用于高频的玻璃材料的利记博彩app

文档序号:7111537阅读:152来源:国知局

专利名称::用于高频的玻璃材料的利记博彩app
技术领域
:本发明总体上涉及射频电路领域,尤其涉及一种适用于在基片上生产适于射频应用的导体结构的玻璃材料,以及一种射频基片。已知半导体工业的趋势是趋于更高的数据传输速率。在馈电和发射系统中,千兆赫兹的频率能导致信号的衰减增加。到目前为止,主要是印刷陶瓷(HTCC)和玻璃陶瓷(LTCC)的多层被用于这类系统,在印刷导电层后,对它们进行层压和烧结,实现一种用于射频电路的三维或多层布线。此外,也使用了不密封的有机多层。然而,在高频情况下由于接线中的衰减,会增加这类导线系统的传输损耗。HTCC和LTCC材料在频率非常高的情况下,一般高于40GHz,就会受到这些频率范围的相对高的介电常数(DK)和损耗角(tanδ)的限制。HTCC和LTCC陶瓷不可避免地具有颗粒,这些颗粒对射频性能有不良影响,并且会导致集成在系统的接线的表面有和颗粒相应的粗糙。这种表面粗糙会导致线性损耗的增加。这种射频导电基片上出现高度衰减的另一个原因是,在敷设接线时通常借助于厚膜工艺,特别是丝网印刷。使用这种技术的接线在接线轮廓方面十分不均匀和粗糙。接线的不均匀性起到了天线的作用,而这会导致相当大的发射损耗。此外,烧结不可避免地会导致基片的皱缩,这将很难准确保持期望的尺寸。近来,逐渐以各种PVD工艺来取代具有缺点的厚膜技术,通过蒸镀或者溅镀形成接线。但是,在前述工艺中通过烧结HTCC和LTCC材料来产生布线层结构的技术仍然存在一个主要的问题。例如,LTCC陶瓷材料的烧结所需的温度至少为950℃,而HTCC陶瓷材料的烧结甚至要在1500℃的温度下进行。这样的温度会使接线的结构发生改变,并且接线材料的选择也是有限的。因此本发明的目的是为接线系统提供一种改进了的材料,尤其是在射频特性方面进行了改进,提高了射频导体配置的射频特性。该任务通过一种非常简便的方法来实现,即用一种玻璃材料来生产射频基片或射频导体配置的绝缘层,一种生产带有射频导体配置或射频接线系统的元件的方法,以及一种具有射频导体配置的元件,如权利要求书所述。更好的结构及改进构成了相应从属权利要求的主题。本发明提供了一种用于生产射频基片或射频导体配置的绝缘层的玻璃材料,该材料作为敷设层,尤其层厚范围在0.05μm至5mm之间,最好在0.05μm至1mm之间,该层在至少高于1GHz的频率范围时的损耗因子tanδ小于或等于70*10-4。LTCC和HTCC材料由于它们优良的密封性而特别受到重视,并且该特性可以使这类基片用作元件的外壳。玻璃层的密封性甚至更好,因为对大多数气体,玻璃都具有很低的渗透率。由于作为敷设层的玻璃材料的低损耗因子,本发明的玻璃材料特别适用于射频应用。根据本发明的玻璃材料作为敷设层,尤其层厚范围在0.05μm至5mm之间,频率在40GHz时,较好的损耗因子tanδ小于或等于50*10-4。这种低损耗因子使得本发明的玻璃材料特别适合于即使在微波范围的极高频率处的射频应用。根据本发明的改进,使用了本发明的玻璃材料生产的层厚范围在0.05μm至5mm之间,在微波频率为40GHz时,该层损耗因子tanδ甚至小于或等于30*10-4。这个损耗因子比LTCC和HTCC基片在微波范围内的损耗因子更低。根据本发明所述的玻璃材料的一个特别优选的实施例,可以蒸镀用于沉积层的玻璃材料,以使得能够通过在一个基底上进行PVD涂层和蒸镀涂层,将本发明的玻璃材料沉积成绝缘层。特别具有优点的原因是,在基底上,例如基片上的热载荷仅仅是中等的。另外,这种通过蒸镀玻璃材料的玻璃层沉积,例如从一个位于对面的靶,与需涂层的表面有一定距离且包含本发明的玻璃材料,能够生产出非常薄的、均匀的绝缘层。因此使用玻璃材料也能够增加射频元件,例如射频基片的集成度。根据本发明的该实施例中的玻璃材料可以通过这样的方式来蒸镀即在面对蒸镀源的基片表面上形成玻璃层或透明层,并暴露在蒸镀源发出的蒸汽中。本发明的玻璃材料的特性不是所有玻璃材料都具有的。用许多玻璃材料不能形成玻璃层或透明层,而是沉积了不透明的氧化层,而且这些层一般没有良好的密封性和/或射频特性。尤其是包含至少一个二元系材料的玻璃也特别适合作为蒸镀玻璃或能够蒸镀和再次沉积成透明或玻璃层的玻璃材料。这种类型的玻璃蒸镀沉积而成的玻璃层由于缺陷很少,具有很好的密封性和射频特性。用电子束蒸镀法来蒸镀本发明的玻璃材料是特别具有优点的。电子束蒸镀能够在电子束入射点处,在包含玻璃材料的靶上产生非常小的点源,因此电子束的能量都集中在该点上。电子束蒸镀能够在需要涂层的基片上得到较高的沉积率。为了能对玻璃材料进行简单处理,如构成电子束蒸镀的玻璃靶,具有优点的是玻璃材料的工作温度低于1300℃。本文中的术语工作温度一般认为是玻璃粘度在104dPas时的温度。为了获得低发射损耗的导体结构,最好将玻璃材料作为敷设层,尤其是层厚范围在0.05μm至5mm之间,在至少高于1GHz的频率范围时相对介电常数εR小于等于5。