池体积。我们知道这种电化学系统在放电并伴随产生反应产物的时候会产生体积的增大,因此电池的设计必须考虑到要有足够的空体积来容纳这种体积上的增加。此外还应知道由于电池放电效率的增加,还会产生更多的反应产物,这将造成已增加的体积更加增大,这也需要在电池内有足够的空体积来容纳。
若试图通过增加阴极的密度来改善电池的能量密度又会存在另外的问题。首先,应该知道若增加阴极的密度将会导致在这个电极内只有较少的空体积可用来容纳反应产物,这样也就需要在电池内能提供其它可能的空位置。此外,若通过增加施加在带涂层的电极基材上的压延力来使阴极致密化,将会导致用作阴极电流收集器的金属箔基质的延展。这种延展会损害涂层的均匀性,从而导致涂层的皱折、破裂,甚至最终导致全部或部分涂层与基底分离。
对于锂/二硫化铁电化学耦合,为了容纳由于反应产物所造成的体积增加,同时也为了改善电池放电效率和电池容量,应考虑到将不起反应的内部电池组分所占的体积尽可能地减到最小。关于这一点,用锂金属箔做阳极,就免去了使用分立的阳极电流收集器的需要,因为锂箔有足够的导电性。然而,由于锂箔的抗拉强度较低,因此它能经受延展和变薄,从而造成阳极容量减少的局部区域。在一种极端的情况下,这种变薄会严重到使锂阳极发生断裂的程度。已提出各种办法来解决锂箔脆弱的问题,其中包括将电池设计成带有较厚的锂箔、带有分离的阳极电流收集器和带有还原的或非离子输运区域的锂阳极。这些解决方案一般会导致电池内阳极过平衡,并使这些方案并不有效或者使电池在体积上不能令人满意。在电池中使用过多的锂也很不经济,因为金属锂箔是一种相当贵的材料。
因此,对于具有增加的能量密度和放电效率的非水型锂/二硫化铁电池来说,就需要能容纳在放电过程中产生的反应产物所带来的体积增加。对这种非水型电池来说,还需要有致密的阴极,这种阴极与电流收集器基底之间既要有好的粘附性,又要不牺牲阴极涂层的均匀性。对这种非水型电池还进一步需要减少阳极对阴极的电池平衡而又不牺牲阳极的完整性。
下面将参考附图对本发明作进一步的说明,其中
图1表示的是阳极、阴极和界面电极宽度。
本发明涉及一种非水型电池,它包括锂金属箔阳极和包含以二硫化铁作为活性材料的阴极涂层,其中涂层至少加在用作阴极电流收集器的金属基底的一个表面。本发明的电池尤其在快速放电性能方面有改进,而且令人惊奇的是它是在阳极欠平衡状态下取得的。用另一种说法,即本发明电池具有在此所定义的阳极对阴极输入比≤1.0。我们意外地发现,通过使用一种独特和新颖的阴极涂层配方,而只将阴极涂层固体物体积增加约10%,电池体积上和重量上的能量密度均能提高约20~25%。
本发明电池阴极涂层配方可以与锂金属箔阳极配合使用。锂金属可以是一种锂-铝合金,而这种锂-铝合金中铝的含量可以是0.1~2.0重量%;在某些实施方案中,锂箔阳极材料中的铝含量为0.1~0.9重量%,而在另一种实施方案中,铝含量为0.5重量%。这种合金市场上有售,如可从Chemetall Foote Corporation,Kings Mountain,NC,USA购得。我们发现,使用锂-铝合金并配合使用下述阴极泥浆状物配方,能使电池中的锂量减到最小。合金化的锂可导致强度增加,如在本发明的一种电池中,其中电极是卷在一起,做成一种胶卷形式的电极组合件。使用约含0.5重量%铝的锂-铝合金增加了强度,以致使对原始长度为30.5cm(12.0英寸)的阳极,其材料的延伸小于0.5%。这就意味着当电池放电时,沿着卷着的电极条带长度的阳极不连续性减到最小,这样也就有助于改进电池的综合性能。我们还观察到,在合金化锂阳极与电解质中有机溶剂间的初始反应阶段所形成的固态电解质界面薄膜(或称SEI薄膜)与使用非合金的锂阳极所形成的SEI薄膜相比,前者具有较小的离子转移阻力。