一个较好的改进是将玻璃材料作为敷设层,尤其是层厚范围在0.05μm至5mm之间,微波范围频率在40GHz时相对介电常数εR小于或等于5,尤其是相对介电常数εR为4±0.5。根据本发明的另一个实施例,当玻璃材料作为敷设层,尤其是层厚范围在0.05μm至5mm之间,温度范围在20℃至300℃时的热膨胀系数α20-300在2.9*10-6到3.5*10-6K-1之间。这个膨胀系数与硅或Borofloat玻璃的膨胀系数相匹配。这使得例如使用硅或Borofloat玻璃作为基片材料时,能够基本上避免温度应力。如果把玻璃材料作为敷设层,尤其是层厚范围在0.05μm至5mm之间,温度范围在20℃至300℃时的热膨胀系数为α20-300=(3.2±0.2)*10-6K-1,此时将会获得更好的热匹配。然而,本发明的另一个实施例中,为减少硅基片的绝缘层的热应力,当玻璃材料作为敷设层,尤其是层厚范围在0.05μm至5mm之间,具有不同于基片材料(例如硅)的热膨胀系数,温度范围在20℃至300℃时,绝缘层的热膨胀系数小于基片材料的热膨胀系数1×10-6K-1。玻璃层尽可能的抗酸或碱,对于使用本发明的玻璃材料所制成的玻璃层的长时间密封特性是更有利的。因此本发明的一个实施例提供的一种作为敷设层的玻璃材料是抗酸性的,抗酸等级≤2。根据本发明的另一个实施例,作为敷设层的玻璃材料是抗碱性的,抗碱等级≤3。组分在下列成分范围内的玻璃材料证明是适合的成分成分范围SiO240-90B2O310-40Al2O30-5K2O0-5Li2O0-3Na2O0-3上面给出的数值是比重。使用本发明中包括按下列比重成分的玻璃材料,能够改进射频特性和蒸镀特性成分成分范围SiO260-90B2O310-30Al2O30-3K2O0-3Li2O0-2Na2O0-2本发明的玻璃材料最好按下列比重成分成分玻璃1玻璃2SiO284±571±5B2O311±526±5Na2O2±0.20.5±0.2Li2O0.3±0.20.5±0.2K2O0.3±0.21.0±0.2Al2O30.5±0.21.0±0.2这种类型的玻璃测量得到下列特性,该玻璃的组成包括71%比重的SiO2,26%的B2O3,1%的Al2O3,1%的K2O,以及分别为0.5%的Li2O和Na2O。20℃到300℃之间的热膨胀系数α20-300=3.2*10-6K-1,折射率nd=1.465,相变温度Tg=466℃,软化温度Tgw=742℃,工作温度Tva=1207℃,在40GHz的相对介电常数εR=3.9,在40GHz的损耗因子tan6=26*10-4,密度ρ=2.12g·cm-3,防水等级2,抗酸等级2,抗碱等级3。这里较为合适的玻璃是指如下的玻璃G018-189。进一步的实施例给出较为合适的玻璃的组成包括84%比重的SiO2,11%比重的B2O3,小于2%比重的Al2O3,2%比重的Na2O,以及分别3%比重的Li2O和K2O,测量所得如下特性20℃到300℃的热膨胀系数α20-300=2.75*10-6K-1,折射率nd=1.47,相变温度Tg=562℃,在40GHz的相对介电常数εR=5,在40GHz的损耗因子tanδ=40*10-6,密度ρ=2.2g·cm-3,防水等级1,抗酸等级1,抗碱等级2。这里较为合适的玻璃是指如下的玻璃8329。以上给出的玻璃材料的组分是应用中较为优选的。敷设这种类型玻璃材料的层也可能具有与上述不同的组分。根据实例,如果通过蒸镀沉积成层和玻璃材料的组分有不同的蒸汽压,层内的组分可能和本发明的玻璃材料的组分不相同。如上所述的玻璃材料可以被优选的用于适于射频导体结构或射频基片的绝缘层。生产具有射频导体配置的元件的相应方法最好包括如下步骤—用上述的玻璃材料沉积一个在基片上的接触连接区域上方具有至少一个开孔的结构化玻璃层,以及—在玻璃层上敷设至少一个导体结构,其与接触连接区域有电接触。由于上述优点,可以考虑通过玻璃材料的蒸镀来沉积玻璃层。因此本发明的方法能被用于生产一个具有射频导体配置的部件,其包括—具有至少一个接触连接区域的基片,—在基片至少一个侧面上,具有至少一个带有通道的开孔的玻璃层,该通道与接触连接区域电接触,以及—在玻璃层上具有至少一个导体结构,其与通道电接触。在本文中,术语元件被理解为不仅仅包含一个电子元件。在本文中,术语部件还包括具有射频导体配置或射频导电系统的涂层基片,该基片作为一个单元,起到载体的作用并连接更多元件。具有载体材料和射频导电系统的类似元件一般也被视为射频基片。此外,适合的基片材料包括硅、陶瓷、玻璃甚至塑料。这里还可以使用合成材料,例如玻璃塑料层,特别包括那些含有集成导体配置的材料。也能够使用其他类似硅的半导体材料,如砷化钾。硅,陶瓷和玻璃尤其适合用作基片材料,因为它们的热膨胀系数和蒸镀所得到的玻璃的热膨胀系数非常相似。玻璃层最好是通过蒸镀本发明的玻璃材料沉积得来。然而,通过将含有本发明玻璃材料的靶溅镀涂层,将玻璃层沉积在基片表面上也是可以接受的。根据本发明的改进,玻璃层是通过等离子体离子加速沉积(PIAD)蒸镀来实现的。在这种情况下,在蒸镀过程中离子束被射到需涂层的表面。