本发明电池的阴极涂层可通过在电流收集器上涂上含有在溶剂中的涂料成分的泥浆状物来形成。此泥浆状物包含二硫化铁、导电材料(如碳粉材料)和其它选用的添加剂。一种新颖的泥浆状物配方能产生较致密的阴极,使阳极对阴极的输入比≤1.0,并增加电池的能量密度。这些长处是在不牺牲电池的放电效率和阴极的完整性,也即干的阴极泥浆状物与金属箔基底粘着性的条件下取得的。我们发现,在阴极涂层中适当选用导电的添加剂能减少溶剂的用量,从而使最终的电极涂层和较致密阴极中的空体积减小。我们还发现,若加入一定的增滑剂和流变学上的改良剂,为取得理想的阴极孔隙率和理想的涂层厚度所需的压延力就能减到最小,并进一步使本发明电池的阳极对阴极的输入比减小。
导电的碳粉添加剂可以包含合成石墨和乙炔炭黑的混合物。我们发现,加入高度结晶并具有高各向异性度的合成石墨能获得一定的有利效果。这种石墨(下文中用来代表“高度结晶的合成石墨”)提供了一种具有适中的低表面积和结构的粉末,并且具有高的纯度。合适的高度结晶的合成石墨能以薄的片晶形式存在。这种片晶可以几乎是平的,也可以是弯曲的,如弧形或杯状形。弯曲的片晶有助于增加阴极涂层的强度并有助于改善阴极的电导性。适中的低表面积和结构与下面定义的BET和DBP值有关。具有较高表面积和结构的碳粉倾向于滞留住溶剂,最终会导致产生涂层缺陷。一种合适的高度结晶的合成石墨,它的杂质或灰分最大含量在0.1%的水平,它的平均颗粒大小为9μm,BET表面积约为10m2/g,n-邻苯二甲酸二丁脂(DBP)油吸收系数为190%。BET比表面积是由Brunaner-Emmet-Taylar方法定出的比表面积。根据ASTMD6556,它将表面积与多点氮气吸附相关联。DBP值是根据ASTMD2414定出的。这种高度结晶的合成石墨可从Timcal Graphite(Westlake,OH,USA)购得,其商品名为TIMREXMX-15,它的杂质含量在0.01~0.2%水平,平均颗粒大小为3.0~11.0μm,BET表面积为3.0~11.0m2/g,DBP系数为160~200%。其它高度结晶的合成石墨,如多孔合成石墨,也可以用。
SHAWINIGAN BLACKABC55是合适的乙炔碳黑中的一例,它是一种市售的55%压缩的乙炔碳黑(Chevron Phillips Chemical CompanyLP,The Woodlands,TX,USA产品)。
在一种实施方案中,泥浆状物的配方中导电的碳添加剂含量占总固体含量的7.0~11.0体积%;而在另一种实施方案中,导电的碳占总固体含量的10.0~10.5体积%。这里用到的“固体含量”和“固体百分数”代表不考虑溶剂在内的干阴极涂层成分,而“湿含量”和“湿百分数”则代表把所用的溶剂考虑进去的阴极涂层配方。我们进一步发现,若使用高等级的高度结晶的合成石墨和低等级的乙炔炭黑,一般能减少由于存在不希望有的涂层溶剂滞留而带来的在电极处理上的困难,它还能减少电解质溶剂滞留,改善快速放电性能。例如,无论是湿的还是干的(也即固体的)高结晶度合成石墨的体积都可以超过乙炔炭黑的体积。当高结晶度合成石墨的体积至少是乙炔炭黑体积的2倍时(还是无论是湿的还是固体的),工艺还能得到进一步改进。在如下实例1中所公开的阴极生产工艺中,高结晶度合成石墨的固体体积百分数在有利的7.0~7.5范围,而乙炔炭黑的固体体积百分数为3.0~3.5,例如高结晶度合成石墨的固体体积百分数约为7.39,而乙炔炭黑的固体体积百分数约为3.05。对这种工艺,以固体重量百分数而言,乙炔炭黑在1.0~3.0重量%是有利的,而高度结晶的合成石墨在1.0~3.0重量%是有利的。