这可以进一步密度化以及减少缺陷密度。对于导体结构,例如接线,也可以使一个或者多个无源电子元件设置在玻璃层上,与该导体结构接触或连接。例如,可以使电容、电阻、线圈、变阻器、PTC、NTC如无源电子元件一样设置到玻璃层上,或者使滤波器元件设置到玻璃层上。根据本发明的特别有利的实施例提供了在基片上制造三维或多层导电系统的方法。为此,沉积结构化玻璃层的步骤和敷设至少一个导体结构的步骤多次进行。为了产生三维导电系统,特别是具有形成在多层导电系统的一个或多个单个层上的无源元件,每个玻璃层和/或导体结构可以通过不同的方法来结构化。在这种情况下,有利的是在后一阶段敷设的导体结构可以连接到前一阶段敷设的导体结构的触点连接区,从而使得在导体结构的两层之间产生电气连接,并且各个层之间可以彼此连接起来。因此,可以形成具有至少通过两个蒸镀敷设的玻璃层的多层导体结构的元件,其中每一玻璃层都具有敷设到其上的导体结构,在第一个玻璃层上的导体结构与第二个玻璃层上的导体结构通过通道进行电接触。但是,也可以有两个或者更多的通道,这些通道一个设置在另一个的正上方或者略有偏离,与相互重叠的各个玻璃层相接触,这样,例如基片的触点连接区穿过多个玻璃层与外界贯通相连,或者连接到其他层的导体结构上。另外,该方法的一个优选实施例提供了用蒸镀沉积得到在基片的接触连接区域上方具有至少一个开孔的结构化玻璃层的步骤,包括的步骤有—敷设一个结构化的中间层,其覆盖了接触连接区域,—通过蒸镀将玻璃层敷设到基片和位于其上的结构化中间层上,玻璃层的厚度最好小于结构化中间层的厚度,以及—去除结构化中间层,同时玻璃层位于结构化中间层上的区域也被去除。除了照相平版印刷光阻结构化外,还能直接生成这种类型的结构中间层,例如通过印刷。另外,该方法的改进提供了一种导电材料,它相对于接触连接区域的邻近区域凸出出来,由中间层结构所覆盖,在通过蒸镀形成玻璃层之前被敷设到至少一个接触连接区域上。这样在接触连接区域上产生了一个导电的、加高的结构。该步骤例如可以用照相平版印刷和导电材料层一起实现,其中在接触连接区域的周围区域上的导电材料层和中间层一起被去除了。这样玻璃层就可以很好地用蒸镀来实现,其厚度一般和所用的导电材料的厚度相等,这样当从接触连接区域上去除玻璃层后,有一个基本平坦的表面。根据本发明的另一变型,首先,例如上面所解释的,玻璃层具有至少一个直接沉积在触点连接区上方的开口或者具有优点地横向偏移的开口,然后玻璃层中的至少一个开口由导电材料来填充。这样也产生了用于一个或者多个导体结构的后续敷设的平坦的表面。此外,已经证明如果基片在蒸镀玻璃层的过程中,温度保持在50℃到200℃之间是较好的,优选在80℃到200℃之间。其中对基片加热能防止形成机械应力。适度加热对于玻璃层的形态也是有利的;在这些基片温度处,尤其能够生产出没有气孔的玻璃层。蒸镀腔的基准压最大保持在10-4mbar范围内,优选在10-5mbar或更低的范围内,基准压一般和所要求的层的质量成正比。为了在基片上生产出连续的并且气孔密度低的玻璃层,较为合适的基片所需涂层的表面的表面粗糙度应低于50μm。但本发明的该方法的另一个优选改进为蒸镀的玻璃层提供了每分钟至少沉积0.5μm层厚的沉积率。可以容易的得到高沉积率而不会损害玻璃层的层质量,并且缩短了生产时间。和其他真空沉积过程相比较,例如溅镀涂层,只能得到每分钟几个纳米厚度的沉积率。并且,使用导体结构可以包含生成一个反向结构化的中间层的步骤,然后把导电材料沉积在已经镀有中间层的基底上。在这种情况下基底包括基片和/或具有一个或多个敷设玻璃层的基片以及其上的导体结构。中间层也可以用照相平版印刷结构化或印刷结构化来形成。基片本身已经有导体结构,例如接线的形式。这可以在沉积结构化玻璃层的步骤之前直接敷设到基片上。尤其是随后在已经直接敷设到基片上的接线上提供了一个接触连接区域,而该区域接触连接到随后应用到绝缘玻璃层上的导体结构。通过这种方法能够生成适于射频应用的多层接线系统,或适于高频应用的多层导体配置,在沉积玻璃层的步骤之后,只实现一次在玻璃层上生成至少一个导体结构的步骤。当然本文中还能够生成三维接线系统的更多层,尤其是其中集成了无源元件时,重复实现沉积玻璃层以及生成导体结构的步骤就能生成更多层。但本发明的另一个实施例的基片包含一个半导体基片,它在基片的第一个侧面上有一个或多个有源半导体区域。例如基片可包含一个集成半导体电路。在这种情况下,至少一个导体结构连接到所使用的有源半导体区域的连接位置,这样基片就和导体结构之间,因此也和导体配置之间产生了电接触。迄今,如LTCC模块中,采用的方法是把单个半导体模块单元以单片形式集成到陶瓷腔中,这样陶瓷构成了半导体模块单元的载体。相反,本发明采用了相反的方法,把导体配置直接应用到芯片上,而因此芯片就作为导体配置的载体。本发明的其他实施例中提供了具有至少一个通道的基片。从而在把导电材料敷设到基片上时,至少一个导电材料可以穿过基片连接到通道。本发明的实施例中允许基片一面的结构连接到基片另一面上的射频导体配置。如果基片上的单层或多层导体配置已经完成,可以附带地通过蒸镀敷设一个最后的玻璃层,目的是覆盖之前已经生成的玻璃层。为了和基片上的导体配置接触连接,最好在最后的玻璃层上至少敷设一个通道。该玻璃层可以用和它下面的导体配置的玻璃层相同的生成方法。这个额外的层可以作为绝缘层,使得导体配置和外界互相绝缘。为了本发明的元件的生产经济性,最好在基片仍晶片连接时对其进行涂层,这样可以同时处理多个元件。与本发明同一日期申请的国际专利发明,题为“Processforproducingacomponentwithaconductorarrangementsuitableforradio-frequencyapplications”,它公开了带有射频导体配置的元件,以及生产元件的方法,其中使用蒸镀沉积的玻璃层作为绝缘层。本发明中的玻璃材料也可用在上述申请中描述的方法和元件中,而且所述申请的公开内容在此作为参考。所述的参考国际专利申请中描述的方法和元件,题为“Processforproducingacomponenthavingaconductorarrangementwhichissuitableforradio-frequencyapplications”使用本发明的玻璃材料尤其适合。然而,当然也可以用玻璃材料生成相似的元件或其他类型用于射频应用的元件。因此本发明的一个方面涉及一般用本发明的玻璃材料来生产射频导体结构或射频基片的绝缘层,用来增强这些元件的射频特性。下文中基于优选实施例并且参照附图对本发明进行详细阐释,其中相同及相似的元件用相同的附图标记来标注,且不同实施例的特征可以互相结合。附图中图1显示了本发明第一个实施例的剖面视图,图2显示了本发明另一个实施例的剖面视图,其中基片的另一面上有两个导体结构,图3A到3G用截面图来描述本发明一个实施例中方法所包含的步骤,图4A到4E显示了本发明图3B到3E中所示的过程步骤的变化形式,图5到7显示了本发明实施例中导体配置还是成片连接时生产得到的元件,图8显示了一个RF测量结构的示意性的层结构,图9显示了对于开放共面波导CPW1/2的层结构,图10显示了对于埋入共面波导CPW3的层结构,图11显示了测量样本的特性列表,测量值在下列图12到23中进行阐释,图12到14显示了样本G1ACPW2_2(玻璃8329)的散射参数以及相位谱,图15到17显示了样本G1ACPW3_2(玻璃8329)的散射参数以及相位谱,图18到20显示了样本G2ACPW2_6(玻璃G018-189)的散射参数以及相位谱,以及图21到23显示了样本G2ACPW3_2(玻璃G018-189)的散射参数以及相位谱。图1示出了根据本发明的元件的第一实施例简要截面示意图;该元件通篇用附图标记10来表示,具有基片1,该基片1包括第一个侧面3和与该第一个侧面相对的一侧5,以及设置在该基片的第一个侧面3上的导体结构,该导体结构通篇用附图标记4来表示。层6包括设置在基片上的导体结构61-64。导体结构61-64例如可以是接线。此外,导体结构61-64中一些也可以形成为无源电子元件。触点连接区71-74限定在基片1的第一个侧面3的导体结构61-64上。当设置了层6的导体结构61-64后,绝缘玻璃层9通过蒸镀以结构化的形式沉积到基片的第一个侧面3上,使得该玻璃层在触点连接区71-74上方具有开口8。开口8用导电材料19来填充,使得开口和导电填充物一起形成了穿过绝缘层9的通道。带有其他导体结构111,112,113的层11敷设到玻璃层9上。导体结构111,112,113分别与至少一个通道相接触,使得导体结构111,112,113与层6的导体结构61-64电气连接。因此,基片具有多层导体结构,单个层6和11相互由绝缘玻璃层9隔开,具有良好的射频特性。玻璃层9的厚度取决于预定的用途,层厚在0.05μm到5mm的范围内,而通过蒸镀敷设的玻璃层厚度在0.05μm到1mm范围内。作为导体结构111,112,113的外部绝缘的最后敷设的蒸镀玻璃层13沉积在包含导体结构111,112,113的层11之上。并且为了能和这些导体结构进行接触连接,在最后蒸镀的玻璃层13上有和导体结构111,112,113连接的附加通道15。另外,通道15上具有焊点17,使得元件10能够连接到例如SMT电路板。为了敷设层9,13,本发明中最好使用一个包含玻璃材料的靶,用电子束蒸镀法进行蒸镀,并沉积在基片1上。根据本发明中的用来生成绝缘层9,13的玻璃材料,作为敷设层的层厚在0.05μm到5mm范围内,在频率范围至少高于1GHz时,其损耗因子tanδ小于或等于50*10-4。上述玻璃8329以及G018-189由于良好的射频特性,尤其适用于该用途。图2示出了根据本发明的元件10的另一实施例的截面图。该实施例包括在两个相对侧3和5中的每个侧面上分别设置的射频导体配置41、42。导体配置41,42的结构与图1中所示的实施例的导体配置4相似。具体而言,导体配置41、42也分别包括一个通过蒸镀玻璃敷设的玻璃层9,具有可向其中填充导电材料的开口,用于形成通道,从而实现与开口下方的触点连接区的电气连接。