阴极泥浆状物的配方中,可以进一步包含至少一种流变学上的改良剂来帮助电极处理。我们发现,在阴极泥浆状物中包含那种对切应力有高灵敏度的改良剂,还能进一步做成致密的阴极并有低的阳极对阴极输入比。作为这种改良剂的一个实例,当泥浆状物处于未受扰动状态时它能帮助泥浆状物保持住它的粘性,而当泥浆状物受到相当高的切应力时,它能使泥浆状物的粘性降低。在将泥浆状物从储存容器转移到电极基底的过程中会遭遇到高的切应力,若此改良剂在去掉切应力后还能进一步帮助泥浆状物回到相对较高的粘性,则能进一步增强加在电流收集器上的泥浆状物的作用。我们发现,若将热解法二氧化硅加到本发明电池的阴极泥浆状物中,就能取得如上所述的对切应力的灵敏度。二氧化硅可以具有硅烷醇族的表面浓度0.5~1.0mmol/g,如0.70~0.80mmol/g。热解法二氧化硅可以以其固体为0.2~0.6重量%的量加到泥浆状物成分中。二氧化硅的体密度可以是35.0~50.0克/升。市售的AEROSIL200,(Degussa Ag,Dusseldorf,Germany产品)就是合适的热解法二氧化硅添加剂中的一例,它的体密度为45.0~50.0克/升,并已用在泥浆状物的组成中,其中热解法二氧化硅含有0.3重量%的固体。其它流变学上的改良剂包括聚环氧乙烷(如POLYOXTMWSR-205,Dow Chemical Company,Midland,MI,USA产品)和强碱性的磺酸钙(如K-STAY501,King Industries,Norwalk,CT,USA产品)。
增滑剂也能在阴极泥浆状物配方中作添加剂用。超微粉碎的TEFLON,也就是超微粉碎的聚四氟乙烯(PTFE)就是一种增滑剂。平均颗粒大小为2.0~4.0μm,最大颗粒为12.0μm的超微粉碎的聚四氟乙烯很容易分散在涂层成分中,它已被加工成1.0~1.5NPIRI研磨粉,这里NPIRI代表国家油墨研究所(Nationd,Printing Ink Research Institute)。在如下实例中所公开的阴极生产工艺中,超微粉碎的聚四氟乙烯可以占泥浆状物中固体物总重量的0.2~0.6重量%。合适的超微粉碎的聚四氟乙烯有FLUOHT,它是由微粉公司(Micro Powders Inc.)生产,并由Dar-Tech Inc.,Cleveland,OH,USA经销;还有POLY MIST,TEFLON粉末,它是纳幕尔杜邦公司,Wilmington,DE,USA的产品。其它的增滑剂还包括微蜡粉末,如SUPERSLIP6520,它是由Micro Powders Inc.生产,并由Dar-Tech Inc.,Cleveland,OH,USA经销的。
这里用到的阳极对阴极的输入比可以从下面的计算得到每直线英寸阳极容量(箔厚度)×(界面电极宽度)×(1直线英寸)×(20℃时的锂箔密度)×(锂能量密度3861.7mAh/g)。
每直线英寸阴极容量(最终阴极涂层厚度)×(界面电极宽度)×(1英寸)×(阴极干混合料密度)×(最终阴极填密百分数)×(FeS2干重百分比)×(FeS2纯度百分比)×(FeS2能量密度893.58mAh/g)。
阳极/阴极输入比=每直线英寸阳极容量/每直线英寸阴极容量这里所用的“界面电极宽度”是指共事阴极和阳极间界面面积的直线尺度。示于图1的是一个实例,图中以“A”表示的尺度就是界面电极宽度。“最终阴极涂层厚度”表示对阴极作任何压延操作或其它致密化加工后的涂层厚度。“最终阴极填密百分数”表示对阴极作任何压延操作或其它致密化加工后的固体体积百分数,它等于100%减去对阴极作任何压延操作或其它致密化加工后的空体积百分数。“阴极干混合料密度”表示阴极涂层固体组分的叠加密度。
粘合剂可以包含在本发明电池的阴极涂层中。作为一种合适的粘合剂,苯乙烯-乙烯/丁烯-苯乙烯(SEBS)嵌段共聚物就是一例。市售的KRATNG1651(Kraton Polymers of Houston,TX,USA产品)是这类合适的嵌段共聚物中的一种。也可以使用其它粘合剂和粘合剂组合物。
阴极配方中还包含溶剂,它用来形成泥浆状物。当用SEBS作粘合剂时,有机溶剂,如稳定的1,1,2-三氯乙烯,就适于用作溶剂。也可以用其它溶剂,包括含水溶剂。溶剂的选择在某种程度上取决于所用的粘合剂,如可以用以水作为溶剂,包括聚丙烯酰胺和至少一种羧化苯乙烯-丁二烯与苯乙烯-丙烯酸盐共聚物在内的胶乳粘合剂。
实例1根据本发明,包含以锂作为活性阳极材料和以黄铁矿作为活性阴极材料的R6(AA)号电化学电池的生产工艺如下0.254mm(0.001英寸)厚×43.7mm(1.72英寸)宽的铝箔带用来做阴极电流收集器和阴极涂层的基底。铝箔是全硬标准合金1145-H15铝,它的两个表面已作过焰烧净化处理以去除油和改善涂层与基底表面间的粘着性。
使用表1中所列的干成分来制备阴极涂层泥浆状物。
表1
所用的FeS2为电池级铁的黄铁矿,其纯度为95重量%,从Chemetall购得。然后将此FeS2用230目筛子筛过,以去除粒度大于62μm的粒子。乙炔炭黑用ABC55 SHAWINIGAN BLACK;石墨用TIMREXMT-15;热解法二氧化硅用AEROSIL200;聚四氟乙烯用FLUOHF;粘合剂用KRATON G1651。将筛过的黄铁矿、乙炔炭黑、石墨和热解法二氧化硅称重,并加入1,1,2-三氯乙烯溶剂后用高速盘式搅拌机进行混合。当这些成分充分湿润和混匀后,再将聚合物粘合剂加到混合物中进行混合,直至它均匀地消散在混合物中。然后将超微粉碎的聚四氟乙烯掺到混合物中,并再加些溶剂以获得范围在2900-4100厘泊的这一理想粘度,粘度用布氏粘度计(Brookfield Viscometer)测得。
用滚动涂层操作将泥浆状物加到铝条带基底的两个面,而在箔材坯料(机器)方向沿基底两个面的一边各留出一条不涂的带(如图1中所示的没有涂料的区域1)。将湿的涂料涂到阴极电流收集器条带的每一面,涂层为0.1435mm(0.00565英寸)厚×40.8mm(1.605英寸)宽。待涂料干后,用压制方法将阴极涂层压实,使得在0.0254mm(0.001英寸)厚的基底每一面的涂层减薄到约0.0800mm(0.00315英寸),这样产生的阴极涂层固体填密系数约为64%。
用0.152mm(0.006英寸)厚×39.0mm(1,535英寸)宽并含0.5重量%铝作为合金的锂金属箔带来做阳极。将0.051mm(0.002英寸)厚的镀镍钢箔剪切成阳极接头片,并以与30.5cm(12.0英寸)阳极长度相应的预先定下的间距在卷紧前压粘到锂箔坯料上。
准备两卷从Celgard Corporation购得的25μm厚的微孔聚丙烯薄膜,如Celgard 2400,每卷有两层。
用自动卷绕机将阳极、阴极和隔膜卷在一起,使它们由连续的箔材坯料制成电极组合件(胶卷)。在每个胶卷的卷制过程中,阴极条带要先于阳极条带放到卷筒中。阴极条带和阳极条带要对准,使得阴极条带涂层区有一小部分伸出在阳极的前端和两边。电极条带和隔膜要卷到直至阳极接头片到达预定的位置。根据阳极条带上接头片的间隔切下阴极、阳极和隔膜条带,做成具有想要的阴极和阳极长度的胶卷。将聚丙烯薄膜条带装入胶卷的尾部,它作为外包装膜围着胶卷绕卷,直至达到预定的胶卷直径13.3mm(0.525英寸)。切下外包装膜,并将端头热封到胶卷上。