带有分别与通道相接触的导体结构的层6总是设置在导体配置41和42的玻璃层9上。在图1所示的实施例中,玻璃层9上的导体结构由另外的最终蒸镀玻璃层13覆盖,该玻璃层中有用于连接元件的多个通道15。图3A到3G用截面图示出了本发明实施例中生产元件的方法所包含的步骤。图3A显示了第一个处理步骤后的基片1,其中包括导体结构61-64,例如适当的接线的层6要敷设在射频导体配置的一侧上。这些导体结构可以是例如图3A中未示出的基片上电子元件的接触位置,或者是连接到这些接触位置。然后在下一步处理步骤中,沉积一个玻璃层,该玻璃层在它下面一层的表面上的接触连接区域71-74的位置上方具有开孔。为此基于图3B所示,首先在下一步中敷设一个覆盖了相应接触连接区域71-74的具有结构21的结构化中间层。该步骤最好用适合的光致涂层中的照相平版印刷结构来实现。但是作为替换,也可以用其他处理方法,如凸版印刷来形成结构21。随后如图3C所示,通过蒸镀来敷设玻璃层9,该玻璃层既覆盖了被中间层结构21覆盖的接触连接区域71-74,也覆盖了基片表面的周围区域。本文中玻璃层9的厚度最好小于结构化中间层的厚度。然后再去除中间层,同时在去除中间层时也去除了覆盖了中间层结构21或位于结构化中间层之上的玻璃层9的区域90。图3D显示了该步骤之后的基片,其中相应的玻璃层9在它下面一层的表面的接触连接区域71-74上具有开孔8。如图3E所示,随后可以用如导电材料19填充开孔8。然后在玻璃层9上敷设一个包含导体结构111,112,113及无源元件23的层11,如图3F所示。元件23可以包含例如电容、电阻、线圈、变阻器、PTC、NTC或滤波器元件。可以用两个层的导体结构来实现电容和线圈,其中一个层位于另一层之上并且之间用蒸镀玻璃层进行绝缘。例如单个层6的导体结构和位于其上的单层11的导体结构可以用于该目的。导体结构例如可以用进一步的反向结构化中间层以及沉积导电材料来实现,导体结构111,112,113与开孔8中的导电材料19相接触,这样和相应的接触连接区域71-74也产生了电连接或电接触。导体结构也可以是包含不同导电材料或者半导体材料的结构,例如在多个步骤中实现导体结构可以使用不同的材料。这也使得导体配置中能集成更多的功能,例如生成半导体-金属触点或热电触点。图3E所示的用导电材料19形成穿透玻璃层9的通道以及图3F所示的导体结构生成也可以在一个步骤中实现。根据实例,可以用电镀生成导体结构19,这样沉积的材料首先从接触连接区域71-74开始,填充开孔8,然后继续扩散到玻璃层9整个表面上,它构成了导体结构,并且如果需要的话,也可以构成无源元件23。也可以用蒸镀或溅镀来生成导体结构111,112,113,其中对接触连接区域71-74和开孔8的边缘进行涂层,这样相应的导体结构和接触连接区域71-74产生电接触。然后再次去除中间层,中间层上沉积的导电材料也被去除,而所需的导体结构以及任何应用元件,包括玻璃层9的表面,都保持在原位置。图3B至3F所示的步骤中,用本发明的玻璃材料如玻璃G018-189,通过蒸镀将在触点连接区上方具有开口的结构化玻璃层沉积在基片上,以及敷设与相关触点连接区形成电接触的导体结构的步骤可以重复进行,以产生导体结构的其他层,在这种情况下去在后一阶段敷设的导体结构可与前一阶段敷设的导体结构的触点连接区相接触。为此,如图3F到3G所示,再次在涂层基片1的表面上所需的接触连接区域75,76上生成具有结构21的中间层,接触连接区域位于应用导体结构之上或也位于通道之上比较有利。然后在接触连接区域75,76上敷设带有透过玻璃层91的开孔的通道的下一个绝缘玻璃层91,生成该层和图3C到3E中已描述的处理步骤是类似的。图4A到4E显示了根据本发明对图3B到3E中描述的处理步骤进行了一定的变化。本发明中该方法的变化是基于导电材料,其相对于接触连接区域的相邻区域凸出出来,并由中间层结构所覆盖,在蒸镀玻璃层之前敷设到接触连接区域上。该导电材料随后形成了通道。具体的说,首先从图3A中准备基片1开始,形成了导电层25,随后是照相平版印刷结构的中间层27,如图4A所示。图4B显示了用照相平版印刷结构化了中间层27之后的基片。该层的结构化方式是覆盖了所需接触连接区域71-74的结构21保持不变。然后如图4C所示,从接触连接区域71-74周围没有被覆盖的区域上去除导电层25。实现该步骤可以使用专业领域的标准方法,如蚀刻。因此接触连接区域71-74被导电材料覆盖,其高于或凸出接触连接区域的相邻区域,并且被中间层27的结构21所覆盖。然后如图4D所示,用蒸镀方法来蒸镀本发明中的玻璃材料,以形成绝缘玻璃层9,选择玻璃层9的厚度最好大致等于凸起的导电材料19的厚度。最后例如用适合的溶剂去除中间层结构21,且在该过程中覆盖结构21的玻璃层9的区域90也被去除。结果得到的基片的玻璃层在各个接触连接区域上有开孔,并且在开孔中填充导电材料形成了通道。这种处理状态如图4E所示。选择合适的玻璃层9的层厚,使其与导电材料19的厚度相匹配,结果使得导电材料和玻璃层9的表面基本在同一高度,产生了平坦的表面。