将胶卷放入外壳内。当每个胶卷做成时,将从胶卷的一头伸出的阳极接头片先朝外径向折转,然后再沿胶卷的侧面折转。从与阳极接头片相反的胶卷另一头伸出的是不带涂层的阴极条带边,将它朝里卷边成星形锥体的形状。塑料绝缘园盘装在0.254mm(0.010英寸)厚的镀镍钢外壳的两个底部,外壳体的外径为13.9mm(0.548英寸)。每个胶卷装入外壳内,它的阳极接头片在外壳的底部并沿着胶卷的侧面。
阳极对阴极的输入比由下面的计算给出每直线英寸阴极容量=(0.0063英寸,厚)×(1.535英寸,宽)×(1.0英寸)×(16.387cm3/英寸3)×(41555g/cm3,阴极密度)×(0.64,固体填密系数)×(0.92,干阴极中的FeS2)×(0.95,FeS2纯度)×(893.58mAh/g)=329mAh/直线英寸每直线英寸阳极容量=(0.006英寸,厚)×(1.535英寸,宽)×(1.0英寸)×(16.387cm3/英寸3)×(0.534g/cm3,锂密度)×(3861.7mAh/g)=311mAh/直线寸阳极对阴极的输入比=311/329=0.95每个电池加入1.6g电解质。电解质含有63.05重量%的1,3-二氧戊环、27.63重量%的1,2-二甲氧基乙烷、0.18重量%的3,5-二甲基异唑和9.14重量%的碘化锂。用常规的电池组装和封口方法将电池完工,接着将电池进行预放电。
实例1中电池的细节概括在下面表2中。
实例2用作比较的R6号Li/FeS2电池采用与实例1同样的生产工艺制造,这种比较用电池的细节也概括在下面表2中。实例1中的电池在一些不直接与本发明有关的方面与这种比较用电池是不同的。与比较用电池相比,实例1中电池的外壳直径大了0.13mm(0.005英寸),在预放电过程中消耗的电量也要小些,电极宽度大了0.38mm(0.015英寸)。
实例3将实例1和2中的电池在1000mA下连续放电到1V,所得的结果概括在表3中。
从表3可以看出,根据本发明制造的电池,其放电量约要比比较用电池大35%。分离检测显示,在这个增加中有<11%可归因于实例1中电池预放电过程中电量消耗的减少和可能由于处理的可变性而导致的其它小的差异。实例1中电池的较大电极宽度导致输入容量约增加1%;实例1中电池的较大外壳直径使输入容量约增加2.4%。实例1中电池的实际放电量与实例2中的电池相比尚有约20%的增加不能归因于这些其它方面的差别。
表2
表3
上述实例1是本发明的一种实施方案,它可作各种变更,这些变更包括但并不限于下述任何一点。电池可以有其它形状,如棱柱形。电极条带可以组装成其它形式,但其中至少阴极是弯的,如至少阴极可以是卷的、绕成盘状的、弧状的、折叠的、皱的或铰链的,或者阳极和阴极都可以是交织的。也可采用其它阴极涂层模式,如电流收集器基底的两个主表面都可以加涂层,或者没有物质的(即不涂的)区域可位于阴极的一个或两个表面,阴极的一个或两个长边,或者阴极的一端或两端,这取决于电流收集器和其它电池组分间在何处和如何形成电接触。电极和其它电池组分间的电接触可以用压力,用或不用外加的弹簧,或用固定方式,如焊接。导电的金属引线,如条带或导线,可以用也可以不用。电极也可以有其它大小和形状,这取决于电池的大小与设计。可以用各种类型的电流收集器(如各种形式和材料)。也可用其它方法将阴极材料涂到电流收集器上,如用带槽的模片或其它常规的上涂料方法来涂阴极材料。或者可以用埋置或其它常规的方法将阴极材料与网、板网或多孔电流收集器相结合来做成电极条带。还可以用其它材料来做流变学上的改良剂、增滑剂和粘合剂。也可将其它材料加入到阴极泥浆状物中,以改进生产工艺、放电性能、存放寿命或其它电池特性。本发明电池的实施方案可以将这些和其它变更结合进去。
权利要求
1.一种电化学电池,它包含一个阴极组合件,此阴极组合件包含一个金属阴极电流收集器,此收集器有两个主表面和一个阴极涂层,此涂层至少加在两个主表面中的一个,此涂层含有二硫化铁;这种电池还包含金属锂阳极,它是由锂与铝的合金制成的,其中阳极对阴极输入比≤1.0。
2.根据权利要求1的电池,其中阳极包含<1.0重量%的铝。
3.根据权利要求2的电池,其中阳极包含0.1~0.9重量%的铝。
4.根据权利要求3的电池,其中阳极包含0.5重量%的铝。
5.根据任一上述权利要求的电池,其中阴极涂层还包含<43%的空体积。
6.根据权利要求5的电池,其中空体积为36~42%。
7.根据任一上述权利要求的电池,其中阴极涂层还包含合成石墨。
8.根据权利要求7的电池,其中合成石墨是高度结晶的合成石墨。
9.根据权利要求8的电池,其中高度结晶的合成石墨具有平均颗粒大小3.0~11.0μm,BET表面积3.0~11.0m2/g和DBP 160~200%。
10.根据任一上述权利要求的电池,其中阴极涂层还包含乙炔炭黑。
11.根据任一上述权利要求的电池,其中阴极涂层还包含超微粉碎的聚四氟乙烯粉末。
12.根据任一上述权利要求的电池,其中阴极涂层还包含苯乙烯-乙烯/丁烯-苯乙烯(SEBS)嵌段共聚物。
13.根据任一上述权利要求的电池,其中阴极涂层还包含热解法二氧化硅。
14.根据任一上述权利要求的电池,其中阴极涂层还包含总量占阴极涂层固体总含量7.0~11.0%的合成石墨和乙炔炭黑。
15.根据任一上述权利要求的电池,其中合成石墨和乙炔炭黑一起占阴极涂层固体总含量的10.0~10.5体积%。
16.根据权利要求14或权利要15的电池,其中合成石墨的固体体积百分数至少是乙炔炭黑固体体积百分数的两倍。
17.根据任一上述权利要求的电池,其中电池还包含电极组合件,此电极组合件包含阴极组合件和阳极,而且至少阴极组合件是弯的。
18.根据权利要求17的电池,其中阳极是弯的。
19.根据权利要求18的电池,其中阴极组合件和阳极是以螺旋形缠绕形式存在的。
20.根据任一上述权利要求的电池,其中阴极包含下列组分,它们以分别占阴极涂层中所有固体总重量的百分数来表示二硫化铁90.0~94.0%;乙炔炭黑1.0~3.0%;合成石墨3.0~6.0%;聚四氟乙烯0.2~0.6%;二氧化硅0.2~0.6%;苯乙烯-乙烯/丁烯-苯乙烯(SEBS)嵌段共聚物1.5~3.0%。
全文摘要
本发明涉及一种非水型电池,它包含锂金属箔阳极和阴极涂层,此涂层包含作为活性材料的二硫化铁,其中涂层至少加在金属基底的一个表面,此金属基底起阴极电流收集器的作用。特别是本发明的电池在快速放电性能方面有改进,而且令人惊奇的是它是在阳极欠平衡状态下取得的。本发明的电池具有≤1.0的阳极对阴极输入。我们意外地发现,通过将一种独特和新颖的阴极涂层组成与合金锂箔一起使用,而只增加阴极涂层固体物的体积约10%,就使电池体积上和重量上的能量密度均增加约20~25%。
文档编号H01M4/40GK1659729SQ03813130
公开日2005年8月24日 申请日期2003年6月5日 优先权日2002年6月5日
发明者J·W·马普尔 申请人:永备电池有限公司