随后也可参照图3F到3G所阐释的继续执行该方法,其中图3G中的第二玻璃层91以及其他任何带有通道的玻璃层的生产方式和图4A到4E中阐释的相同或相似。根据该过程的有利的改进,可以在基片成片连接时对其涂层来制造元件10。关于这方面,图5到7显示了涂层薄片2的不同实施例,将单独的基片1从晶片上分离就得到了元件。图5显示了本发明的实施例,其中半导体晶片2有一系列玻璃和接线层。用于该用途的晶片材料最好是硅,因为硅的热膨胀系数和蒸镀玻璃非常匹配。一旦它们成片连接时进行涂层,以及一旦产生了图5中所示的处理状态,就沿着延长分离轴29把单个基片1分离下来,目的是最终获得具有适合射频应用的导体结构的元件10。在第一个侧面3上,晶片2具有单独的有源半导体区域33,该区域连接到连接位置35。本发明的实施例中,导体配置4位于晶片2上,或晶片2的基片1的另一面5上,该侧面是具有有源半导体区域33的第一个侧面的相反一侧。为了清晰起见,导体配置4用简化形式表示,且所有的导体结构都用附图标记100标注。导体配置4的单个层的生产最好如图3A到3G和/或图4A到4E中阐释的方法。尤其是图5中的导体配置4也是多层形式,为此要相应的多次重复沉积结构化玻璃层以及生成导体结构100的步骤,并且后一阶段的导体结构100和前一阶段的导体结构100在接触连接区域处互相接触。并且,晶片2中引入了通过基片1和连接位置35电气连接的通道37。最好在晶片上蚀刻一些凹孔来产生通道,从第二个侧面5开始直到合适的金属连接位置35为止,其同时也作为一个蚀刻终点。然后在蚀刻凹孔的侧壁上产生钝化层39,且用导电材料43填充蚀刻凹孔。通道37内的导电材料43没有覆盖面3,它作为导体配置4的导体结构100的接触连接区域。并且第二个侧面5的表面上带有通道的区域作为导体配置4的一些导体结构100的接触连接区域。如果这些导体结构100在生产以前沉积的玻璃层9时接触到接触连接区域,导体结构也因此电气连接到基片1的第一个侧面的连接位置35。这样可以通过导体配置向有源半导体区域33供电,以及把有源半导体区域的电信号发射到导体配置4的导体结构100。为了封装并保护随后从晶片上分离得到的元件,图5中的实施例在面3上还带有额外的蒸镀玻璃封装层14以及一个塑料盖31。图6显示了本发明另一个实施例,其中也是成片连接进行涂层的基片带有导体配置4。本发明的实施例类似于图5中的实施例。图6中的实施例中也使用了带有有源半导体区域33的半导体晶片2,它被分配成单独的基片1。如图5所示的实施例,在生成导体配置4的第一个玻璃层9的导体结构100时,有源半导体区域33的连接位置35连接到导体配置100。但是与图5中的实施例不同的是,导体配置4的玻璃层9,91,92,93和13通过蒸镀生成在基片1的第一个侧面3上,其上也设置了有源半导体区域33。导体配置4的底部玻璃层9上的通道15直接生成在连接位置35上,因此接触位置35构成了基片1对于第一个玻璃层9的相应导体结构100的接触连接区域。如图5和6中实例所描述的,从涂层薄片2上分离得到的元件10,例如可以设计成频率高于10GHz,尤其是频率范围在40GHz或更高的范围内的射频传送/接收模块。图7显示了本发明的另一个实施例,其中基片1有一个射频导体配置4,仍然成片连接。此时包含玻璃层9,91,92,93,13的导体配置4和导体结构100生成在晶片上,晶片的基片1也有通道37。带有基片1和导体配置4的元件10,从晶片上分离后作为重新布线的射频基片,使得下一级元件能够连接到元件10的外部接触位置。为此外部接触位置带有焊点17,这样可以用表面安装技术装配和连接其他元件。此时基片1没有任何有源元件。因此基片晶片2也可以用绝缘材料制成,例如玻璃或塑料。尤其适合用作晶片或元件10的基片1的玻璃材料是Borofloat33玻璃,其热膨胀系数实际上和优选的蒸镀玻璃一致。图8示意性地示出了层结构来描述RF特性,包括测量得到的测试结构的层厚。图9和10描述了开放和埋入共面波导的实际结构。就是基于这些结构得到了散射参数S12,S21,S11和S22的测量值。图12到23选定测量值的样本标号如图11中的表格所示。图12到14显示了使用玻璃8329作为铝制接线之间的绝缘体时,散射参数S11和S22,S12和S21的幅度,以及开放共面波导的散射参数S12和S21的相位谱。散射参数S12和S21也表示了传输衰减,而散射参数S11和S22表示反射衰减。图12清楚地显示了在频率高达50GHz时,样本信号有极低的反射S11和S22,从-20dB到-40dB。另外,图13中的测量值很明显地表示当频率高达50GHz时,散射参数S12和S21的低衰减值小于<-2dB。频率高达50GHz时,散射参数S21和S12表示了各频率的电信号的传输值。散射参数S21的线性相位谱在频率高达50GHz时色散很小。图12到14的测量值也可以用其他样本的测量进行验证,根据下列图15到17显示了使用玻璃8329时埋入共面波导的测量值,图18到20显示了使用玻璃8329时开放共面波导的测量值,以及图21到23显示了使用玻璃G018-189时埋入共面波导的测量值.这些测量值显示了使用RF玻璃G018-189时散射参数S12和S21衰减越来越低的趋势。附图标记列表1基片2半导体晶片31的第一个侧面4,41,42导体配置51的第二个侧面61上具有导体结构的层61-646的导体结构71-74接触连接区域8接触连接区域71-74之上的9中的开孔9,91-93蒸镀玻璃层10元件11带有导体结构的层100,111,112,113导体结构13最后的蒸镀玻璃层14蒸镀玻璃封装层15通道17焊点19导电材料21中间层的抗蚀结构23无源电子元件25导电层27照相平版印刷结构化的中间层29分离轴31塑料盖33有源半导体区域3533的连接位置37通过1的通道39钝化层4337的导电填充剂75,76接触连接区域90抗蚀结构上的蒸镀玻璃层的区域权利要求1.一种用于为射频基片或射频导体配置生产绝缘层的玻璃材料,其中该材料可作为敷设层(9,91,92,93,13),尤其是层厚范围在0.05μm至5mm之间,优选在0.05μm至1mm之间,在至少高于1GHz的频率范围时的损耗因子tanδ小于或等于70*10-4。2.如权利要求1中所述的玻璃材料,其特征在于该材料作为敷设层(9,91,92,93,13),尤其是层厚范围在0.05μm至5mm之间,频率范围在40GHz左右时的损耗因子tanδ小于或等于50*10-4。3.如前述任一权利要求中所述的玻璃材料,其特征在于该材料作为敷设层(9,91,92,93,13),尤其是层厚范围在0.05μm至5mm之间,频率在40GHz时的损耗因子tanδ小于或等于30*10-4。4.如前述任一权利要求中所述的玻璃材料,其特征在于可以蒸镀玻璃材料来沉积层(9,91,92,93,13)。5.如前述任一权利要求中所述的玻璃材料,其特征在于可以用电子束蒸镀方法来蒸镀玻璃材料。6.如前述任一权利要求中所述的玻璃材料,其特征在于工作温度低于1300℃。7.如前述任一权利要求中所述的玻璃材料,其特征在于该材料作为敷设层,尤其是层厚范围在0.05μm至5mm之间,在至少高于1GHz的频率范围时相对介电常数εR小于或等于5。8.如前述任一权利要求中所述的玻璃材料,其特征在于该材料作为敷设层,尤其是层厚范围在0.05μm至5mm之间,在频率为40GHz时的相对介电常数εR小于或等于5,尤其相对介电常数εR<5。9.如前述任一权利要求中所述的玻璃材料,其特征在于该材料作为敷设层,尤其是层厚范围在0.05μm至5mm之间,温度范围在20℃到300℃之间时的热膨胀系数α20-300在2.9×10-6K-1到3.5×10-6K-1之间。10.如前述任一权利要求中所述的玻璃材料,其特征在于该材料作为敷设层,尤其是层厚范围在0.05μm至5mm之间,温度范围在20℃到300℃之间时的热膨胀系数α20-300=(3.2±0.2)×10-6K-1。11.如前述任一权利要求中所述的玻璃材料,其特征在于该材料作为敷设层,尤其是层厚范围在0.05μm至5mm之间,温度范围在20℃到300℃之间时的热膨胀系数小于基片材料的热膨胀系数1×10-6K-1。12.如前述任一权利要求中所述的玻璃材料,其特征在于该材料作为敷设层,是抗酸级别2的抗酸性玻璃。13.如前述任一权利要求中所述的玻璃材料,其特征在于该材料作为敷设层,是抗碱级别3的抗碱性玻璃。14.如前述任一权利要求中所述的玻璃材料,其特征在于它具有按下列比重的成分SiO240-90,B2O310-40,Al2O30-5,K2O0-5,Li2O0-3,Na2O0-3。15.如前述任一权利要求中所述的玻璃材料,其特征在于它具有按下列比重的成分SiO260-90,B2O3105-305,Al2O30-3,K2O0-3,Li2O0-2,Na2O0-2,16.如前述任一权利要求中所述的玻璃材料,其特征在于它具有按下列比重的成分SiO271±5,B2O326±5,Al2O31±0.2,K2O1±0.2,Li2O0.5±0.2,Na2O0.5±0.2,17.如前述任一权利要求中所述的玻璃材料,其特征在于它具有按下列比重的成分SiO284±5,B2O311±5,Al2O30.5±0.2,K2O0.3±0.2,Li2O0.3±0.2,Na2O2±0.2,18.使用前述任一权利要求中所述的玻璃材料来生产射频导体结构或射频基片的绝缘层(9,91,92,93,13)。19.一种用于生产带有射频导体配置(4,41,42)的元件10的方法,包含的步骤有—在基片(1)的接触连接区域(71-74)上用前述任一权利要求中所述的玻璃材料沉积得到带有至少一个开孔(8)的结构化玻璃层(9,91,92,93,13),以及—在玻璃层(9,91,92,93)上生成至少一个导体结构(100,111,112,113),其和接触连接区域(71-74)形成电接触。20.如权利要求19中所述的方法,其特征在于玻璃层是蒸镀玻璃材料沉积而成的。21.如权利要求19或20中所述的方法,其特征在于在玻璃层(9,91,92,93)上至少生成一个和至少一个导体结构接触的无源电子元件。22.如前述任一权利要求中所述的方法,其特征在于多次重复沉积结构化玻璃层以及生成至少一个导体结构(111,112,113)的步骤,其中后一级的导体结构和前一级的导体结构在接触连接区域上接触。23.如前述任一权利要求中所述的方法,其特征在于通过蒸镀沉积得到在接触连接区域(71-74)上方具有至少一个开孔(8)的结构化玻璃层(9,91,92,93,13)的步骤,包含的步骤有—敷设一个结构化的中间层(21),其覆盖了接触连接区域,—通过蒸镀在基片和位于其上的结构化中间层(21)上敷设玻璃层(9,91,92,93,13),玻璃层(9,91,92,93,13)的厚度最好小于结构化中间层(21)的厚度,以及—去除结构化中间层(21),同时玻璃层(9,91,92,93,13)位于结构化中间层(21)上的区域(90)也被去除。24.如权利要求23中所述的方法,其特征在于在通过蒸镀敷设玻璃层之前,相对于接触连接区域的邻近区域凸出出来的导电材料(19)敷设在至少一个接触连接区域(71-74)上,且该材料(19)被结构化中间层(21)所覆盖。25.如权利要求23或24中所述的方法,其特征在于结构化中间层(21)用印刷术或照相平版印刷结构生成。26.如前述任一权利要求中所述的方法,其特征在于导体结构生成包括生成反向结构化中间层以及沉积导电材料的步骤。27.如前述任一权利要求中所述的方法,其特征在于在沉积结构化玻璃层(9,91,92,93,13)的步骤之前,在基片上敷设至少一个导体结构,尤其是接线。28.如前述任一权利要求中所述的方法,其特征在于包括用权利要求1到17中所述的玻璃材料沉积得到最后的玻璃层(13)以及在最后的玻璃层(13)上生成至少一个通道(15)的步骤。29.如前述任一权利要求中所述的方法,其特征在于基片(1)包含带有有源半导体区域(33)的半导体基片,其中至少一个导体结构(100,111,112,113)在敷设时连接到有源半导体区域(33)的连接位置(35)。30.如前述任一权利要求中所述的方法,其特征在于至少一个导体结构(100,111,112,113)在敷设时连接到穿过基片(1)的通道(37)。31.如前述任一权利要求中所述的方法,其特征在于基片(1)在用蒸镀生成玻璃层(9,91,92,93,13)的过程中,温度保持在50℃到200℃之间,优选在80℃到120℃之间。32.如前述任一权利要求中所述的方法,其特征在于用蒸镀生成玻璃层(9,91,92,93,13)的沉积率是每分钟至少0.1μm层厚。33.如前述任一权利要求中所述的方法,其特征在于玻璃层(9,91,92,93,13)的至少一个开孔(8)中填充了导电材料(19)。34.如前述任一权利要求中所述的方法,其特征在于基片(1)仍与晶片连接时对其进行涂层。35.如前述任一权利要求中所述的方法,其特征在于通过蒸镀来敷设玻璃层(9,91,92,93,13)是由等离子体离子加速沉积(PIAD)来实现的。36.一种元件(10),具有射频导体配置(4,41,42),尤其是用前述任一权利要求中所述的方法来生产所述元件,其包括—具有至少一个接触连接区域(71-74)的基片(1),—在基片(1)的至少一个侧面(3,5)上具有至少一个带有通道的开孔(8)的玻璃层(9,91,92,93,13),通过蒸镀玻璃材料,特别是权利要求1到17中任一项所述的玻璃材料,沉积所述玻璃层,且所述通道和接触连接区域(71-74)电接触,以及—玻璃层(9,91,92,93,13)上具有至少一个导体结构(100,111,112,113),其与所述通道相接触。37.如权利要求36中所述的元件,其特征在于包括在玻璃层(9,91,92,93,13)上的至少一个无源电子元件(23),其连接到至少一个导体结构(100,111,112,113)。38.如前述任一权利要求中所述的元件,其特征在于包括一个多层导体配置(4,41,42),具有通过蒸镀敷设的至少两个玻璃层(9,91,92,93),每一玻璃层上分别具有敷设到其上的导体结构(100,111,112,113),第一个玻璃层上的导体结构通过一个通道(15)和第二个玻璃层上的导体结构电接触。39.如前述任一权利要求中所述的元件,其特征在于基片(1)包括在基片(1)的第一个侧面(3)上的带有至少一个有源半导体区域(33)的半导体基片,其连接到导体结构。全文摘要为了改进射频基片或射频导体配置的射频特性,本发明提供了一种玻璃材料,用于为射频基片或射频导体配置生产绝缘层,其中该材料作为敷设层,尤其是层厚范围在0.05μm至5mm之间,频率范围至少高于1GHz时的损耗因子tanδ小于或等于70*10文档编号H01L23/532GK1656612SQ03811821公开日2005年8月17日申请日期2003年5月23日优先权日2002年5月23日发明者尤根·莱布,迪特里希·芒德申请人:肖特股份公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1